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Abstract — Time domain measurements are distorted by the measurement
system if the bandwidth of the system is not sufficiently high compared to
that of the signal to be measured. If the distortion is known the measured
signal can be compensated for it (inverse filtering or deconvolution). Since
the measurement is always corrupted by noise the reconstruction is an esti-
mation task.

Our alm is to investigate the errors related to the signal reconsiruction, and
provide an error bound around the reconstructed waveform. Based on their
nature we can distinguish between two types of errors, bias and variance. In
this paper we investigate the stochastic type errors and suggest a method to
calculate the uncertainty (variance) of the reconstruction.

We developed the method for the calibration of high speed sampling systems.
Beside the stationary additive noise of the measurement system (quantiza-
tion, electromagnetic interferences etc.) the waveforms are distorted also
due to the unceréainty of the time base (fitter). The effect of the jitter can
be described as a nonstationary additive noise. This noise causes both vari-
ance, and bias, since the mean value of the noise is not zero. We will take
both stationary and jitter related nonstationary noise into account and pro-
vide an uncertainly bound around the reconsiructed signal. Because of the
nonstationary nature of the jitter the uncertainty bound is a function of fime.
The complete error analysis should consist also the investigation of the bias.
This will be carried out in the future.

Keywords — Deconvolution, inverse problems, jitter, ill-posed problem, cali-
bration.

I. INTRODUCTION

Measurement of time-domain signals becomes difficult if the
bandwidth of the measurement system is not high enough com-
pared to that of the signal to be measured. In this case the
measurement system distorts the waveform. Assuming a lin-
ear and time-shift invariant model for the measurement system
the relation between the input and the output of the system
can be described by convolution of the excitation signal with
the impulse response of the system. If the distortion is known
(impulse response or transfer function is known) the measured
signal can be compensated for it. This operation is called de-
convolution or inverse filtering,

Deconvolution is usually an ill-posed problem, i.e. small
changes in the measured signal due to the noise cause large
deviations in the reconstruction [1], [2}. To make the problem
well posed one has to define additional constraints to put a limit
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to the noise amplification. Several approaches are proposed in
the literature ([3]-[9]). The inverse filter attenuates usually at
those frequency bands where the noise dominates and lets the
signal throngh where the useful signal dominates. In practical
cases this means that the high frequency noise is suppressed on
different ways depending on the inverse filtering method.

Since the measurement is corrupted by noise the reconstruction
is an estimation task., The estimated input signal of the mea-
surement system consists two types of errors: bias and vari-
ance.

Bias is due to the filtering of the (noiseless) input signal by the
transfer function of the measurement system and the inverse fil-
ter. The inverse filter is not the true inverse of the measurement
system, because the noise has to be suppressed in the stopband
of the measurement system. This filtering distorts the input
signal and causes the bias of the estimate.

Variance is due to the fact that the reconstructed signal is a
filtered version of the noisy measurement. The reconstructed
signal can change from measurement to measurement even us-
ing the same inverse filter, since the noise records are different.
We will call it uncertainty of the reconstruction, and we will
distinguish the uncertainty from the bias. With this approach
the uncertainty is the fluctuation of the estimate due to the dif-
ference in successive noise records.

Our aim is to provide an error bound around the reconstructed
signal, which shows the limitations of the reconstruction. This
paper describes a method which provides uncertainty bounds.
Bias related errors will be developed and reported in the fu-
ture. The specialty of the proposed method is that it takes both
stationary and nonstationary noises into account.

Our special interest is to provide uncertainty analysis for cali-
bration of high speed sampling systems. These fast pulse oscil-
loscope systems work in equivalent time sampling mode with
an equivalent sampling frequency of around 500 GHz. The un-
certainty of the time base generator causes a jitter, which can
be modeled as a nonstationary noise. Quantization error and
other disturbances can be modeled as stationary noises.
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II. UNCERTAINTY ANALYSIS OF THE
DECONVOLUTION RESULT

Fast pulse sampling systems have two different type of noise
sources. The first one is the jitter noise, which is due to the
uncertainty of the time base [11], [12]. The mean value of the
jitter noise is not zero, even if the probability density function
(pdf) of the uncertainty of the time base is symmetric. The
effect of the mean value of the jitter noise can be modeled as
a filtering of the signal with the pdf of the time axis uncer-
tainty of the jitter. This causes a bias in the estimate. After
removing the mean value the jitter noise can be modeled as a
nonstationary zero mean additive white noise. This zero mean
nojse causes fluctuation in the measurement and its effect in the
reconstruction will be considered as jitter related uncertainty.
All other noise sources can be modeled as stationary additive
output noises (Fig. 1).
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Fig. 1. Model of the measurement and inverse filtering process

The estimate of the signal can be written as the sum of the
filtered input signal and filtered noises:

Xet(k) = X(HEK(E)
bias
+ Nj(R)K (k) + No(k)K (k)

noise

0))

where X (k) is the DFT of the input signal, H(k) is the dis-
crete transfer function of the measurement system, K (k) is
the transfer function of the inverse filter, N; (k) and N, (k) are
the DFT of the records of the jitter and stationary noises and
Xest (k) is the DFT of the estimated (reconstructed) input sig-
nal. The difference between the input signal and its estimate
is:

X (k) — Xest(k) = X(k)—X(k)H(k)K(k)— N;(k)K(k)

— N, (k) K (k)
= X(k)(1 - H(K)K(k)) - N;(k)K (k)
—N,(k)K (k). 2)

The correct value of the input signal expressed with the esti-
mated value is than:

X(k) = Xew(k)+X(k)(1~ HE)K(K))
bias

- Ni (K () - Nu (WK (B).

noise

€)

The effect of the jitter is usually reduced by means of signal
enhancement, which reduces the variance of the jitter noise.
However, jitter causes a bias, since the mean value of the jitter
noise is not zero. This bias can be modeled as a linear filtering
of the input signal with the probability density function (pdf)
of the timeshift of the jitter.

X(k) = Xese(k)+X(k)(1— H;(K)H(k)K(k))
bias

—N}(R)K (k) - Ny (WK (),

C)

v
noige

where H;(k) is the DFT of the jitter pdf. The DFT of the
output noise and zero mean jitter after signal enhancement are
denoted by Nj(k) and N, (k), respectively.

The error analysis provides the uncertainty bound for the
stochastic part of the estimate. After inverse filtering the dis-
tribution of the noises will converge to Gaussian one. First the
standard deviation will be computed for every time instant of
the estimate. Based on the required confidence level different
bounds can be provided for the uncertainty (e.g. 2 g, 3 ¢ con-
fidence intervals).

A. Measurement of the noise levels

The uncertainty analysis requires an estimate for the variance
of the noise of the reconstructed signal. This noise has two
sources, the jitter related and an output noise, which are inde-
pendent on each other. Both sources are filtered by the inverse
filter.

The variance of the output noise is constant along the time
record. The filtered output noise will also have a constant vari-
ance. The jitter related noise is nonstationary. Its nonstationar-
ity can be well modeled by relating the variance to the deriva-
tive of the output signal. It will be assumed that the noisy ob-
servation is close enough to the noiseless output signal (y(2) in
Fig. 1), and the derivative of the output signal will be estimated
by the derivative of the noisy observation.

It is proposed that the level of the noises be measured dur-
ing the acquisition of the data on the following way. Several
records are collected and averaged to reduce the effect of the
jitter (signal enhancement). Two separate records are proposed
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to collect. They should contain samples of the record at two
different time instants from consecutive measurements. One
record is being collected at steady topline, the other one at the
sharp edge of the step like waveform. The standard deviation
of the first record will be an estimate of the level of the station-
ary part of the output noise, since this part of the signal does
not contain jitter noise.

std_ng = std {yn,k(ttopline)} 3 o)

where yn 1 (¢) denotes the kt* record of subsequent measure-
ments of Y-8, and ¢zopiine denotes a time instant at the flat part
of the topline.

The second record, collected at the sharp edge, contains both
jitter related noise and output noise.

Std—no(tedge) = std {yn,k (tedge)} P 6

where std.n, (i) denotes the standard deviation of the total out-
put noise at time instant ¢, and £.qq4. denotes a time instant at
the sharp edge. The total output noise is the sum of the station-
ary and jitter related noises. The variance of the jitter related
noise can be obtained by subtracting the variance of the sta-
tionary noise from the variance of this record, since the two
noise sources are independent on each other.

std_n;it(tedge) = \/;td_n(,(tedge)2 — std-n? )

1f the effect of the jitter is little compared to the stationary noise
itcan happen that the level of the total output noise is measured
lower than the level of the stationary noise, since the measure-
ment of the noise levels have uncertainty, either. In this case
the effect of the jitter will not be taken into account.

std.njy (tedge) =0 if stdn,(tegge) < stdns (8)
These noises are filtered by the inverse filter, which modifies

their variances. The standard deviation of the filtered stationary
noise becomes:

1 Nf-1
sty imugin = std ey | oz SN E®mPE

k=0

The standard deviation of the jitter noise is assumed to be pro-
portional to the derivative of the output signal:

std_njis(3) ~ diff{y(s)}, (10)

where std_nji(i) denotes the jitter noise, diff{y(¢)} denotes
the derivative of the output signal.

The level of the estimate of the standard deviation of the jitter
related noise is adjusted to the measured noise level at the edge
of the signal.

std.ngie(i) = dift {y(i)} S0t edae)

O,

where std_n;:(i) denotes the standard deviation of the jitter
noise. The central difference is calculated by averaging the
forward and backward differences. Since the noiseless output
signal is not known, its derivative in (11) will be approximated
by derivative of the measured noisy onfput signal.

std njit (tedge)

stdngun(i) = At {yn )} tqmra T,

(12)

The jitter noise is filtered by the inverse filter. Its variance
along the time axis is redistributed. Let us denote the filtered
jitter noise by n4;t iny pite.

N-1

Rjitinopar (D) = Y k()ngie (i — 1),
=0

(13)

where k(i) denotes the discrete impulse response of the inverse
filter. The convolution becomes circular if computed by DFT.
The distribution of the variance can be calculated based on the
following relations.

var{an + b} = a®var{n} (14)
E{an + b} = aE{n} +b (15)

If ¢ and 7 are independent random variables:
var{¢ + n} = var{¢} + var{n} (16)

The variance of (13) is the convolution of the variance of the
jitter noise and the squared impulse response of the inverse
filter:

N-1
var{njit,,-mfm (z)} = var (Z k(l)nﬁt ('L - l))

N-1 1ir=—01 '
= Y var{k(njie(i = )} = > K> (W)var{nju(i—1)}
=0 =0

= conv (k*(i),var{n;it(i)}), an
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where conv denotes convolution. This convolution is circular
again if the estimated input signal is calculated by means of
DFT. It should be emphasized that the variance of the jitter
noise is the function of time, since this noise is nonstationary.
The standard deviation of the inverse filtered jitter noise is the
square root of the variance:

std it inv pits (8) = \/ var{n;it, invsis (1) } (18)

The uncertainty envelope will be based on the estimated stan-
dard deviations of the inverse filtered noises.

uncert N inypit(t) =
uncert Njit inv it (i) =

a std_ng iny it
astd.nm,mvﬁu(i) (19)

where q is a multiplication factor, expressing the level of the
confidence of the uncertainty. The confidence level can be cal-
culated from Gaussian probability distribution:

() = ‘/Lﬁ / e T dt (20)

confidence level = ®(a) -— a.

Since the two noise sources in (19) are independent on each
other their variances will be summed, thus the standard devia-
tion is:

uncert Leg (i) =

Vuncert ng iny rits ()2 + uncert nji invgie (1)

2D

. SIMULATIONS

The sampling heads of fast digital oscilloscopes are calibrated
with step like signals. We will check the results on simulated
step like waveforms. The signals are generated from measured
data by filtering it to reduce the noise. Thus the dominant noise
will be that added by the simulation. Nahman-Guillaume tech-
nique will be used to mirror the signal and force it to be dura-
tion limited. This signal was distorted by the estimated impulse
response of the sampler. Jitter was simulated by distorting the
waveform with the pdf of the jitter as an impulse response and
adding noise to the output. Gaussian noise with standard de-
viation of 1 was multiplied point by point by the derivative of
the (noiseless) output signal to simulate the nonstationary jit-
ter noise. Stationary Gaussian output noise was added to the
output, cither, to simulate all other noise sources. The standard

deviation of the jitter pdf is 3 A#, where At is the sampling
interval. The signal to noise ratio of the stationary noise is
55 dB. The signal to be measured and the distorted, noisy one
are depicted in Fig. 2 and Fig. 3.
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Fig. 2. Simulated steplike waveform. Jitter free input signal: dashed line,
noisy output signal: solid line. SNRs=55 dB, stdjitter = 3AL
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Fig. 3. Simulated steplike waveform. Front part enlarged.

We used the regularization method to reconstruct the input
waveform [9], [10]. The estimated input signal is shown in
Fig. 4. The uncertainty of the reconstruction is calculated
based on the equations described in Section II. The resulting
bounds (2 ¢ bound) and the simulated noises are compared in
Fig. 5. The total uncertainty is obtained by adding the effects
of jitter related and stationary noises (Fig. 6). The uncertainty
envelope around the reconstructed signal is shown in Fig. 7.
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Fig. 4, Input signal (dashed line) and the estimated input signal (solid line)
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Fig. 5. Filtered noises (dashed) and the estimated uncertainty bounds (solid).
(20 confidence interval) SNR=55 dB, std;;sier = 3AL

IV. CONCLUSIONS

Uncertainty analysis of signal reconstruction was carried out.
We modeled jitter related nonstationary noise and stationary
noises from different sources (e.g. quantization, electromag-
netic interferences). We developed a method to calculate un-
certainty bound around the reconstructed waveform, based on
the required confidence level. The uncertainty bound is a func-
tion of time, because of the nonstationary nature of the jitter.
We aim at developing bias related bounds in the future to ex-
tend the error analysis.
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Fig. 6. Estimated total uncertainty bound (solid) and the level of filtered
noises (dashed). SNR=55 dB, std;;i.r = 3At
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Fig. 7. Uncertainty envelope around the reconstructed signal,
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