
1

ARM Based Systems

Géza Lıre

Research Engineer, ARM Ltd
Geza.Lore@arm.com



2

Agenda

� Introduction to ARM Ltd

� ARM Architecture / Programmers Model

� Microarchitectures

� AMBA

� Example ARM based SoC



3

ARM Ltd

� Founded in 1990

� Spun out of Acorn Computers

� Primary product:  RISC processor cores

� ARM is an Intellectual Property (IP) company 

� We do not fabricate or sell silicon

� We license technology to our partners

� Our partners design and fabricate products, 
which they sell to their customers

� Develops technologies to assist with the 
design-in of the ARM architecture

� Software tools, application software

� Development boards, debug hardware

� Bus architectures, peripherals, etc.



4

ARM’s Activities



5

ARM Connected Community – 550+

5



6 6

Applications



7

Agenda

� Introduction to ARM Ltd

� ARM Architecture / Programmers Model

� Microarchitectures

� AMBA

� Example ARM based SoC



8 8

ARMv4

Architecture Versions

x1-4

ARMv5

ARMv6

ARMv7-Cortex

ARM966E-S™

SC200™ARM7EJ-S™

ARM922T™

SC100™

ARM920T™

ARM7TDMI(S)™

ARM1176JZ(F)-S™

ARM1156T2(F)-S™

ARM1136J(F)-S™

ARM1026EJ-S™

ARM968E-S™

ARM926EJ-S™

ARM946E-S™

x1-4

Cortex-A9

SC300™

Cortex-M1

Cortex™-M3

Cortex-R4

Cortex-R4F

Cortex-A8

ARM11™ MPCore™



9

Data Sizes and Instruction Sets

� The ARM is a 32-bit Load/Store architecture

� Registers are 32 bit wide

� Operations carried out on registers

� Memory accessed only with Load and Store operations

� Most ARM’s implement two instruction sets

� 32-bit ARM Instruction Set

� 16-bit Thumb Instruction Set

� Multiple optional extensions are available

� Jazelle  - execute Java bytecode in hardware

� NEON  - Advanced SIMD engine

� TrustZone  - security extensions



10

ARM vs Thumb vs Thumb-2

� ARM Instruction set

� High performance

� All instructions are 32 bit

� All instructions can be conditional

� Thumb

� Re-encoded subset of the ARM ISA

� All instructions are 16 bit

� Restricted functionality

� Thumb-2

� Extension of Thumb

� 16 and 32 bit instructions mixed

� Full functionality available

� Instruction sets can be mixed in the same program: Interworking



11

Intsruction set details

� Conditional execution of ARM instructions
CMP   r3,#0                           CMP   r3,#0

BEQ   skip                            SUBNE r0,r1,r2

SUB r0,r1,r2

skip

� Barrel shifter in the data path
ADD   r1,r2,r2,LSL #3 ; r1 = 9*r2

SUB r4,r4,r5,LSR #2 ; r4 = r4 - 0.25*r5

RSB   r3,r3,r3,LSL #2 ; r3 = 3*r3

� Check the appropriate ARM Architecture Reference Manual

(ARM ARM)

http://infocenter.arm.com/



12

Processor Modes (Classic)

� The ARM has seven basic operating modes:

� User : unprivileged mode under which most tasks run

� FIQ : entered when a high priority (fast) interrupt is raised

� IRQ : entered when a low priority (normal) interrupt is raised

� Supervisor : entered on reset and when a Software Interrupt 

instruction is executed

� Abort : used to handle memory access violations

� Undef : used to handle undefined instructions

� System : privileged mode using the same registers as user mode



13

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ ModeIRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set



14

Vector Table

Exception Handling

� When an exception occurs, the ARM:

� Copies CPSR into SPSR_<mode>

� Sets appropriate CPSR bits 

� Change to ARM state

� Change to exception mode 

� Disable interrupts (if appropriate)

� Stores the return address in LR_<mode>

� Sets PC to vector address

� To return, exception handler needs to:

� Restore CPSR from SPSR_<mode>

� Restore PC from LR_<mode>

This can only be done in ARM state.

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00



15

Cortex-M Programmer’s Model

� ARMv7-M (Cortex-M class processors) 
have a different programmer’s model

� Fully programmable in C

� Stack-based exception model

� Only two processor modes

� Thread Mode for User tasks

� Handler Mode for OS tasks and exceptions

� Vector table contains addresses Process

r8

r9

r10

r11

r12

sp

lr

r15 (pc)

xPSR

r0

r1

r2

r3

r4

r5

r6

r7

Main

sp



16

Agenda

� Introduction to ARM Ltd

� ARM Architecture / Programmers Model

� Microarchitectures

� AMBA

� Example ARM based SoC



17

Multiplier

The ARM7TDMI Core (ARMv4)

Instruction

Decoder

Address
Incrementer

nRESET

nMREQ
SEQ

ABORT

nIRQ
nFIQ

nRW
MAS[1:0]

LOCK

nCPI
CPA
CPB

nWAIT
MCLK

nOPC

BIGEND

ISYNC

nTRANS

nM[4:0]

D[31:0]

Barrel
Shifter

32 Bit ALU

DBE

Write Data 
Register

Read Data 

Register

Address Register

Register Bank

A[31:0]ABE

and

Control 

Logic

PC Update

Decode Stage

Instruction 
Decompression

Incrementer

P

C

A

B

u

s

B

B

u

s

A

L

U

B

u

s



18

The Cortex-M3 processor (ARMv7-M)



19

Cortex-M3 Datapath

Register

Bank Mul/Div

Address

Incrementer

ALU

B

A

INTADDR

I_HADDR

Address

Register

Barrel

Shifter

Writeback

ALU

Read Data

Register

Write Data

Register

Instruction

Decode

I_HRDATA

D_HWDATA

D_HRDATA

Address

Incrementer

D_HADDR
Address

Register



20

� Cortex-M3 has 3-stage fetch-decode-execute pipeline

� Similar to ARM7

� But Cortex-M3 does more in each stage to increase overall 
performance

Cortex-M3 Pipeline

Branch forwarding & speculation

1st Stage - Fetch 2nd Stage - Decode 3rd Stage - Execute

Execute stage branch (ALU branch & Load Store Branch)

Fetch

(Prefetch)

Fetch

(Prefetch)

AGUAGU

Instruction 

Decode & 

Register Read

Instruction 

Decode & 

Register Read

BranchBranch

Address 

Phase & 

Write Back

Address 

Phase & 

Write Back

Data Phase 

Load/Store & 

Branch

Data Phase 

Load/Store & 

Branch

Multiply & DivideMultiply & Divide

ShiftShift
ALU & Branch

ALU & Branch

WriteWrite



21

The other end: Cortex-A9 (ARMv7-A)



22

Cortex-A9 Pipeline

� 8-stage, Out-of-Order, Multi-issue superscalar



23

Agenda

� Introduction to ARM Ltd

� ARM Architecture / Programmers Model

� Microarchitectures

� AMBA

� Example ARM based SoC



24

AMBA

� AMBA is an open standard owned and maintained by ARM

� AMBA 3 contains 4 main interface specifications:

� APB  – Advanced Peripheral Bus

� AHB  – Advanced High-performance Bus

� AXI – Advanced eXtensible interface

� ATB – Advanced Trace Bus

� Newest version: AMBA 4  since March 2010

� Some modifications to AXI

� Introducing 

� AXI Stream

� AXI-Lite



25

AXI 3

� Original version of AXI, defined in AMBA 3

� Used by current IP

� AXI is a simple point-to-point link

� 5 independent channels

� Each channel is a set of signals going in the same direction



26

AXI channels

� The 5 channels are

� AR: Read Address channel

� R: Read Data channel

� AW: Write Address channel

� W: Write Data channel

� B: Write Response channel

� Address channels carry control information and 32 bit 
addresses

� Data channels carry powers of 2 wide data (between 8-1024) 
together with some control signals

� Each channel contains

� ID signals

� VALID and READY handshake signals



27

AXI handshake

� The source generates the VALID signal to indicate when the information 
is available

� The destination generates the READY signal to indicate that it accepts 
the information

� Transfer occurs only when both the VALID and READY signals are 
HIGH.



28

AXI transactions

� Parts of a transaction are identified by the transaction ID

� Read transaction

� Master sends Read Address on AR channel

� Slave sends Read Data and Response on R channel

� Write transaction

� Master sends Write Address on AW channel

� Master sends Write Data on W channel

� Slave sends Write Response on B channel

� Transactions can have different (among others)

� Burst length (1-16 beat)

� Burst type    (FIXED, INCR, WRAP)

� Protection properties

� AXI supports

� Multiple outstanding transactions

� Out of order transaction completition



29

AXI based interconnects

� AXI is a point-to-point link

� In practice, we build cross bar switches (or matrices) to route 
transactions between multiple masters and slaves

� Routing is done based on

� Transaction 

Address

� ID



30

Agenda

� Introduction to ARM Ltd

� ARM Architecture / Programmers Model

� Microarchitectures

� AMBA

� Example ARM based SoC



31

Example ARM based system



32



33

A real SoC: TI OMAP3530

� 720 MHz

Cortex-A8

� $32

� Nokia N

Series:

OMAP2



34

Back to the low end

� Stellaris® LM3S600

Microcontroller

� 50 MHz Cortex-M3

� $2



35

Putting it all together: Nokia N95

Symbian OS™ v9.2
Operating System supporting 

ARM processor-based mobile 

devices, developed using 

ARM® RealView® Compilation 

Tools 

OMAP™ 2420 

Applications Processor
ARM1136™ processor-based 

SoC, developed using Magma ®

Blast® family and winner of 

2005 INSIGHT Award for ‘Most 

Innovative SoC’

Connect. Collaborate. Create.

Mobiclip™Video Codec
Software video codec for ARM 

processor-based mobile devices

ST WLAN Solution
Ultra-low power 802.11b/g WLAN 

chip with ARM9™ processor-based 

MAC

S60™ 3rd Edition

S60 Platform supporting ARM 

processor-based mobile devices



36

Conclusions



37

� Getting Started and Rapid Prototyping with ARM MCUs

� Complete Targeted Hardware, Software and Web 2.0 Platform

If you want to play ☺☺☺☺

Lightweight Online Compiler

Cortex-M3 MCU in a 

Prototyping Form-Factor

Dedicated Developer

Web Platform

High-level Peripheral APIs

Rapid Prototyping

for Microcontrollers

http://mbed.org



38

Fin


