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ARM Ltd

� Founded in 1990

� Spun out of Acorn Computers

� Primary product:  RISC processor cores

� ARM is an Intellectual Property (IP) company 

� We do not fabricate or sell silicon

� We license technology to our partners

� Our partners design and fabricate products, 
which they sell to their customers

� Develops technologies to assist with the 
design-in of the ARM architecture

� Software tools, application software

� Development boards, debug hardware

� Bus architectures, peripherals, etc.
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ARM’s Activities
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ARM Connected Community – 550+

5
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Applications
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ARMv4

Architecture Versions

x1-4

ARMv5

ARMv6

ARMv7-Cortex

ARM966E-S™

SC200™ARM7EJ-S™

ARM922T™

SC100™

ARM920T™

ARM7TDMI(S)™

ARM1176JZ(F)-S™

ARM1156T2(F)-S™

ARM1136J(F)-S™

ARM1026EJ-S™

ARM968E-S™

ARM926EJ-S™

ARM946E-S™

x1-4

Cortex-A9

SC300™

Cortex-M1

Cortex™-M3

Cortex-R4

Cortex-R4F

Cortex-A8

ARM11™ MPCore™
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Data Sizes and Instruction Sets

� The ARM is a 32-bit Load/Store architecture

� Registers are 32 bit wide

� Operations carried out on registers

� Memory accessed only with Load and Store operations

� Most ARM’s implement two instruction sets

� 32-bit ARM Instruction Set

� 16-bit Thumb Instruction Set

� Multiple optional extensions are available

� Jazelle  - execute Java bytecode in hardware

� NEON  - Advanced SIMD engine

� TrustZone  - security extensions
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ARM vs Thumb vs Thumb-2

� ARM Instruction set

� High performance

� All instructions are 32 bit

� All instructions can be conditional

� Thumb

� Re-encoded subset of the ARM ISA

� All instructions are 16 bit

� Restricted functionality

� Thumb-2

� Extension of Thumb

� 16 and 32 bit instructions mixed

� Full functionality available

� Instruction sets can be mixed in the same program: Interworking
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Intsruction set details

� Conditional execution of ARM instructions
CMP   r3,#0                           CMP   r3,#0

BEQ   skip                            SUBNE r0,r1,r2

SUB r0,r1,r2

skip

� Barrel shifter in the data path
ADD   r1,r2,r2,LSL #3 ; r1 = 9*r2

SUB r4,r4,r5,LSR #2 ; r4 = r4 - 0.25*r5

RSB   r3,r3,r3,LSL #2 ; r3 = 3*r3

� Check the appropriate ARM Architecture Reference Manual

(ARM ARM)

http://infocenter.arm.com/
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Processor Modes (Classic)

� The ARM has seven basic operating modes:

� User : unprivileged mode under which most tasks run

� FIQ : entered when a high priority (fast) interrupt is raised

� IRQ : entered when a low priority (normal) interrupt is raised

� Supervisor : entered on reset and when a Software Interrupt 

instruction is executed

� Abort : used to handle memory access violations

� Undef : used to handle undefined instructions

� System : privileged mode using the same registers as user mode
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Vector Table

Exception Handling

� When an exception occurs, the ARM:

� Copies CPSR into SPSR_<mode>

� Sets appropriate CPSR bits 

� Change to ARM state

� Change to exception mode 

� Disable interrupts (if appropriate)

� Stores the return address in LR_<mode>

� Sets PC to vector address

� To return, exception handler needs to:

� Restore CPSR from SPSR_<mode>

� Restore PC from LR_<mode>

This can only be done in ARM state.

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00
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Cortex-M Programmer’s Model

� ARMv7-M (Cortex-M class processors) 
have a different programmer’s model

� Fully programmable in C

� Stack-based exception model

� Only two processor modes

� Thread Mode for User tasks

� Handler Mode for OS tasks and exceptions

� Vector table contains addresses Process
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Multiplier

The ARM7TDMI Core (ARMv4)
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The Cortex-M3 processor (ARMv7-M)
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Cortex-M3 Datapath

Register

Bank Mul/Div

Address

Incrementer

ALU

B

A

INTADDR

I_HADDR

Address

Register

Barrel

Shifter

Writeback

ALU

Read Data

Register

Write Data

Register

Instruction

Decode

I_HRDATA

D_HWDATA

D_HRDATA

Address

Incrementer

D_HADDR
Address

Register
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� Cortex-M3 has 3-stage fetch-decode-execute pipeline

� Similar to ARM7

� But Cortex-M3 does more in each stage to increase overall 
performance

Cortex-M3 Pipeline

Branch forwarding & speculation

1st Stage - Fetch 2nd Stage - Decode 3rd Stage - Execute

Execute stage branch (ALU branch & Load Store Branch)

Fetch

(Prefetch)

Fetch

(Prefetch)

AGUAGU

Instruction 

Decode & 

Register Read

Instruction 

Decode & 

Register Read

BranchBranch

Address 

Phase & 

Write Back

Address 

Phase & 

Write Back

Data Phase 

Load/Store & 

Branch

Data Phase 

Load/Store & 

Branch

Multiply & DivideMultiply & Divide

ShiftShift
ALU & Branch

ALU & Branch

WriteWrite
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The other end: Cortex-A9 (ARMv7-A)
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Cortex-A9 Pipeline

� 8-stage, Out-of-Order, Multi-issue superscalar
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AMBA

� AMBA is an open standard owned and maintained by ARM

� AMBA 3 contains 4 main interface specifications:

� APB  – Advanced Peripheral Bus

� AHB  – Advanced High-performance Bus

� AXI – Advanced eXtensible interface

� ATB – Advanced Trace Bus

� Newest version: AMBA 4  since March 2010

� Some modifications to AXI

� Introducing 

� AXI Stream

� AXI-Lite
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AXI 3

� Original version of AXI, defined in AMBA 3

� Used by current IP

� AXI is a simple point-to-point link

� 5 independent channels

� Each channel is a set of signals going in the same direction
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AXI channels

� The 5 channels are

� AR: Read Address channel

� R: Read Data channel

� AW: Write Address channel

� W: Write Data channel

� B: Write Response channel

� Address channels carry control information and 32 bit 
addresses

� Data channels carry powers of 2 wide data (between 8-1024) 
together with some control signals

� Each channel contains

� ID signals

� VALID and READY handshake signals
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AXI handshake

� The source generates the VALID signal to indicate when the information 
is available

� The destination generates the READY signal to indicate that it accepts 
the information

� Transfer occurs only when both the VALID and READY signals are 
HIGH.
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AXI transactions

� Parts of a transaction are identified by the transaction ID

� Read transaction

� Master sends Read Address on AR channel

� Slave sends Read Data and Response on R channel

� Write transaction

� Master sends Write Address on AW channel

� Master sends Write Data on W channel

� Slave sends Write Response on B channel

� Transactions can have different (among others)

� Burst length (1-16 beat)

� Burst type    (FIXED, INCR, WRAP)

� Protection properties

� AXI supports

� Multiple outstanding transactions

� Out of order transaction completition
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AXI based interconnects

� AXI is a point-to-point link

� In practice, we build cross bar switches (or matrices) to route 
transactions between multiple masters and slaves

� Routing is done based on

� Transaction 

Address

� ID
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Example ARM based system
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A real SoC: TI OMAP3530

� 720 MHz

Cortex-A8

� $32

� Nokia N

Series:

OMAP2
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Back to the low end

� Stellaris® LM3S600

Microcontroller

� 50 MHz Cortex-M3

� $2
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Putting it all together: Nokia N95

Symbian OS™ v9.2
Operating System supporting 

ARM processor-based mobile 

devices, developed using 

ARM® RealView® Compilation 

Tools 

OMAP™ 2420 

Applications Processor
ARM1136™ processor-based 

SoC, developed using Magma ®

Blast® family and winner of 

2005 INSIGHT Award for ‘Most 

Innovative SoC’

Connect. Collaborate. Create.

Mobiclip™Video Codec
Software video codec for ARM 

processor-based mobile devices

ST WLAN Solution
Ultra-low power 802.11b/g WLAN 

chip with ARM9™ processor-based 

MAC

S60™ 3rd Edition

S60 Platform supporting ARM 

processor-based mobile devices
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Conclusions
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� Getting Started and Rapid Prototyping with ARM MCUs

� Complete Targeted Hardware, Software and Web 2.0 Platform

If you want to play ☺☺☺☺

Lightweight Online Compiler

Cortex-M3 MCU in a 

Prototyping Form-Factor

Dedicated Developer

Web Platform

High-level Peripheral APIs

Rapid Prototyping

for Microcontrollers

http://mbed.org
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Fin


