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Abstract 

The quality of images are limited by the pegormance of 
the optical system used. The impegection of the optical sys- 
tem cause distortion of the image. rfthe distortion is known 
it can be (partly) compensated. This procedure is called in- 
verse Fltering. The problem is, however; ill-posed, which 
means that the measurement noise is amplified by the in- 
verse filtering process. Suppression of the noise cause bias 
of the reconstruction. A tradeoff has to be found between the 
noisy and biased estimates. In this paper the reconstruction 
of images will be investiguted assuming that the distortion 
of the optical system is known. An algorithm will be intro- 
duced to estimate the optimal level of noise suppression of 
the two dimensional inverse filtel: 

1. Introduction 

Images are recorded by optical systems. The perfor- 
mance of these systems are limited. 

There are different types of errors of such a system. Cer- 
tain errors exist even by optical systems consisting of per- 
fect spherical lenses. Spherical aberration, coma, chromatic 
aberration, pincushion distortion etc. [ 11 belong to this kind 
of distortion. Other errors are caused by the imperfect man- 
ufacturing, or the normal wear of the optical system. 

Modem lens systems are compensated for many types 
of errors. However, they cannot be compensated for all of 
them. In many cases a certain error can be compensated 
only for a limited range of usage (e.g.spherica1 aberration 
can be compensated for certain object and image distances). 
The imperfection of manufacturing remains always a limi- 
tation. A good example is e.g. the zoom lens of a photo or 
video camera. The focal length is changed by moving dif- 
ferent lenses on different ways together. A small hysteresis 
of the moving mechanism of the lenses cause blurred (out 
of focus) images. 

Even the user of the optical system can cause distortion 
by adjusting the system imperfectly. Let think e.g. on pho- 

tography where the photographer has to adjust the object 
distance of the lens. If the object distance is set automati- 
cally by an "autofocus" circuitry the system can also set an 
unimportant object to sharp. A typical situation is that two 
people standing next to each other are out of focus while the 
tree far behind them is sharp. 

1.1. Modeling the distortion 

An ideal imaging system establishes a point-by-point 
correspondence between the object and the image. This 
means that the image of a point is a point in the image 
plane. In real optical systems, however, the intensity of the 
light is dispersed over an extended area [2]. The distribu- 
tion of the intensity is called "point spread function". This 
effect causes a blurred image. If the spread of the light is 
space-shift-invariant, and linear, this distortion can be de- 
scribed by a two dimensional convolution, i.e. filtering with 
the point spread function. A reasonable assumption for the 
measurement noise is that it is additive at the output of the 
system: 

(1) 4% 9) = 4% Y) * P f b ,  Y) + dz, Y>, 
where o(z, y) denotes the intensity of the object, i(x, y) 

denotes the intensity of the image, psf(z,y) denotes the 
space invariant point spread function, n(z, y) denotes the 
noise and * stands for convolution. The above relationship 
can be described in the Fourier domain too: 

where capital letters stand for the Fourier transform of 
the corresponding signals. Convolution in space domain be- 
comes multiplication in the Fourier domain. 

1.2. Reconstruction 

The measurement can be (partly) compensated for the 
distortion, assuming that the point spread function is known 
and the optical system is linear and space-shift invariant. 
This procedure is called inverse filtering or deconvolution. 
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Inverse filtering is usually an ill-posed problem [3 ,  41, 
i.e. measurement noise is amplified in a great extent. The 
amplified noise has to be suppressed on the price of bias in 
the estimate. A tradeoff has to be found between the biased 
and noisy reconstruction. The inverse filter has to compen- 
sate the effect of the measurement system in the pass- and 
attenuation bands, but in the stop band it has to suppress the 
noise. 

where Oest (fz7 f,) is the Fourier transform of the esti- 
mated intensity of the object and K(f , ,  f y )  is the transfer 
function of the inverse filter. The noise reduction is usually 
controlled by only one parameter (e.g. cutoff frequency of a 
lowpass filter, regularization parameter, number of maximal 
iteration etc.). 

In order to assure repeatability and omit the subjectivity 
the level of noise reduction has to be set automatically. In 
this paper we will describe a model based algorithm which 
sets automatically the optimal level of noise reduction for 
two dimensional images. The method is based on a previ- 
ous work [6] ,  developed for one dimensional time domain 
transient measurements [7]. The algorithm minimizes the 
approximate error of the estimate in least squares sense. 
The technique utilizes rough Fourier domain models of the 
signals. The models are built automatically from the mea- 
surement, and no human interaction is required. 

In Section 2 the automatic inverse filtering algorithm will 
be recalled, and the one dimensional algorithm will be ex- 
tended to two dimensional signals. In Section 3 the algo- 
rithm will be checked on images, and it will be shown that 
the proposed optimization technique is useful for two di- 
mensional signals as well. 

2. Inverse filtering 

2.1. Automatic deconvolution 

The optimal reconstruction is defined for which the sum 
of squared error is minimal. The error function can be writ- 
ten both in time- and frequency domain, utilizing Parseval’s 
theorem: 

z=o y=o 

. N,-1 Ng-1 

where N z  and Ny are the dimensions of the sampled im- 
age. The core of the last sum in (4) can be further written 

where (p(fz, f y )  denotes the phase angle of the two ab- 
solute valued terms in the last sum and K ( f z ,  fy  , p) denotes 
the inverse filter having parameter(s) p to control the level 
of noise reduction. The core of the cost function is split into 
three terms: 

where E E  denotes the energy of the error, subscript bias 
stands for the bias of the estimate, subscript noise for the 
noise while bias, no ise  denotes their cross connection. The 
following approximations will be used to compute the cost 
function. 

the EEaias,noise term will be neglected, and 

0 instead of the absolute values of the signal and noise 
spectra an approximate spectral model will be substi- 
tuted into O(fz, f y )  and NUz, fy) .  

The cost function is then the following: 

where subscript mod denotes a frequency domain model 
of the absolute value of the spectra of corresponding sig- 
nals. The cost function has to be minimized with respect to 
parameter(s) p in the inverse filter. The new cost function 
does not require the knowledge of the intensity of the ob- 
ject, only an approximate model has to be provided for its 
absolute value of spectrum. 

2.2. Fourier transform of the signals 

The cost function (7) requires the calculation of fre- 
quency domain data. Convolution in the frequency do- 
main corresponds to multiplication, however, convolution 
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Figure 1. Extension of images to reduce the 
effect of intensity step on opposite edges 

becomes circular. For time domain transient data this effect 
is usually reduced by padding zeros to the back of the record 
before computing the Fourier transform. Images, however, 
are not transient signals; two points on opposite edges have 
different intensities. To reduce the effect originated from 
the intensity step along opposite edges we extended the im- 
ages with their flipped versions (Fig. 1). 

2.3. Modeling of signals 

The signal models are built automatically on the same 
way as it was proposed for one dimensional transient sig- 
nals [6]. White noise will be assumed for the noise. Its level 
can be either a priori measured or extracted from the high 
frequency part of the spectrum of the noisy image. The ab- 
solute value of the spectrum of the undistorted image will be 
modeled iteratively, starting from a rough model (noisy and 
distorted measurement), and improving it in several steps 
by substituting the result of the estimated image into the 
model. 

3. Simulation example 

The picture of Einstein has been scanned (Fig. 2) in gray 
scale. The size of the picture 512 by 512 pixels, and the 
grayscale intensity is quantized in 8 bits. Two dimensional 
Gaussian distribution with standard deviation of 5 pixels 
was chosen to model the point spread function of the optical 

system. Uniformly distributed noise simulates the measure- 
ment uncertainty. The width of the noise is 1 LSB of the 
quantizer (1 out of 8 bits). The distorted and noisy image is 
shown in Fig. 3. 

An often used technique of signal reconstruction is the 
regularization of the transfer function [4, 51, which takes 
the following form for two dimensional signals. We used 
this algorithm to show the capabilities of the proposed opti- 
mization technique: 

a s t ( f Z ,  fY’Y) = 
~ ( f Z ’ f Y ) P S F ( f Z ,  f Y ) *  

IPS~(fZ>fY)l2+ r l W z ,  f Y ) 1 2  

(8) N(fz, fY)PSF(fZ, f y ) *  

IPSF(fZ’ fd12 4- Y I W z ,  f Y ) ?  ’ 
+ 

where y is the regularization parameter which controls 
the level of noise suppression. 

If the noise is not suppressed enough in the inverse fil- 
tering process (y is small in (8)) the reconstruction will be 
noisy (Fig. 4). Suppressing the noise too much (y is large in 
(8)) results a smooth but distorted image (Fig. 5). The op- 
timal level of noise reduction has been calculated with the 
proposed algorithm. The obtained reconstruction is shown 
in Fig. 6. 

For simulated signals we can check the performance of 
the result. We calculated also the best reconstruction which 
can be achieved at all with the chosen inverse filter. It is 
calculated by minimizing (4) directly: 

cost(?) = (9) 

f.=O f,=O 

Of course it cannot be calculated in general, only for sim- 
ulated data, since it requires the knowledge of the original 
undistorted image. The above expression results the recon- 
struction shown in Fig. 7. The estimated and the true opti- 
mum is very close to each other, which validates the useful- 
ness of the proposed algorithm. 

4. Conclusions 

Inverse filtering of optical images were investigated. A 
model based optimization technique were shown, which 
has been adapted from the environment of one dimensional 
transient signals to two dimensional optical images. The 
performance of the method was shown on simulated sig- 
nal. We showed the behavior of the deconvolution for a spe- 
cial inverse filter (regularization), however, the optimization 
method is not limited to this. It can be used to any optical 
inverse filter, which has a limited number of parameters to 
optimize. 
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Figure 2. Original picture Figure 3. Distorted and noisy image 

Figure 4. Under regularized reconstruction Figure 5. Over regularized reconstruction 

Figure 6. Reconstruction with the proposed 
algorithm 

Figure 7. Best reconstruction which can be 
achieved at all with the given inverse filter 
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