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Abstract — When a signal goes through a system having a static,
nonlinear transfer function, the output signal will be distorted. In
addition to it, the detected output signal is usually contaminated by
noise, due to the noisy environment. If we compensate the non-
linearity with its inverse, the expected value of the output signal
will be different from it's original one, due to the nonlinearly dis-
torted noise. If this difference is not acceptable, we have to use a
different compensation function. In this paper we will show an
iterative method, which can produce a unbiased compensation
Junction in the knowledge of the original nonlinear distortion and
the noise distribution. The resulted output signal has the same
expected value as the original one.
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I. INTRODUCTION
Preliminaries

When a distortion caused by a nonlinear device is not accept-
able, we have to compensate it. Several works occupy with
nonlinear compensation. An orthogonal polynomial repre-
sentation can be seen in [1]. Practical examples from the area
of industry can be seen in [2]-[4]. Audio related examples are
in [5]-[10].

The compensation can have different aims. The aim is usually
to minimize the difference between the original and the esti-
mated signal in least square sense. Most of these examples
above use least square approach. In this case the noise on the
estimated signal will be small, but the estimate will be biased.
None of the works above deals with unbiased reconstruction,
however, in certain cases the unbiased estimate may be an
important aim.

In the case of audio related examples, the least squares ap-
proach is obvious, because we have to minimize the energy
of the disturbing error signal. However, when we make pre-
cise measurements about a system that contains a nonlinear-
ity, we may need unbiased expected values about the ana-
lyzed parameters.

Novelty
Our aim was to make an unbiased estimate from the nonline-

arly distorted signal. In this paper we will show that this
problem is ill-posed. We will also show that an improper so-
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lution can produce high noise amplification. A novel iterative
method will be introduced, which is able to find an unbiased
solution in a given signal interval. The method provides small
noise intensification.

II. MODEL OF THE SYSTEM
The model of the compensation can be seen in Figure 1:
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Figure 1. Model of signal compensation.
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Here x and X refer to the original and estimated signals, n
to the noise, o andy to the output and observed signals,

respectively. N() is the static, nonlinear transfer character-
istics of the distorting device, and K() is our compensation

function. In this case, the expected value of the estimate will
be
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where the probability density-function of a variable a is de-
noted by f,(a). This equation shows a correlation function
between f,(n) and K(y). We have to solve this equation in
a given [x,,xz] interval, to find the correct value of K(y).
This equation is ill-posed, because in a given interval infinite
number of solutions exist. We can see this ill-posedness, if
we write (1) for sampled signals:

1,0 = NG £, =N | (KO0
2 . 2 . .

%
E{I: ]= : : | @
Bl 16O, ~NGw) - fO w, ~NED| | KOG 0
2 2 2

1099



1100

In this matrix-equation, due to the noise, K(y) should be

mapped in a wider range than % . In this case, the number of
equations will be less then the number of unknown parame-
ters. This set of equations becomes underdetermined, which
means that infinite number of solutions exist, i.e. a subspace
is the solution. We have to find a proper solution from this
subspace based on further considerations.

Since correlation transforms to multiplication after a Fourier-
transformation, it gives the idea to find the solution with the
Fourier-transforms:
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where F { } means Fourier-transform and F 1 ;,, (n)} is the
complex conjugate of F {fn (n)}. This method gives an unbi-
ased compensation function, but usually this function will
oscillate. In those points, where abs(F {fn (n)}) is close to
zero, but abs(F {N(x)}) is not, F {K (y)} will contain a peak,
which after an inverse Fourier-transformation transforms to
an oscillation. This kind of compensation function is unus-
able, due to the oscillation. The variance of the estimate will
be unacceptably high. We have to find a solution, which pro-
vides good noise suppression, so a better method should be
used that provides a "smooth" compensation function.

II. A SOLUTION BASED ON GOLD-ITERATION

We developed a method, which is based on Gold-iteration
[11]. As the first step, K(y) willbe N~'(y). Then

K(0)= [Ko(y)- f,(y—0My @

where k(o) is the resulted characteristics that can be com-
puted as
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The next step is:
N Y
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where the exponent, i, is an arbitrary number to make the
iteration convergent. In most cases y =1 is appropriate.

In our experiments, we have found that the convergence of
this method is extremely fast. Usually only one iteration is
enough to get a proper characteristics.

At the numerical computation, we have to take care by
choosing the beginning interval of N~'(y). If the range of
interest is [y,,yz], f,(n) is sampled in P points, Q itera-
tion is made, and the spacing distance is d , the beginning

interval should be [y1 —%d. ¥, +% d] , because in each

iteration, the computed K;(y) will be distorted at the ends
and the usable part will be smaller.

IV. SIMULATION

To show the capabilities of the proposed algorithm, a sine-
wave signal (Fig. 2) was distorted with a Gaussian error-
function (Fig. 3) and contaminated with white-noise. The
noise is equally distributed in the range of [— 0.05,0.05]. The
signal-to-noise ratio is 25 dB. The distorted and noisy signal
can be seen in Fig. 4.

Fig. 5 shows the estimation produced by the exact inverse of
the original nonlinearity. Fig. 6 shows the estimation pro-
duced by our proposed method. In this case only one iteration
was used to calculate the proper shape of the characteristics.
The differences between the estimate signals and the original
one can be seen in Fig. 7 and Fig. 8. The noise in the case of
the exact inverse is strongly distorted and causes a biased
estimation, however in the case of our method the noise is
unbiased, hence the estimate will be also unbiased.

V. CONCLUSIONS

In this paper, unbiased reconstruction of static, nonlinear
distortions was shown. A novel method is proposed, which is
able to design a nonlinear compensation function that pro-
duces an unbiased estimate in the case of noisy observed sig-
nals. The shape of the compensation function is not obvious
and an improper function can produce high noise intensifica-
tion. An iterative method was shown, which is able to find a
“smooth” solution and provides small noise intensification.
The algorithm converges fast and usually only one iteration is
enough to get an appropriate compensation function. The
results of the algorithm were shown by simulation examples.
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Figure 2. The original, undistorted signal.
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Figure 3. Nonlinear characteristics.
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Figure 4. Distorted, noisy signal.
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Figure 5. Estimate produced by the exact inverse.
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Figure 7. Difference between the original signal and the estimate

one produced by the exact inverse.
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Figure 6. Unbiased estimate.
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Figure 8. Difference between the original signal and the estimate

one produced by the proposed method.
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