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Uncertainty of Signal Reconstruction in the
Case of Jittery and Noisy Measurements
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Abstract—Time domain measurements are distorted by the
measurement system if the bandwidth of the system is not
sufficiently high compared to that of the signal to be measured. If
the distortion is known the measured signal can be compensated
for it (inverse filtering or deconvolution). Since the measurement
is always corrupted by noise, the reconstruction is an estimation
task, i.e., the reconstructed signal may vary depending on the
actual noise record.

Our aim is to investigate the errors related to the signal
reconstruction, and to provide an error bound around the re-
constructed time domain waveform. Based on their nature we
can distinguish between systematic and stochastic errors. In
this paper, we investigate the stochastic type of errors and
suggest a method to calculate the uncertainty (variance) of the
reconstruction.

We developed a method for the calibration of high-speed
sampling systems. Both stationary and jitter noises will be in-
vestigated.

Index Terms—Calibration, deconvolution, ill-posed problem,
inverse problems, jitter.

I. INTRODUCTION

M EASUREMENT of time-domain signals becomes diffi-
cult if the bandwidth of the measurement system is not

high enough compared to that of the signal to be measured.
In this case, the measurement system distorts the waveform.
Assuming a linear and time-shift invariant model for the
measurement system, the relation between the input and the
output of the system can be described by convolution of the
excitation signal with the impulse response of the system. If
the distortion is known (impulse response or transfer function
is known), the measured signal can be compensated for it. This
operation is called deconvolution or inverse filtering.

Deconvolution is usually an ill-posed problem, i.e., small
changes in the measured signal due to the noise cause large
deviations in the reconstruction [1], [2]. To make the problem
well posed, one has to define additional constraints to put
a limit to the noise amplification. Several approaches are
proposed in the literature [3]–[9]. The inverse filter usually
suppresses those frequency bands where the noise dominates.
In practical cases this means that the high-frequency noise is
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suppressed in different ways depending on the inverse filtering
method.

Since the measurement is corrupted by noise, the reconstruc-
tion is an estimation task. The estimated input signal of the
measurement system consists systematic and stochastic type
of errors.

The inverse filter is not the true inverse of the measurement
system, because the noise has to be suppressed in the stopband
of the measurement system. This filtering distorts the signal
to be measured and causes the bias of the estimate.

Variance is due to the fact that the reconstructed signal is a
filtered version of the noisy measurement. The reconstructed
signal can change from measurement to measurement even
using the same inverse filter, since the noise records are
different. We will call this uncertainty of the reconstruction,
and we will distinguish it from the systematic error. With this
approach the uncertainty is the fluctuation of the estimate due
to the difference in successive noise records.

Our aim is to provide an error bound around the re-
constructed time domain signal which shows the limitations
of the reconstruction. Estimate of the systematic errors will
be developed and reported in the future. The specialty of
the proposed method is that it takes both stationary and
nonstationary noises into account.

Our special interest is to provide uncertainty analysis for cal-
ibration of high-speed sampling systems [13]. These fast pulse
oscilloscope systems work in equivalent time sampling mode
with an equivalent sampling frequency of around 500 GHz.
The effect of the uncertainty of the time base generator (jitter)
can be modeled as a nonstationary additive noise. Quantization
error and other disturbances can be modeled as stationary
noises.

II. UNCERTAINTY ANALYSIS OF THE DECONVOLUTION RESULT

Fast pulse sampling systems have two kinds of noise
sources: 1) stationary and 2) nonstationary (jitter-related)
noises.

Jitter is due to the uncertainty of the time base [11], [12].
The sample is taken at an uncertain time instant around the
nominal time instant. The effect of the jitter can be modeled
as an additive noise. However, the noise depends not only
on the distribution of the jitter, but also on the measured
signal. A good model for the relationship is to assume that the
standard deviation of the jitter-related noise is proportional
to the derivative of the signal [11]. The mean value of
the jitter-related noise is not zero, even if the probability
density function (pdf) of the uncertainty of the time base
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Fig. 1. Model of the measurement and inverse filtering process.x(i) is
the excitation signal,y(i) is the system response,nj(i) is the zero mean
jitter-related noise,ns(i) is the stationary noise,yn(i) is the noisy output
signal, xest(i) is the estimated (reconstructed) input signal,H(f) is the
transfer function of the system,Hj(f) denotes the distortion caused by the
jitter, andK(f) denotes the transfer function of the inverse filter.

is symmetric. The effect of the mean value of the jitter-
related noise can be modeled as a filtering of the signal
with the pdf of the jitter. This causes a bias in the estimate.
After removing the mean value the jitter-related noise can be
modeled as a nonstationary zero mean additive white noise.
This zero mean noise causes fluctuation in the measurement
and its effect in the reconstruction will be considered as jitter-
related uncertainty. All other noise sources can be modeled as
stationary additive output noises (Fig. 1).

The estimate of the signal can be written as the sum of the
filtered input signal and filtered noises

(1)

where

the DFT of the input signal,
the discrete transfer function of the measurement
system,
the DFT of the jitter pdf,
the transfer function of the inverse filter,
the DFT of the records of the zero mean jitter-
related noises,
the DFT of the records of the stationary noises,
the DFT of the estimated (reconstructed) input
signal.

The difference between the input signal and its estimate is

(2)

The effect of the jitter is usually reduced by means of signal
enhancement, which reduces the variance of the noises. The
correct value of the input signal expressed with the estimated
value is than

(3)

The DFT of the output noise and zero mean jitter after signal
enhancement are denoted by and respectively.

The error analysis provides the uncertainty bound for the
stochastic part of the estimate. First the variance of the noises
will be measured at a certain time instance. Than the variance
of the nonstationary jitter related noise will be extrapolated for
the whole time record. Next the variances will be propagated
to the output of the inverse filter. After inverse filtering the
distribution of the noises will converge to Gaussian one.
Based on the required confidence level different bounds can be
provided for the uncertainty (e.g., confidence intervals).

A. Measurement of the Noise Levels

The variance of the stationary noise is constant along the
time record. The jitter-related noise is nonstationary. Several
measurements are averaged to reduce the effect of the jitter.
Two separate records are collected during the acquisition of
the data to measure the noise levels. The first one contains
samples from consecutive measurements at steady topline, the
other one at the sharp edge of the step-like waveform. The
standard deviation of the topline will be an estimate of the
level of the stationary part of the output noise, since this part
of the signal does not contain jitter-related noise

(4)

where denotes the th record of subsequent measure-
ments of -s, and denotes a time instant at the flat
part of the topline.

The other record, collected at the sharp edge, contains both
jitter related and output noises

(5)

where denotes the standard deviation of the total
output noise at time instant and denotes a time instant
at the sharp edge. The total output noise is the sum of the
stationary and jitter-related noises. The variance of the jitter-
related noise can be obtained by subtracting the variance of
the stationary noise from the variance of this record, since the
two noise sources are independent on each other

(6)

If the effect of the jitter is small compared to the stationary
noise, the measured level of the total output noise may
be lower than the level of the stationary noise, since the
measurement of the noise levels have uncertainty. In this case
the effect of the jitter will not be taken into account

(7)

B. Extrapolation of the Variance of the Jitter-Related Noise

The nonstationarity of the jitter-related noise can be well
modeled by relating the variance to the derivative of the output
signal

(8)

where denotes the jitter noise and de-
notes the derivative of the output signal. It will be assumed that
the noisy observation is close enough to the noiseless output
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signal ( in Fig. 1), and the derivative of the output signal
will be estimated by the derivative of the noisy observation.
The level of the estimate of the standard deviation of the jitter-
related noise is adjusted to the measured noise level at the
edge of the signal

(9)

where denotes the standard deviation of the jitter
noise. The central difference is calculated to avoid time shift.

C. Propagation of the Variances

The noise is filtered by the inverse filter, which modifies
the variance. The standard deviation of the filtered stationary
noise becomes

(10)

The jitter-related noise is redistributed by the inverse filter,
either

(11)

where denotes the discrete impulse response of the inverse
filter. The convolution becomes circular if computed by DFT.
The distribution of the variance can be calculated based on
the following relations:

(12)

(13)

where denotes expected value. Ifand are independent
random variables, their variance becomes:

(14)

The variance of (11) is the convolution of the variance of
the jitter noise and the squared impulse response of the inverse
filter

(15)

where denotes convolution. This convolution is circular
again if the estimated input signal is calculated by means
of DFT. It should be emphasized that the variance of the
jitter-related noise is a function of time, since this noise is
nonstationary.

Fig. 2. Front part of simulated steplike waveform. Jitter free input signal:
dashed line, noisy output signal: solid line. SNR’s= 55 dB,stdjitter = 3�t:

D. Uncertainty Envelope

The uncertainty envelope will be based on the estimated
standard deviations of the inverse filtered noises

(16)

where is a multiplication factor, expressing the level of the
confidence of the uncertainty. The confidence level can be
calculated from the Gaussian probability distribution

(17)

Since the two noise sources in (16) are independent of
each other, their variances will be summed, thus the total
uncertainty becomes

(18)

III. SIMULATIONS

The sampling heads of fast digital oscilloscopes are cal-
ibrated with step-like signals. We will check the results on
simulated step-like waveforms. The signals are generated
from measured data by filtering it to reduce the noise. Thus
the dominant noise will be that added by the simulation.
Nahman–Guillaume technique is used to mirror the signal and
force it to be duration limited [9]. This signal is distorted
by the estimated impulse response of the sampler. Jitter is
simulated by distorting the waveform with the pdf of the
jitter as an impulse response and adding noise to the output.
Gaussian noise with standard deviation of 1 was multiplied
point-by-point by the derivative of the (noiseless) output signal
to simulate the nonstationary jitter noise. Stationary Gaussian
output noise is added to the output, either, to simulate all other
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Fig. 3. Input signal (dashed line) and the estimated input signal (solid line).

Fig. 4. Inverse filtered noises (dashed) and the estimated uncertainty bounds
(solid). (2� confidence interval) SNR= 55 dB, stdjitter = 3�t:

noise sources. The standard deviation of the jitter pdf is chosen
to be 3 , where is the sampling interval. The signal-to-
noise ratio (SNR) of the stationary noise is set to 55 dB. The
signal to be measured and the distorted noisy one are depicted
in Fig. 2. (Only the front parts of the signals will be shown
to magnify the transition part.)

We used the regularization method to reconstruct the input
waveform [9], [10] (Fig. 3). The uncertainty of the recon-
struction is calculated based on the equations described in
Section II. The resulting bounds (2bound) and the simulated
inverse filtered noises are compared in Fig. 4. The total un-
certainty is obtained by adding the effects of jitter-related and
stationary noises (Fig. 5). The uncertainty envelope around the
reconstructed signal is shown in Fig. 6.

For confidence level the fluctuation of the signal should
remain within the estimated bounds 95.45% of the time.
We calculated the statistics of the “in-bound time” for 1000

Fig. 5. Estimated total uncertainty bound (solid) and the level of filtered
noises (dashed). SNR= 55 dB, stdjitter = 3�t:

Fig. 6. Uncertainty envelope around the reconstructed signal.

Fig. 7. Histogram of the “in-bound time” for 1000 noise records, and the
mean value (95.5%).
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successive noise records (Fig. 7). The mean value of the
distribution is 95.5%, which is very close to the expectation.

IV. CONCLUSIONS

Uncertainty analysis of signal reconstruction has been car-
ried out. We modeled jitter-related nonstationary noise and
stationary noises from different sources (e.g., quantization,
electromagnetic interferences). We developed a method to cal-
culate uncertainty bound around the reconstructed waveform,
based on the required confidence level. The uncertainty bound
is a function of time because of the nonstationary nature of the
jitter-related noise. We aim at developing bias-related bounds
in the future to extend the error analysis.

ACKNOWLEDGMENT

The author would like to thank T. M. Souders for his
comments, suggestions, and ideas.

REFERENCES

[1] S. M. Riad, “The deconvolution problem: An overview,”Proc. IEEE,
vol. 74, pp. 82–85, Jan. 1986.

[2] A. N. Tikhonov and V. Y. Arsenin,Solution of Ill-Posed Problems.
New York: Wiley, 1977.

[3] T. K. Sarkar, D. D. Weiner, and V. K Jain, “Some mathematical
considerations in dealing with the inverse problem,”IEEE Trans.
Antennas Propagat., vol. AP-29, pp. 373–379, Mar. 1981.

[4] N. H. Younan, A. B. Kopp, D. B. Miller, and C. D. Taylor, “On
correcting HV impulse measurements by means of adaptive filtering
and deconvolution,”IEEE Trans. Power Delivery, vol. 6, pp. 501–506,
Apr. 1991.

[5] S. K. Lehman, “deconvolution using a neural network,” NTIS Rep.,
NTIS no. DE91007114/HDM, Rep. no. UCRL-ID-195439, 1990.

[6] J. V. Candy and J. E. Zicker, “Deconvolution of noisy transient signals:
a Kalman filtering application,” inIEEE Conf. Decision and Control,
Orlando, FL, 1982, CH1788-9/82, pp. 211–216.

[7] D. Henderson, A. G. Roddie, J. G. Edwards, and H. M. Jones, “A decon-
volution technique using least-squares model-fitting and its application
to optical pulse measurement,” National Physical Laboratory, Rep. no.
NPL-DES-87, 1988. Available from NTIS.

[8] P. B. Crilly, “A quantitative evaluation of various iterative deconvo-
lution algorithms,”IEEE Trans. Instrum. Meas., vol. 40, pp. 558–562,
Aug. 1991.

[9] N. S. Nahman and M. E. Guillaume, “Deconvolution of time domain
waveforms in the presence of noise,” National Bureau of Standards,
Tech. Note 1047, NBS, Boulder, CO., 1981.
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