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The Importance of Sockets in SOC Design 
 
This paper introduces the Open Core Protocol  (OCP  ) within the context of 
contemporary System On a Chip (SOC) design issues.  It explains why a standardized 
industry socket interface is essential to competitive SOC designs and it reveals how OCP 
fulfills the requirements for such an interface.  
 
The discussion examines the necessity for SOC design acceleration to meet increasingly 
shorter time-to-market requirements as well as the advantages of subsequent reuse of 
developed Intellectual Property (IP). 
 
Finally, the material reviews three specific implementation contexts that illustrate the 
flexibility that OCP provides semiconductor core designs. 
 
The Problem 
 
For years, relentless semiconductor fabrication advances and escalating market pressures 
have made time-to-market and design reuse a continuing topic within the semiconductor 
industry. Clearly, decreasing a SOC’s development time can simultaneously decrease 
time-to-market. The design reuse practice is similarly simple and understandable – design 
once, reuse many, many times.  But, decreasing SOC design times and achieving design 
reuse has proven elusive, indeed. 
 
Every 18 months, these manufacturing improvements have historically increased circuit 
densities by a factor of two – called Moore’s Law. This allows a given-size 
semiconductor die significant increases in scope and function at negligible, incremented 
manufacturing cost.  For example, over the past five years, semiconductor gate 
complexity has surged from 200,000 to 500,000 gates to well over 10 Million, even 25 
million gates.  This is an increase of up to 50X and is the principal reason designers can 
produce SOCs.   
 
Simultaneous with this increase in capability, designers have attempted to decrease the 
design cycle duration for both initial and derivative designs. This is in direct response to 
competitive market pressures that demand designs in as little as half the time, and which 
require frequent revisions because of continuously reduced product life cycles and feature 
enhancements.  See Table 1. 
 

 1997 1998 1999 2002 Delta 
Process Technology 0.35m 0.25m 0.18m 0.13m ~7x 
Gate Count 200-500K 1-2M 4-6M 10-25M ~50x 
Design Cycle (months) 12-18 10-12 8-10 6-8 ~2x 
Derivative Design Cycle (Months) 6-8 4-6 2-4 2-3 ~2x 

 
Table 1. Increasing Complexity and Reduced Design Cycle Times 

Source: Surviving the SOC Revolution, Chang et. al. 
 
In summary, the math is very easy: designing semiconductors with fifty times the circuits 
in half the design time means 100 times the productivity, if you can achieve it.  That’s the 
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good news.  The bad news is that this has proven to be an intractable goal.  Worse, the 
proposition is becoming more difficult by the day, as complexity continues increasing 
and design cycles continue decreasing.  The net effect is that time-to-market and core 
reuse are continuing casualties, along with product schedules and design efficiencies. 
 
Shortening SOC Design Times 
 
To address the time-to-market issue, first consider the benefits of designing individual 
SOC cores and the final SOC in parallel.  Here, enterprises would clearly have a 
significant opportunity to reduce design time since all design aspects, including SOC 
simulations (timing and performance analysis, etc.) occur in parallel.  
 
This reduces the SOC design time to that of the longest-effort, single-element design.  
The element might be an individual SOC core or, perhaps, the SOC integration effort.  
Either way, development schedule risk becomes bounded – assuring a higher probability 
of a satisfactory SOC within an accelerated development schedule. This also allows more 
predictable scheduling. Since all the development is bounded and all design is done in 
parallel, problems are not solved in serial fashion.  This means problems are detected and 
solved sooner. The design flows become very predictable.  
 
However, parallel development in this context mandates clearly defined divisions of 
responsibility for each core and shared SOC resources. That’s because, cores would only 
perform their native functions without any system knowledge. For example, a PCI 
interface core or MPEG decompression core would perform native functions without 
having any specific knowledge of the SOC interconnect mechanism. Similarly, the 
interconnect mechanism would handle transport considerations such as arbitration, 
address mapping, and data movement, without knowledge of the functions any core 
provided.  The good news here is that this methodology exists and has been well 
understood for years.  Its name is layering. 
 
Layering has been applied successfully to the network space to define responsibility 
levels at each layer. Each layer has its own functions and well-defined interface with 
other layers with which it interacts. The same is true for software. Each function or task 
has well defined functionality and interfaces. The layering approach has historically 
delivered excellent results in many different areas.  
 
Layering to the Rescue 
 
Layering naturally decouples system-processing elements from the system they reside in. 
The elements might be software modules within a larger software program, or, more 
importantly to SOC designers, semiconductor cores within a SOC.  In either instance, the 
principles are usually the same.  It also turns out layering benefits are often the same: 
 

•  Reduced design cycles 
•  Simpler Validation 
•  Increased IP reuse 
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Layering enables design teams to partition a design effort into numerous activities that 
can proceed concurrently because they are minimally dependent.  Narrowing the scope of 
a single activity usually increases the odds that its implementation is correct and more 
easily verified.  This can dramatically accelerate final product delivery schedules. 
 
Layering also naturally enables core reuse in different systems.  Here, in keeping with the 
layering scheme, other system resources handle remaining requirements without 
requiring understanding of individual core functionalities. Since an individual core’s 
interface is independent of (decoupled from) the system, with the right core interface 
design, it can remain unchanged as the core is reused in subsequent system designs that 
support the interface.  By selecting an industry standard interface, there is no added time 
for this reuse approach since all cores require such an interface.  But, what then, would be 
the core interface?  It turns out the answer to this question is a socket. 
 
Sockets 
 
For decades, Local Area Networks (LANs) grappled with issues that are now emerging 
for SOC designers.  In the end, LAN designers created well-defined interfaces 
comprising both a physical connection and as well as protocols for exchanging 
information over those physical connections.  The appearance of these industry 
conventions subsequently enabled the computing industry to provide independently 
developed and functionally diverse plug-and-play products that commercial enterprises 
assembled into highly custom LAN configurations.  So, the method is both clear and 
proven. 
 
Ideal SOC Socket Requirements 
 
Ideally, a SOC socket would enable core designers to concentrate on their core 
functionality and the interconnects individually associated with them (e.g. SOC 
interconnect and USB, 802.11b, SDRAM, etc.). Similarly, SOC system integrators 
should be able to concentrate on SOC timing, core service bandwidth and latency 
requirements, and final floor-plan design independent of core functionality.   The socket 
would therefore provide the necessary physical and exchange protocol delineation 
necessary to achieve this well-defined layering. 
 
To achieve this, first note that an ideal SOC socket must necessarily be transport 
implementation (specific bus or other interconnect) agnostic.  That is, SOC cores would 
interface to an inter-core transport mechanism via the interface, but the precise transport 
mechanics (computer-style bus, a cross bar, configurable on-chip network, etc.) would be 
unknown to the core.  
 
This is essential, otherwise, core designs would instantiate transport knowledge within 
their designs, encumbering their reuse in SOC designs that used differing transport 
mechanics.  A transport-unaware approach therefore, ensures implementation 
independence, also allowing the system designers to select the optimum interconnect for 
their system’s needs.  
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Finally, because of the bandwidth requirement diversity, the ideal interface should allow 
designers to configure interface implementations along various dimensions.  The 
dimensions include interface data widths required to meet bandwidth requirements, 
exchange handshake protocols, exchange acknowledgements, etc.  This enables SOC 
designers to tailor core and SOC designs to minimize complexity and circuit areas while 
supporting core and SOC requirements. 
 

IP Core
OCP

! OCP is a Core-Centric Protocol 
Interface:

! Facilitates unrestricted delivery of 
ALL Core signals and features

! Enables unconstrained interface 
bridge to ANY bus structure

Target Bus A

Target Bus B

OR

 
 
 
SOC Sockets 
 
As we have now seen, the solution to maximizing core reuse potential requires adopting a 
well-conceived and specified core-centric protocol as the native core interface. By 
selecting an adopted industry standard, core designers not only enable core reuse for 
cores developed within their own enterprise, they also enable reuse outside their 
enterprise under Intellectual Property (IP) licensing agreements.  Finally, they also 
maximize their ability to license and incorporate third-part IP within their own SOC 
designs.  In other words, they achieve SOC design agility and the ability to generate 
revenue through IP licensing. 
 
Moreover, a rigorous IP core interface specification, combined with an optimized system 
interconnect, allows core developers to focus on developing core functions.  This 
eliminates the typical advance knowledge requirements regarding potential end-systems, 
which might utilize a core, as well as the other IP cores that might be present in the 
application(s). Cores simply need a useful interface that de-couples them from system 
requirements. The interface then assumes the attributes of a SOCKET – an attachment 
interface that is powerful, frugal, and well understood across the industry.   
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Via this methodology, system integrators realize the benefits of partitioning components 
through layered hardware – designers no longer have to contend with a myriad of diverse 
core protocols and inter-core delivery strategies. Using a standard IP core interface 
eliminates having to adapt each core during each SOC integration, allowing system 
integrators the otherwise unrealized luxury of focusing on SOC design issues. And, since 
the cores are truly decoupled from the on-chip interconnect, hence each other, it becomes 
trivial to exchange one core for another to meet evolving system and market 
requirements. 
 
In summary, for true core reuse, cores must remain completely untouched as designers 
integrate them into any SOC.  This only occurs when, say, a change in bus width, bus fre-
quency, or bus electrical loading does not require core modification.  In other words, a 
complete socket insulates cores from the vagaries of, and change to, the SOC 
interconnect mechanism.  The existence of such a socket enables supporting tool and 
collateral development for protocol, checkers, models, test benches and test generators. 
This allows independent core development that delivers plug and play modularity without 
core interconnect rework. This also allows core development in parallel with a system 
design that saves precious design time.  
 
Interface Solution Requirements 
 
Core interface design requirements are very diverse and no single, specific 
implementation can possibly address them all. A standardized core interface specification 
needs to: 
 

•  Scale across a family of requirements  
•  Allow designers to configure specific interface instantiations along a 

number of dimensions (bus width, data handshaking, etc.) 
•  Address more than data-flow signaling 

•  Errors 
•  Interrupts 
•  Flags and software flow control 
•  Control and status 
•  Test 

•  Capture all signaling between the core and the system 
 
An OCP Introduction 
 
OCP is a freely available, bus-independent protocol that meets all core-centric 
considerations discussed above.  Specifically, it captures all of an IP core’s 
communication requirements completely. As a highly-configurable interface, OCP is not 
a one-size-fits-all protocol.  Rather, it comprises a continuum of protocols that share a 
common definition.  
 
OCP explicitly supports sideband signals via optional extensions to the basic OCP data 
set.  These sideband signals include, for example, reset, interrupt, error, control/status 
information, etc.  In addition, a generic flag bus accommodates any unique core signaling 
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needs. An optional OCP test interface extension supports scan, JTAG, and clock control, 
enabling core debug and manufacturing test when integrated into SOCs.  
 
System designers can therefore tailor a specific OCP configuration to match core 
requirements exactly. Through straightforward configuration procedures, OCP supports 
simple, low-performance cores with very simple and frugal OCP interfaces, while also 
supporting complex, high-performance cores with more complex interfaces. 
 
An IP developer can therefore complete an IP core design using the OCP interface. No 
end-application knowledge is required beyond the OCP, allowing complete independence 
for members of the often global design teams. The system integrator is also free to choose 
the on-chip interconnect that best suits the system requirements of the application, then 
effectively “wraps” that interconnect to present OCP interfaces to the cores. 
 

IP CoreIP Core

Master

IP Core

Master

Master

Slave

SlaveSlave

Initiator Core Target Core

Open Core
Protocol Request

Response

Master

On-chip Interconnect

Initiator Target

Slave

 
OCP-IP members receive the CoreCreator™ tool as an OCP protocol compliance 
environment and “packager” for all the representations necessary for efficient reuse of an 
IP core. It is available at no-charge to all OCP-IP members. 
 
Example OCP Core Interfaces 
 
These examples show how three very functionally different cores can use an OCP 
interface. The three examples are: 
 

1. A bus bridge 
2. A processor interface 
3. A memory interface 
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The discussion first presents each core’s OCP interface(s) in isolation. Then, it suggests 
additional common signals.   
 
The signal names are part of the OCP protocol and the reader should reference the Open 
Core Protocol Reference manual for a full signal description. The OCP specification is 
freely available at http://www.ocpip.org.  
 
In a nutshell, an OCP connection has a Master entity and a Slave entity.  Some simple 
notes on OCP nomenclature and the protocol: 
 

•  The Master drives all signals having a name starting with the letter M 
•  The Slave drives all signals having a name starting with the letter S 
•  There are simple handshakes for the protocol 
•  The master and slave can both assert flow control 
•  All transfers and signals are synchronous to the rising edge of OCP clock 

 
Example 1 - Bus Bridge 
 
A bus bridge might interconnect a PCI, USB or other bus standard to OCP. The controller 
would have an external (to the SOC) PCI or USB interface and the internal SOC interface 
would be OCP.  
 
Bus bridges usually act as a both a master and a slave on the internal SOC interconnect. 
The master sends the bus traffic to the desired location and the slave writes or reads the 
bus bridge internal control or status registers.  
 
The slave consists of a simple OCP interface and most likely needs a few side band 
signals. A likely slave core OCP signal set for this example is: 
 

•  MCmd Master Command (e.g. read/write) 
•  MAddr Master Address (up to 32 bits) 
•  MData Master Data (write data; 8,16,32,64,128 bits wide) 
•  SCmdAccept Slave Command Accept 
•  SResp Slave Response 
•  SData Slave Data (read data, must be the same size as MData) 
•  SError Slave Error, error from the bridge 
•  SInterrupt Slave Interrupt, interrupt from the bridge 
•  Control Control bits for the bus bridge 
•  Clk The Clock signal 
•  Reset_N The Reset signal 

 
The interface uses that slave interrupt because this example’s interface requires only one. 
If there were more than one interrupt, SFlags could provide up to 8 additional interrupts. 
 
The bus bridge master might have the following signals: 
 

•  MCmd Master Command 
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•  MAddr Master Address (up to 32 bits) 
•  MData Master Data (write data; 8,16,32,64,128 bits wide) 
•  MBurst Master Burst 
•  SCmdAccept Slave Command Accept 
•  SResp Slave Response 
•  SData Slave Data (read data, must be same size as MData) 
•  Clk The Clock signal 
•  Reset_N The Reset signal 

 
With PCI, optional OCP thread signals might enhance the interface. This would allow the 
interface to support concurrency and out-of-order processing of transfers.  The optional 
OCP complex extension signals support multiple threads. Transactions within different 
threads have no ordering requirements, and can be processed out of order. Within a single 
thread of data flow, all OCP transfers must remain ordered. Threads for a PCI interface 
might be useful to access different memory and I/O regions.  
 

•  MThreadID Master Thread Identifier (up to 16 different threads) 
•  SThreadID Slave Thread Identifier (up to 16 different threads) 

 
Example 2 - Processor Interface 
 
A processor interface usually only requires an OCP master. The signals would be similar 
to the bus bridge’s master but would normally include byte enable signals for less than 
single word transfers. 
 
A likely core OCP signal set for this example is: 
 

•  MCmd Master Command 
•  MAddr Master Address (up to 32 bits) 
•  MData Master Data (write data; 8,16,32,64,128 bits wide) 
•  MBurst Master Burst 
•  MByteEn Master Byte Enable  
•  SCmdAccept Slave Command Accept 
•  SResp Slave Response 
•  SData Slave Data (read data, must be the same size as MData) 
•  SError Slave Error, input to the processor 
•  SInterupt Slave Interrupt, usually the NMI pin 
•  SFlag Slave Flags, other interrupts to the processor (up to 8 flags) 
•  Clk The Clock signal 
•  Reset_N The Reset signal 

 
Some newly available processors support concurrent instruction and data cache-miss 
fetches. OCP threads directly support this.  Hence, the following signals could be needed 
to enhance concurrent memory operations for such processors. 
 

•  MThreadID Master Thread Identifier (up to 16 different threads) 
•  SThreadID Slave Thread Identifier (up to 16 different threads) 
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•  MThreadBusy Master Thread Busy 
•  SThreadBusy Slave Thread Busy 

 
The master and slave thread busy signals permit each thread flow control. Processors 
might have several fetches outstanding, but not the resources to handle all of them 
simultaneously. The thread busy signals therefore enable an OCP master processor or the 
target slave to control the transfer flows as necessary. 
 
Example 3 - Memory Subsystem 
 
A memory subsystem may interface to DRAM, DDR, SRAM or FLASH. The OCP 
signals require some OCP complex extensions to maintain high bandwidth utilization. 
The memory subsystem is probably multi threaded, to service multiple memory banks. 
The memory controller will also have OCP simple extensions such as burst and byte 
enable to service requests efficiently.  
 
A likely core OCP signal set for this example is: 
 

•  MCmd Master Command (e.g. read/write) 
•  MAddr Master Address (up to 32 bits) 
•  MData Master Data (write data) (8,16,32,64, or128 bits wide) 
•  MBurst Master Burst 
•  MByteEn Master Byte Enable  
•  SCmdAccept Slave Command Accept 
•  SResp Slave Response 
•  SData Slave Data (read data, must be the same size as MData) 
•  MThreadID Master Thread Identifier (up to 16 different threads) 
•  SThreadID Slave Thread Identifier (up to 16 different threads) 
•  MThreadBusy Master Thread Busy 
•  SThreadBusy Slave Thread Busy 
•  Clk The Clock signal 
•  Reset_N The Reset signal 

 
The memory subsystem might also utilize a larger bit width on MData and SData than the 
memory to which it interfaces. This makes each system interconnect transfer maximally 
efficient.  
 
Signals Common to Each Example 
 
Each of the preceding examples can have scan and JTAG signals. These test and scan 
signals might be common to each core, but the number of scan chains might differ. OCP 
allows test structures as part of the interface, not as a separate entity. This completes the 
socket versus merely addressing data flow considerations.  
 
Having scan and JTAG access to each of the example cores might require the following 
signals: 
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•  ScanCtl Scan Control 
•  ScanIn Scan In (up to 256 scan-in ports or chains) 
•  ScanOut Scan Out (up to 256 scan-out ports or chains) 
•  ClkByp Clock Bypass, use Test clock instead of normal clock 
•  TestClk Test Clock 
•  TCK JTAG Test clock, uses IEEE 1149.1 definitions for all signals 
•  TDI JTAG Test In 
•  TDO JTAG Test Out 
•  TMS JTAG Test Mode Select 
•  TRST_N JTAG Reset 

 
Conclusion 
 
A standard socket core protocol is essential to the SOC design community.  OCP is the 
ONLY complete, fully supported, and proven socket. Immediately adopting OCP avoids 
incompatible or proprietary solution proliferation and expands the total available market 
for commercial and legacy IP cores.  
 
The complete, fully supported core-centric OCP delivers substantial and demonstrable 
benefits over older style bus-centric protocols. OCP is a core-centric, openly licensed, 
royalty-free core interface protocol.  It does not restrict or otherwise interfere with 
inherent core capabilities. It is scalable and configurable to match different com-
munication requirements associated with different core and SOC designs.  
 
Cores with OCP interfaces and OCP interconnect systems enable true modular, plug-and-
play integration, allowing the system integrators to choose cores optimally and the best 
application interconnect system. This allows the designer of the cores and the system to 
work in parallel and shorten design times. In addition, not having system logic in the 
cores allows the cores to be reused with no additional time for the core to be re-created. 
 
Finally, verification and test suites, when written to OCP specifications, are completely 
portable across multiple designs, infrequently requiring even minor adjustments for a 
particular interface bridge. 
 
The OCP specification is freely available at http://www.ocpip.org.  
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