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Inverse Filtering of Optical Images
Tamás Dabóczi, Member, IEEE,and Tamás B. Bakó

Abstract—The quality of images is limited by the performance
of the optical system used. The imperfections of the optical system
cause distortion of the image. If the distortion is known it can be
(partly) compensated. This procedure is called inverse filtering.
The problem is, however, ill-posed, which means that the measure-
ment noise is amplified by the inverse filtering process. Suppres-
sion of the noise causes bias in the reconstruction. A tradeoff has
to be found between the noisy and biased estimates. In this paper,
the reconstruction of images will be investigated, assuming that the
distortion of the optical system is known. An algorithm will be in-
troduced to estimate the optimal level of noise suppression of the
two-dimensional inverse filter.

Index Terms—Deconvolution, defocus, image reconstruction, in-
verse filtering.

I. INTRODUCTION

I MAGES are recorded by optical systems. However, the per-
formance of these systems is limited. There are different

types of errors in such a system. Certain errors exist even in
optical systems consisting of perfect spherical lenses. Spherical
aberration, coma, chromatic aberration, pincushion distortion,
etc., belong to this kind of distortion [1]. Other errors are caused
by the imperfect manufacturing or the normal wear of the op-
tical system.

Modern lens systems are compensated for many types of er-
rors. However, they cannot be compensated for all of them. In
many cases a certain error can be compensated only for a lim-
ited range of usage (e.g., spherical aberration can be compen-
sated for certain object and image distances). The imperfection
of manufacturing always remains a limitation. A good example
is the zoom lens of a photo or video camera. The focal length is
changed by moving different lenses in different ways together. A
small hysteresis of the moving mechanism of the lenses causes
blurred (out of focus) images.

Even the user of the optical system can cause distortion by ad-
justing the system imperfectly. Consider an example from pho-
tography, where the photographer has to adjust the object dis-
tance of the lens. If the object distance is set automatically by an
“autofocus” circuitry, the system can set an unimportant object
to be sharp. A typical example is that of two people standing
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next to each other who are out of focus while the tree far behind
them is sharp.

A. Modeling the Distortion

An ideal imaging system establishes a point-by-point corre-
spondence between the object and the image. This means that
the image of a point is a point in the image plane. In real optical
systems, however, the intensity of the light is dispersed over an
extended area [2]. The distribution of the intensity is called a
“point spread function.” This effect causes a blurred image. If
the spread of the light is space-shift-invariant, and linear, this
distortion can be described by a two-dimensional (2–D) convo-
lution, i.e., filtering with the point spread function. A reasonable
assumption for the measurement noise is that it is additive at the
output of the system

(1)

where
intensity of the object;
intensity of the image;
space invariant point spread function;
noise;
convolution.

The above relationship also can be described in the Fourier do-
main

(2)

where capital letters stand for the Fourier transform of the cor-
responding signals. Convolution in the space domain becomes
multiplication in the Fourier domain.

B. Reconstruction

The image can be (partly) compensated for the distortion,
assuming that the point spread function is known and the op-
tical system is linear and space-shift invariant. This procedure
is called inverse filtering or deconvolution.

Inverse filtering is usually an ill-posed problem [3], [4], i.e.,
measurement noise is amplified to a great extent. The amplified
noise has to be suppressed at the price of bias in the estimate.
A tradeoff has to be found between the biased and noisy re-
construction. The inverse filter has to compensate for the effect
of the measurement system in the pass and attenuation bands,
but in the stopband, it has to suppress the noise. The Fourier
transform of the estimated intensity of the object
is given by

(3)

where is the transfer function of the inverse filter.
The noise reduction is usually controlled by only one parameter

0018–9456/01$10.00 © 2001 IEEE



992 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 50, NO. 4, AUGUST 2001

(e.g., cutoff frequency of a lowpass filter, regularization param-
eter, number of maximal iterations, etc.).

In order to assure repeatability and eliminate subjectivity, the
level of noise reduction must be set automatically. In this paper,
we will describe a model-based algorithm that automatically
sets the optimal level of noise reduction for 2-D images. The
method is based on a previous work [6], developed for one-di-
mensional (1–D), time-domain transient measurements [7]. The
algorithm minimizes the approximate error of the estimate in a
least squares sense. The technique utilizes rough Fourier domain
models of the signals. The models are built automatically from
the measurement, and no human interaction is required.

In Section II, the automatic inverse filtering algorithm will be
recalled, and the 1-D algorithm will be extended to 2-D signals.
In Section III, the algorithm will be checked on images, and it
will be shown that the proposed optimization technique is useful
for 2-D signals, as well.

II. I NVERSEFILTERING

A. Automatic Deconvolution

The optimal reconstruction is defined for which the sum of the
squared error is minimal. The error function can be written both
in the time and frequency domains, utilizing Parseval’s theorem

(4)

where EE denotes the energy of the error, andand are the
dimensions of the sampled image. The core of the last sum in
(4) can be expanded by substituting (3) and (2) into

(5)

where denotes the phase angle of the two absolute
valued terms in the last sum and denotes the in-
verse filter having parameter(s)to control the level of noise
reduction. The core of the cost function is split into three terms

(6)

where subscriptbiasstands for the bias of the estimate, subscript
noisefor the noise whilebias, noisedenotes their cross connec-
tion. The following approximations will be used to compute the
cost function:

• the term will be neglected;
• instead of the absolute values of the signal and noise

spectra, an approximate spectral model will be substituted
into and .

Fig. 1. Extension of images to reduce the effect of intensity step on opposite
edges.

The cost function is then the following:

(7)

where subscript denotes a frequency-domain model of the
absolute value of the spectra of corresponding signals. The cost
function has to be minimized with respect to parameter(s)in
the inverse filter. The new cost function does not require the
knowledge of the intensity of the object. Only an approximate
model has to be provided for the absolute value of its spectrum.

B. Fourier Transform of the Signals

The cost function (7) requires the calculation of frequency-
domain data. Convolution in the frequency domain corresponds
to multiplication in the spacial domain; however, convolution
becomes circular, since signals are assumed to be periodic. For
time-domain transient data, this effect is usually reduced by
padding zeros to the back of the record before computing the
Fourier transform. Images, however, are not transient signals;
two points on opposite edges have different intensities. To re-
duce the effect originated from the intensity step along opposite
edges, we extended the images with their flipped versions (see
Fig. 1).

C. Modeling of Signals

The signal models are built automatically in the same way as
was proposed for 1-D transient signals [6]. White noise will be
assumed for the noise. Its level can be eithera priori, measured
or extracted from the high-frequency part of the spectrum of the
noisy image. The absolute value of the spectrum of the undis-
torted image will be modeled iteratively, starting from a rough
model (noisy and distorted measurement), and improving it in
several steps by substituting the result of the estimated image
into the model.
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Fig. 2 Original picture.

Fig. 3. Distorted and noisy image.

Fig. 4. Under regularized reconstruction.

Fig. 5. Over regularized reconstruction.

Fig. 6. Reconstruction with the proposed algorithm.

Fig. 7. Best reconstruction which can be achieved with the given inverse filter.
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III. SIMULATION EXAMPLE

The picture of Einstein has been scanned (Fig. 2) in gray
scale. The size of the picture, 512512 pixels, and the grayscale
intensity are quantized in 8 bits. A 2-D Gaussian distribution
with standard deviation of 5 pixels was chosen to model
the point spread function of the optical system. Uniformly
distributed noise simulates the measurement uncertainty. The
width of the noise is 1 LSB of the quantizer (1 out of 8 bits).
The distorted and noisy image is shown in Fig. 3.

An often-used technique of signal reconstruction is the regu-
larization of the transfer function [4], [5], which takes the fol-
lowing form for 2-D signals. We used this algorithm to show the
capabilities of the proposed optimization technique

(8)

where is the regularization parameter that controls the level of
noise suppression. If the noise is not suppressed enough in the
inverse filtering process [ is small in (8)], the reconstruction
will be noisy (Fig. 4). Suppressing the noise too much [is
large in (8)] results in a smooth, but distorted, image (Fig. 5).
The optimal level of noise reduction has been calculated with
the proposed algorithm. The obtained reconstruction is shown
in Fig. 6.

For simulated signals, we can check the performance of the
result. We calculated also the best reconstruction that can be
achieved with the chosen inverse filter. It is calculated by mini-
mizing (4) directly

(9)

Of course, it cannot be calculated in general, only for simu-
lated data, since it requires the knowledge of the original undis-
torted image. The above expression provides the reconstruction
shown in Fig. 7. The estimated optimum and the true optimum
are very close to each other, which validates the usefulness of
the proposed algorithm.

IV. CONCLUSION

Inverse filtering of optical images was investigated. A
model-based optimization technique was shown, which has

been adapted from the environment of 1-D transient signals to
2-D optical images. The performance of the method was shown
on a simulated signal. We showed the behavior of the deconvo-
lution for a special inverse filter (regularization). However, the
optimization method is not limited to this application. It can be
used with any optical inverse filter, which has a limited number
of parameters to optimize.

ACKNOWLEDGMENT

The authors wish to thank L. Naszádos for many fruitful dis-
cussions.

REFERENCES

[1] D. C. O’Shea,Elements of Modern Optical Design. New York: Wiley,
1985.

[2] P. M. Duffieux, The Fourier Transform and Its Application to Op-
tics. New York: Wiley, 1983.

[3] S. M. Riad, “The deconvolution problem: An overview,”Proc. IEEE,
vol. 74, pp. 82–85, Jan. 1988.

[4] A. N. Tikhonov and V. Y. Arsenin,Solution of Ill-Posed Prob-
lems. New York: Wiley, 1977.

[5] N. S. Nahman and M. E. Guillaume, “Deconvolution of time domain
waveforms in the presence of noise,” Nat. Bur. Stand., Boulder, CO,
Tech. Note 1047, 1981.

[6] T. Dabóczi and I. Kolláar, “Multiparameter optimization of inverse fil-
tering algorithms,”IEEE Trans. Instrum. Meas., vol. 45, pp. 417–421,
Apr. 1996.

[7] J. P. Deyst, N. G. Paulter, T. Dabóczi, G. N. Stenbakken, and T. M.
Souders, “A fast pulse oscilloscope calibration system,”IEEE Trans.
Instrum. Meas., vol. 47, pp. 1037–1041, Oct. 1998.

Tamás Dabóczi(M’98) was born in Mohács, Hungary, in 1966. He graduated
in electrical engineering from the Technical University of Budapest, Budapest,
Hungary, in 1990. He received the Ph.D. degree in 1994 from the same univer-
sity.

Since then, he has worked in different positions at the Department of Mea-
surement and Information Systems, Budapest University of Technology and
Economics. Currently, he is Senior Lecturer at the same department. His re-
search area is digital signal processing, especially inverse filtering, and decon-
volution.

Tamás B. Bakówas born in Budapest, Hungary, in 1976. He received the M.Sc.
degree in electrical engineering from the Budapest University of Technology
and Economics (BUTE) in 1999. In 2001, he received a second M.Sc. degree in
biomedical engineering. Presently, he is pursuing the Ph.D. degree at BUTE.

His research interests include nonlinear signal processing, image and sound
processing, and related applications.

Mr. Bakó received the Pro Scientia Gold Prize in 1999 from the Hungarian
Academy for his work as a science student.


