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Abstract—A wide variety of greenhouse temperature models 

have been proposed in the literature in the previous years. 

This paper proposes a hybrid modeling method 

incorporating a multilayer perceptron neural network and a 

radial basis function neural network aimed to be more 

accurate on input regions not covered by training data. The 

results show that the proposed method has better 

performance compared to the original physical-neural 

hybrid model if the input values are not far from the input 

range of the values used for training. 

I. INTRODUCTION 

A. Greenhouse modeling 

Greenhouses are widely known structures in the field of 
vegetable and ornamental plant production. The 
transparent walls allow energy input from solar radiation 
while the warmed air is kept inside the house. Because of 
this greenhouses are ideal environments for plants 
requiring warmer temperatures than the outside climate. 

Today large industrial greenhouses are all equipped 
with actuators aimed to regulate the internal 
environmental parameters: in most cases air temperature 
and humidity are the controlled parameters [1][2], but in 
modern high-tech greenhouses the CO2 concentration; the 
amount of solar or artificial radiation; the control of 
fogging; the control of the irrigation, etc. is also used 
[3][4]. 

Control solutions designed for greenhouse systems have 
a wide spectrum. From the very simple set point 
computers available on the market to the very 
sophisticated control solutions presented in the literature 
there are several control methodologies applied to this 
field. Mahaman et al. proposed a rule-based expert system 
for greenhouse control and also for pest management [5]. 
Lafont et al. applied fuzzy methodology to the problem 
based on physical models [6]. Sigrimis et al. also used 
fuzzy rules to control irrigation in a greenhouse [7]. There 
is active research on greenhouse control from the optimal 
control perspective: Van Straten applied optimal control 
methods for traditional greenhouses [8], while Speetjens 
et al. extended the solution for the most modern energy 
saving Watergy greenhouse concept [9]. Neural network 
based modeling has a great tradition in the field of 
greenhouse modeling, both for prediction and for control 
purposes [10][11]. 

There are many more important greenhouse control 
approaches along the ones detailed above. The common 

property of almost all such control solution is the fact that 
a model of the system is needed for the control. The 
format and the requirements against the model highly 
varies with the different implementations, but it can be 
concluded, that greenhouse models play key role in 
solving control related problems. 

II. THE HYBRID PHYSICAL-RBF GREENHOUSE MODEL 

A. Physical Models vs. Black-Box Models 

Physical model applications have a long history in the 
field of greenhouse modeling. If all physical quantity can 
be measured in the greenhouse and if both the model 
structure and its parameters are accurate, then a physical 
model can be a very accurate predictor. In theory based on 
the heat transfer equations and by measuring all necessary 
parameters in the greenhouse such a model could be 
crated [12]. Unfortunately in practice a model 
representing all physical relation in the thermal equations 
would be extremely complex. Furthermore there is no real 
chance to measure all necessary parameters with enough 
precision and without disturbing noise. These 
circumstances limit the applicability and accuracy of 
physical models in practice. 

Black-box neural models are also widely applied for 
greenhouse modeling. In this case the model structure 
does not have to be determined in advance, the neural 
network learns the model structure from the data samples 
during the training process. This property ensures great 
flexibility in the application of black-box models, as such 
models are able to follow changes in the greenhouse itself 
(e.g. new plants arrive, new equipment is set up, etc.) In 
theory if the number of training samples is large enough, 
and the complexity of the network is not restrictive the 
black-box model can be very accurate. Unfortunately in 
practice the number of training samples is limited by the 
number of measurements available and the complexity of 
the network must be limited to avoid over fitting (learning 
the noise disturbing the measurements). These are the 
practical limitations of black-box models. 

Comparing physical models and black-box models in 
the field of greenhouse modeling does not result in a clear 
winner. The precision of physical models is limited by 
their structure and the number of data available, while on 
the other hand a low complexity but accurately 
constructed physical model structure is likely to avoid 
large prediction errors even if it is not accurate in most of 
the data points. Physical models also have good 
performance on input regions not present in the training 



 
Figure 1.   Possible hybrid modeling implementations: A) serial; B) 

parallel; 

 

Figure 2.   The radial basis function neural network structure 

data, as some of the knowledge about the problem is 
initially built into the model structure at the time of the 
design. 

Black-box models are just the opposite: as there is no 
built-in knowledge in the model structure, black box 
models can be very accurate on regions of the input where 
training data is available. But on the other hand input 
regions not represented during the training process can 
result in very large errors. 

B. Hybrid Physical-Neural Modeling 

The hybrid physical-RBF model was first applied to 
greenhouse modeling problems by Linker et al [13]. The 
goal was to mix the good attributes of physical models 
and black-box neural models in a hybrid structure. Hybrid 
modeling has two possible implementations as presented 
in Fig. 1. [14] 

Serial hybrid modeling (Fig.1A) means that the black-
box component of the system is responsible for learning 
the parameter of the physical model. This way the 
structure of the physical model is fixed, while the 
parameters are approximated by a black-box model with 
high nonlinearity if necessary. The drawback of this 
approach is the fact, that the output error of the model 
must be transformed back through the inverse physical 
model of the system in order to train the black-box model. 

In case of parallel hybrid modeling (Fig.1B) the black-
box model is used to learn the prediction error of the 
physical component. This way the black-box component 
of the system works as a correction of the physical model 
when necessary. Linker et al. used parallel hybrid 
modeling in [13]. The physical model (see equation (1) 
where Ti is the internal temperature of the greenhouse; To 
is the outside temperature; So is the outdoor solar 
radiation; H is the heating flux; Q is the ventilation flux; U 
is the overall heat transfer coefficient of the cover;  and c 
are the air density and specific heat;  is the solar heating 
efficiency parameter) had intentionally very low 
complexity to ensure acceptable predictions over the 
whole input space. 
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A radial basis function (RBF) neural network was 
selected for the black-box component as this network only 
provides prediction where training data was available – on 
other segments of the input space the RBF network returns 
0 by default [15]. Fig. 2. shows the model structure of a 
RBF neural network. The inputs of the network are shown 
on the left in Fig. 2. The radial basis functions are placed 
in the single hidden layer of the network. Each radial basis 
function is a real-valued function of the input space, where 
the value of the function only depends on the distance of 
the input from the so called center of the function. The 

most often used basis function is the Gaussian: 
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The output layer of the network is linear, as described 
by  
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The result of the finite basis size of the functions is the 
fact that RBF networks can learn local patterns. Compared 
to other neural network architectures this property makes 
the RBF ideal candidate for hybrid modeling, as this 
behavior makes it possible to learn the output error on one 
part of the input space without changing the previously 
learned errors on other parts of the input space. 

C. Introducing the Hybrid MLP-RBF Model 

The main aim of this paper is to improve the accuracy 
of the hybrid greenhouse model on previously unseen 
input samples. The proposed method is based on the 
hybrid Physical-RBF model by Linker et al. but the 
physical model has been replaced by a simple Multilayer 
Perceptron (MLP) neural network. The network structure 
of the MLP is intentionally kept simple (the number of 
neurons in the hidden layer is small) to avoid exact fitting 
of the known samples, thus mimicking the loose fitting of 
the physical model.  

Application of an MLP neural network instead of a 
physical model has two main advantages. First the model 
structure does not have to be specified in advance, as the 
structure is created by the neural network learning 
process. In practice physical models should be created one 
by one for all possible greenhouse actuator setup, 
considering all possible inputs and relations. In case of a 
black-box MLP model the choice of input variables and 
the number of hidden layer neurons are the only decision 
to make, the model structure is generated dynamically. 
The second advantage of the MLP model compared to the 
physical (in most cases linear) model is its capability of 
nonlinear modeling. This attribute ensures that the MLP 
network can provide better approximation than a fixed 
structure physical model. 

On the other hand the application of an MLP model 
instead of a physical model introduces some limitations as 
well: While simple physical models are highly reliable 
even far from the working point of the system, an MLP 
model cannot give such guarantees far from its training 
samples. 



 

Figure 3.   Internal temperature and lamp control signal recorded in the small scale experimental greenhouse 

 
Figure 3.   The test implementation of the two methods – the RBF 

correction model had the same implementation for both methods to 

eliminate disturbances in the results originating from that module 

III. MEASUREMENT AND TEST SCENARIO  

The comparison of the original Physical-RBF method 
and the proposed MLP-RBF method was done with 
measurement data from a small-scale laboratory 
greenhouse [16]. The laboratory environment was chosen 
as data source as it eliminates several weather related 
disturbance of real greenhouses, thus results are easier to 
compare.  

A 2052 minutes long measurement sequence was 
recorded with one minute time resolution. The external 
infrared lamps (simulating the solar radiation) were 
controlled between 0% and 100% in 10% steps in a “30 
minutes on – 30 minutes off” pattern. This measurement 
sequence was repeated two times. Fig. 3. shows the lamp 
control signal and the internal temperature of the small 
scale greenhouse. During the measurements external and 
internal temperature and the lamp control signal was 
recorded at every time step. 

The data was used in a test setup illustrated by Fig. 3. 
The input data was split into a train set (90%) and a test 
set (10%). These train and test sets were used for both the 
original and for the proposed method.  

The implemented physical model was a simplification 
of Eq. 1. where the unused actuator effects (e.g. heating) 
were left out. The MLP model had the following inputs: 
the internal temperature, the internal-external temperature 
difference and the solar radiation. The number of neurons 
in the hidden layer of the MLP was intentionally chosen to 
be low (it was set to 3), to avoid good fitting in order to 
have generalization performance similar to the physical 
model. 

Both methods were used for one step ahead prediction 
of the temperature change inside the greenhouse. For both 
methods the data sets have been normalized to have all 
variables in the range of [0 1]. Table I. summarizes the 
normalization parameters in the form of offset and scaling. 

IV. RESULTS 

A. General Prediction Performance 

Both methods have been simulated 10 times with a 
random training and testing subset of the measured small-

scale greenhouse data. The mean average errors (MAE) on 
the test sets were as follows. 

The physical model had the highest MAE with a 0.0465 
value without any RBF correction applied. This result is 
not a surprise as the model structure was intentionally kept 
simple to ensure good generalization even for input 
regions with very few or no training samples. After 
applying the RBF correction (the method of Linker et al.) 
has 0.0429 mean average error. This result is 10.4% better 
compared to the pure physical model. 

If the simple MLP model is applied to the data alone 
(with 3 neurons in the hidden layer), the model has a 
MAE value of 0.0448. After applying the RBF correction 
module the MAE value drops to 0.0428. This is a 4.6% 
correction provided by the RBF neural network. 

Comparing the results of the hybrid Physical-RBF and 

TABLE I.  
NORMALIZATION PARAMETERS OF THE INPUT AND OUTPUT VARIABLES 

Variable Offset Scaling 

Internal temperature (°C) 22.5 8.75 

Internal-external temperature difference (°C) - 6.625 6.5 

Solar radiation (%) 0 100 

Output: predicted temperature change (°C) - 0.25 0.5 

 

 



the MLP-RBF model structure there is no significant 
difference in the result of the two models, both have 
approximately the same predictive power. 

B. Prediction Performance in Regions without Training 

Data 

The aim of the proposed method was to increase 
prediction performance on input ranges without training 
data available. To measure this performance the training 
and testing data set was filtered systematically: several 
experiments were done by selecting a disjoint set of train 
and test samples. The following results were obtained by 
training both models with samples where the solar 
radiation was less or equal to 30% or equal to 50% or 
more. The test samples where all the measurements where 
the radiation was set to 40%.  

In this scenario the Physical-RBF model had a MAE 
value of 0.0559, while the MLP-RBF model had 0.0434 
prediction error. Both values are higher than the ones in 
the previous section, but it was expected as the train and 
the test set was selected from disjoint input regions. The 
comparison of the two methods shows that the MLP-RBF 
model has significantly better performance (23% gain in 
this scenario) on such input regions. The reason for that is 
the better approximation capability of the MLP model 
based on its nonlinear modeling capability, its flexible 
structure and the higher number of parameters to be tuned. 

It has to be noted that in an extreme case when the 
missing values are selected from the beginning or the end 
of the variable value range (e.g. 0% or 100% radiation 
value), the performance of the MLP-RBF model drops 
significantly. In case of such out of the range values the 
larger the distance from the known data samples, the 
worse the MLP-RBF model performance is, so in such 
cases the application of the original method might be still 
beneficial. 

V. CONCLUSION 

The proposed MLP-RBF hybrid model structure was 
aimed to increase internal temperature prediction 
performance in case if some input ranges are not covered 
with training samples. The method is based on the 
Physical-RBF model structure of Linker et al. but the 
simple physical model of the greenhouse was replaced 
with a low-complexity MLP neural network.  

Both methods were tested on real measurement data 
originating from a small-scale laboratory greenhouse. The 
general prediction performance of the two methods were 
proven to be equal: both methods had better accuracy 
compared to the pure physical or the pure MLP models, 
but the overall mean absolute error showed no significant 
differences. In case of input ranges not covered by training 
data the proposed MLP-RBF model was proven to be 
more accurate. In special cases when the missing input 
data was originating from the beginning or the end of the 
range of the affected parameter the results were not such 
appealing: the more distant the input data is from the 
known input values, the larger error the MLP-RBF model 
had. In cases when such new data samples can be 
expected the original Physical-RBF model has better 
performance. If such outlier values are not likely the 

proposed MLP-RBF model was proved to be 4-28% more 
accurate than the original implementation. 
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