VSl Alliance”
Virtual Component | nterface Standard

Verson 2
(OCB 2 2.0)

On-Chip Bus

Development Working Group
April 2001

VSl Alliance (OCB 2 2.0)

HOW TO OBTAIN LICENSE RIGHTS
FOR THE VSI ALLIANCE DOCUMENT:

On-Chip Bus Development Working Group
Virtual Component I nterface Standard
Verson 2.0
(OCB 22.0)

VSI ALLIANCE (VSIA) COPYRIGHT LICENSE

The VSl Alliance is the copyright owner of the document identified above.

TheV Sl Alliancewill make royalty-free copyright licenses for this document available
to VSI Alliance Members. Non-members must pay afee for the copyright license.

Use of the document by members and non-members of the VSI Alliance is subject to
the terms of the license. Y ou are not entitled to use the document unless you agree to
the terms of the license (and, if applicable, pay the fee).

The license terms are set forth on the Web siteof the VSI Alliance at
http://lwww.vsi.org.

THE DOCUMENT ISPROVIDED BY VSIA ON AN “AS-IS’ BASIS, AND VSIA
HASNO OBLIGATION TO PROVIDE ANY LEGAL OR TECHNICAL
ASSISTANCE IN RESPECT THERETO, TO IMPROVE, ENHANCE, MAINTAIN
OR MODIFY THE DOCUMENT, OR TO CORRECT ANY ERRORS THEREIN.
VSIA SHALL HAVE NO OBLIGATION FOR LOSS OF DATA OR FOR ANY
OTHER DAMAGES, INCLUDING SPECIAL OR CONSEQUENTIAL DAMAGES,
IN CONNECTION WITH THE USE OF THE DOCUMENT BY SUBSCRIBER.
VSIA MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY ASTO
INFRINGEMENT, OR THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. SUBSCRIBER SHOULD BE
AWARE THAT IMPLEMENTATION OF THE DOCUMENT MAY REQUIRE USE
OF SUBJECT MATTER COVERED BY PATENT OR OTHER INTELLECTUAL
PROPERTY RIGHTS OF THIRD PARTIES. NO LICENSE, IMMUNITY, OR
OTHER RIGHT ISGRANTED BY THISLICENSE IN ANY SUCH THIRD-PARTY
RIGHTS. NEITHER VSIA NOR ITSMEMBERS TAKE ANY POSITION WITH
RESPECT TO THE EXISTENCE OR VALIDITY OF ANY SUCH RIGHTS.

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

On-Chip Bus
Development Working Group

Members of the Development Working Group:

Adgilent Technologies ARM

Cadence Design Systems Co-Design Automation
Easics NV ECSI

Fujitsu Limited Hitachi Semiconductor
InSilicon Infineon Technologies
LSl Logic Lucent Technologies
Nokia Mobile Phones OKI Electric IndustryCo.
Palmchip Philips Semiconductors
Sonics ST Microelectronics
Synopsys Toshiba

Xilinx

Active Contributors:

BIUCE IMEENEIWSON ...ttt bbbt bbb st se et et se et et e e et e seeseeaeebeebesaesbesbnnas ARM
(=14 A o) (= TS Cadence Design Systems
Mani GOPalaKriSNNGAN...........cccueiieeere ettt e e e nneenes Fujitsu Microelectronics
J. Sukarno Mertoguno (Vice ChaIT)cceoveeeiririiieee e Individual Member
Prakash Bare........ccuiiieiiiieeieieese e et e sttt e ste et e ste st e bess e besseesseeneeseesneeseesneensesseans Individual Member
IMBSON WEBEIMIS. ...ttt ettt st b ettt ettt et e e e s he et e b e et e eb e e s e sbeeaeeseesnnesbenanans Individual Member
ot g = o IS LSl Logic
ANSSI HAVENNEN (ChaiT) .o st Nokia Mobile Phones
L L ES I = 10 (V7= Lo Philips Semiconductors
JONN CArEY ..o et er s ST Microelectronics
Graham MELtREWc.oee et e e s se e s see e seeeneens STMicroelectronics
[T Y VAV AT oo = o PSPPI Sonics
(T o T =0T - VS Synopsys
GLEN BAXLEY ..ttt b bt et b et h bt b e eh e e b e b se e e e s e e n e e Rt ehe e bt e b e sbeeb e b et e e eneer e e enen Xilinx

Other Contributors

WONRNEE ...ttt e et r e nne e Agilent Technologies
N o]0 0 Oo 1 1= o E OO U PO ARM
Larry ROSENDENG ..c.veveciicie ettt ettt ettt s re e s be e e be b e beereeeeeneennas Cadence Design Systems
= g o = S Co-Design Automation
TONY GOTE ...ttt sttt sttt ettt e sttt e s h e e e bt e s h bt e bt e s ab e e ebe e s e be e ekt e e st e e b et e ab e e ebe e eab e e sbeeenbeesabeenbee e e be e e naree e e e ECSI
GlEN VINOGrAAOV. ...ttt et b e e sn e niesnesne Individual Member
Prof. Ganesh GOopalakriShNancoeieieirieneiiee e Individual Member
Frank Vahidoo.oooe ettt b et be st b e sbenann Individual Member
DaVid JENNINGS.....c.viitieieie ettt te et e s reeae st e e e e besreebesbeensesreeseesresneestesreens Infineon Technologies
T 5 = = 11 J S Hitachi Semiconductor
OSAMU Y @IMBSNITO....cueeueeieetiete sttt et be bt e e ss e s eeseebeeb e b e neeseeneneas Hitachi Semiconductor
L0 =T =S Y g Toshiba

Technical Editors
Wilsa Schroers and Sybil Sommer

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

Version 1.0

Version 1.0

Version 1.0

Version 1.0

Version 2.0

Version 2.0

Mar00

08Mar00

10Mar00

23Mar00

13Feb01

30Mar01

VSl Alliance (OCB 2 2.0)

Revision History

Wilsa Schroers Copy edited

David Huddleston Formatted figures

Editorial Staff Formatted document in FrameMaker, inserted
figures for Final Release, added license

Editoria Staff Edited figures, updated headers

Editorial Saff Copy edited and formatted

Editoria Staff Final copy editsand formatting

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

Vi

VSl Alliance (OCB 2 2.0)

Table of Contents

1. Virtual Component Interface (VCI) Background. 1
Ll G0aAS . .ot 1
1.2 Key ASSUMPLIONS . ..ottt e e e 2
1.3 Document ConVeNntioNS.ttt et e 2
1.4 Document Organizationuuuureieit it 3

2. VCIl CharacteristiCs.o v i e e e e 5
21 VCIDEiNItIoN. ... e e 5
2.2 Point-to-Point UsSage.ot e 5
2.3 SPHEProtocol 5
24 VClUsagewithaBus. e e 6
2. NOIES . .o 6

3. Peripheral VCI 7
31 Organizationt e 7
3.2 Technica Introductionto PVCI i 7

321 Initiator—Target CoNNectioncoiiiiii i 7
322 TheHandshake.o 7
323 Requestand ResponseContents.ovvivennnnnannn. 9
324 ManPVCIFeatures:ot 9
3.3 Signal DeEfiNitionNso e 9
331 System-Level Signals............ i 11
332 Control SIgNalSo 12
333 AddressandDataSignals.............cciiiiiiii i 13
334 Ermor Signals.o 14
34 PVCIProtoColo 15
341 OpEration TYPES . . ottt e 15
34.2 HandshakeProtocoliiiiiiii i, 16
34.3 DaaFormattingand Alignment 20

4, BasiCV Cl .. 23
A1 Organizationttt e 23
4.2 Technica Introductiontothe BVCI 23

421 Initiator — Target CoNNectiont 23
422 TheHandshake.iiiiiiiiii i 23
423 TheDefault Acknowledgec i 24
424 Cdls, Packets,and PacketChains 25
425 Request Contentsot 25
426 Response ConMtentSo e 27
4.3 BVCI Signal DesCriptions. ovi e e 27
431 Signa TypeDefinition i 27
432 Signal Parameters 27
433 Signa DIrections. oot 28

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

vii

VSl Alliance (OCB 2 2.0)

434 Signa List............ i
435 Sysem-Level Signals..................
436 RequestSignals................ i,

437 ResponseSIgnals

44 BVCIProtocol.t
441 TransactionLayer............cooiiiiiinn.

442 PacketLayerciiiiiiii

443 CelLayer ...
444 BVCIOpEationsc.coviiiiiiinann
445 ReadOperation............cciiiiiiiiiianannn.

446 WriteOperationooiiiiiiiiiiiiinn

447 Other Operations.c.coviiinieiienannnn

448 AddressModes............coiiiiiiiii i

449 BVClISgndingRules

45 Additional TimingDiagramso,
5. Advanced VCI
51 Organizationc.uiiii i
5.2 Technicd Introductiontothe AVCl
521 Advanced PacketModel........................

522 ArbitrationHiding.

523 Sourceldentification................

524 Multi-Threading and Out-of-Order Transactions.

53 AVCI Signa Description ...
531 Signa TypeDefinition.........................

532 Signad Parameters................iiiiiiin..
533 Signad Directions.
534 Signal List........ ...
535 RequestSignals...............ciiiiiiiii..

536 ResponseSignalsciiiiiiiin.,

537 SideBandSignals............. ... i

54 AVCIProtocol.
541 AVClPacketLayer..............cooiiiiinn...

542 CdlLayer.......ccoiiiiii i
543 AVCIOpeaionsooiiiiiiiiiiiann.
54.4 Incrementing Address (BVCI Packet Modél).

54.5 Non-Incrementing Address (Advanced Packet Model)

54.6 Multi-Threaded Transactions

54.7 ArbitrationHidingMode

548 AddressModes............c..iiiiiiiiiii

549 AVCISignaingRules

5,5 Additional TimingDiagramsc.ccocuu...

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

viii

VSl Alliance (OCB 2 2.0)

6. Design GuIdelings. i e 81
6.1 USer GUIDE.t e 81
6.1.1 VClnitiator Responsibilities, 82
6.1.2 OCB Initiator Wrapper Responsibilities. 83
6.1.3 OCB Target Wrapper Responsibilities. 83
6.1.4 VCTarget Responsibilities. i, 84
6.1.5 VCI-to-VCI CoNVErSIONSottt e e 84
6.2 VCIl Parameterizationt 86
6.2.1 Background for Parameterization............... 86
0.2.2 Parameters. 87
6.3 Implementation Guidelines. 89
7. VCI Glossary of TermsS.t e e e 91
Appendices

A. Transaction Language.ttt 93
A.l Useof VClinterfaceinVCand SystemTestcovinien.... 93
A2 Languagelevels. 94
A.21 VCintefaceLanguage.« 9
A.22 TranSaClioNSttt e 95
A.23 TransactionDataFields i 97
A24 Language SYNtaXES. oottt e 100
A.25 VClLanguageExamplest 103
A.2.6 Exampleswith Soft Parameters 106
A.3 High-Level TransactionLanguage, 108
A31 InterfaceParameters. 108
A3.2 TranSaCtionSc.i it e 109
A.33 Transaction Parameters. 111
A34 Channe Control Calls.o 113
A35 DaaTransferCals.. ... 114
A.3.6 Transaction LanguageExamples 114

B. VCI Frequently Asked Questions. 119

List of Tables

Table 1: PVCI SIgnalso e 10
Table2: PVCI Data Alignment 21
Table 3: Signa TypeDefinition i, 27
Table4: Signal Parameters 27
Table5: Signal List 29
Table6: Request Cell Structure 39
Table 7: Response Cell Structuret 40
Table8: Handshake Signals i 40
Table 9: VAL-ACK Encoding and Channel States 40
Table 10: Permitted State Transactionsoiiiiviinnenn.n, 41
Table 11: Signal Type Definition 58

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table12: Signal Parameters 59
Table13: Signal List ... e 60
Table14: Request Cell Structure ... 66
Table 15: Response Cell Structure 67
Table 16: Arbitration Hiding Signals oo 67
Table 17: Parameter SCOPES vt o vt ot e et e e e 86
Table 18: Common Parametersfor all VC interfaces 87
Table 19: Parameters SpecifictoPVCIl 88
Table 20: Parameters SpecifictoBVCI i, 88
Table21: BVCI Default Values 88
Table 22: Parameters Specificto AVCI ... i 89
List of Figures
Figure 1: VCI isaPoint-to-Point Connection. 5
Figure 2: Two VCI Connections Used to Realize a Bus Connection 6
Figure 3: PVCI - Request and Response Contents Controlled by a
SimpleHandshake 7

Figure 4: Control Handshake (AsynchronousACK) 8
Figure 5: Fully Synchronous Control Handshake (ACK Late by Two Cycles) . 8
Figure 6: Peripheral VC Interface—Target ..., 9
Figure7: PVCI Read and Write 17
Figure 8: PVCI Read and Write with Default Acknowledge 18
Figure9: PVCIBurstRead 19
Figure 10: AbortingaBurst ... 20
Figure 11: BVCI Request and Response - Handshake and Contents. 23
Figure 12: Control Handshake for Both Request and Response

(Asynchronous ACK) e e 24
Figure 13: Fully Synchronous Control Handshake (ACK Late

by TWOCycCles)o 24
Figure 14: Diagram of VCI Signal Directions 28
Figure 15: System Transaction Layer View of Information Transfer

over theVCl 37
Figure 16: Packet Layer View of Information Transfer over theVCI 38
Figure 17: VAL-ACK Handshake for Single-Cell Transfer 41

Figure 18: VAL-ACK Handshake with VAL Time=0, ACK Time=042
Figure 19: VAL-ACK Handshake with VAL Time=0, ACK Time=142
Figure 20: VAL-ACK Handshake with VAL Time=1, ACK Time=143

Figure 21: 32-byte Read Operationona32-bitVCl 45
Figure 22: 32-byte Write Operationona32-bitVCIl 47
Figure 23: Packet Chain Transfer onthe VCI 49
Figure 24: 12-byte Read Operation with Random AddressMode 50
Figure 25: 12-byte Read Operation with Contiguous AddressMode 51
Figure 26: 16-byte Read Operation with Wrap AddressMode 52
Figure 27: 16-byte Read Operation with Constant AddressMode 53
Figure 28: 1-byte Write Operationona32-bitVCl 55

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Figure 29: 4-byte Write Operationon a32-bitVCl 56
Figure 30: Diagram of VCI Signal Directions 59
Figure 31: Advanced PacketModel 66
Figure 32: Arbitration Hiding Handshake (Asynchronous) 68
Figure 33: Arbitration Handshake (Synchronous) 68
Figure 34: Advanced Writeof TwoPackets 71
Figure 35: Advanced Read of Two Packets Over a 32-Bit Interface 72
Figure 36: Advanced Read of Two Packets with Different Source, Packet,

and Thread Identifiers i 73
Figure 37: Normal Packet Transfer i, 74
Figure 38: Packet Transfer with Arbitration Hiding 75
Figure 39: A Packet with Defined AddressMode 76
Figure 40: Packet Write with Specified WrapLength 77
Figure 41: Advanced Packet Write with Arbitration Hiding,

Without Arsval Handshake 79
Figure 42: Advanced Packet Read with Arbitration Hiding,

Without Arsval Handshake i, 79
Figure43: VCI Block Diagramt 81
Figure44: VCl with Star Topologyovviiii e 82
Figure 45: Interconnecting Different-Size VCI Components 84
Figure 46: Simulating VCswithVClinterfaces 93
Figure47: Transactionsover PVCI e 95
Figure48: Transactionsover BVCI 96
Figure 49: Transactionsover AVCI e 96
Figure 50: Transactions Over AVCI in Advanced Packet Model

(OneRequest Per Packet) 97
Figure 51: Normal Packet Model 110
Figure 52: Advanced PacketModel L. 111

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

Xi

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

Xii

VSl Alliance (OCB 2 2.0)

1. Virtual Component Interface (VCI)
Background

This standard is the result of the work of the On-Chip Bus (OCB) Development Working Group (DWG) of the
Virtual Socket Interface Alliance (VSIA). The charter defined for the OCB DWG was to define an on-chip bus-
related specification for the design, integration, and test of multiple functional blocks on asingle piece of silicon.

Two generic audiences are targeted: providers of functional blocks and users or integrators of these blocks. For
the providers of functional blocks, the standard defines the protocols and interfaces the users require for effective
reuse of the blocks in an integrated product design. For the users of functional blocks in compliance with this
standard, it depicts the information the users will need to properly evaluate, integrate, and verify one or more
functional blocksin adesign.

The overall objective is to obtain a general interface, such that Intellectual Property (IP), in the shape of Virtual
Components (VCs) of any origin, can be connected to Systems-on-Chips (SoC) of any chip integrator. In this
manner, VCs are not limited to one-time usage by their designers. They can be re-used over and over. Such re-use
of VCsaso appliesto VC providers or to external system integrators.

Early in the existence of this DWG, it became clear that picking an existing bus or defining a new one would not
be the right way to go. First of all, system integrators stick to their own bus for arelatively long time, if only to
allow for connection of existing VCs without modification. Connecting new VCs via a bus-to-bus bridge is
expensive in timing and in silicon footprint. Furthermore, all existing buses are well designed for their particular
usage. Inventing yet another bus does not make much sense, because there would be little chance of such a bus
being accepted.

For these reasons, the DWG decided to define an interface rather than a bus. Thisinterface can be used as a point-
to-point connection if needed and also as an interface to a bus connector.

This standard does not define Virtual Component Interface (VCl) compliance. Itis defined by the OCB Attributes
Specification (OCB 1 2.0). To the best of our knowledge, as of the public release of this standard, verification
(beyond review by the experts within the OCB DWG and the VSI membership at large) has been limited to the
PV CI section and parts of the BV CI section of the standard.

1.1 Goals

The following primary goals were considered in defining the VCI.

1. The VCI must enable maximum portability of aVC.
* VCI-compliant VCs should inter-operate with OCBs of varying protocols and performance levels.

» TheVCI should not dictate the integration methodology. That is, the VCI can be used as a point-to-point
interface without an OCB, and can be connected to different OCBs with automated methods, or with
handcrafted wrappers

2. The VCI should not require modification of VCIl-compliant VCs in order to connect to a different VCI-
compliant VC or OCB.
* Some combinations of VCI-compliant VCs and OCBs may result in reduced features or performance,
but must still function correctly and reliably.
3. The VCI should be simple and efficient to implement, with clear and easy to understand protocol.
» Thisisnecessary for wide acceptance.
4. The VCI must include designs for acompatible family of VC Interface, that is, Peripheral VCI (PVCI), Basic
VCI (BVCI), and Advanced VCI (AVCI).

* Thisenhancesinter-operability choicesfor the system chip designer, and design opportunitiesfor the VC
designer.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 1
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5. The protocol must be fully defined to include full enumeration of possible interactions with statements on
allowed and disallowed behavior. However, it is essential for wide adoption that there be some mechanism for
extending the protocol.

6. The VCI must minimize the number of truly optional signals and thus minimize the complexity of VCI
compliance checking. However, signals such as data and address lines and supported transfer widths may be
parameterizable and/or scalable.

1.2 Key Assumptions
This section describes the assumptions that were made in defining the VCI.

1. Initiator and target connections are point-to-point and unidirectional.

Both multiplexed and tri-state OCBs can be supported by allowing the OCB wrappers to implement the OCB
transceivers. Separate unidirectional nets are simpler to handle, and this circumvents the requirement for
arbitration in the VCI protocol.

2. Theinitiator can only present requests and the target can only respond.

If aV C needs both capabilities, implement parallel initiator and target interfaces.

e A combined (peer-to-peer) protocol is much more complex to define and implement, due to interface
arbitration requirements.

» Some OCB architectures can take advantage of the separate initiator and target interfaces by connecting
the VC Initiator interface to a system OCB, whereas the separate V C target interface might connect to a
peripheral or configurable OCB.

* Finally, the paralel interface is simpler to model and offers possible performance advantages using
simultaneous transfers.

3. The VCI must include limited fundamental Read and Write requests.
* ThePVCl islimited to read and write.
» TheBVCI includes Nop and read lock.
» The AVCI contains features to support better control over system interconnect.

4. Addressand data widths are determined by V C requirements.
* The OCB target initiator should scale its address and data widths to match target.

5. The standard should ensure that any required data and address storage in the wrappersis minimal.

e Anything more than minimal timing overhead is deemed unacceptable and negatively impacts
acceptance.

6. Clock domain crossing will not be visible at the interface.

* Theinterfaceisfully synchronous. Clock domain crossing is considered a design guideline for wrapper
or VC implementation.

1.3 Document Conventions

This section gives the conventions used in defining the VCI.

b - Number of bytesin acell

n - Most significant bit of address field

m - Least significant bit of cell address

k - Number of bitsin the packet length field

g - Number of bitsin the packet-chain length field

E - Number of bitsin the error extension field

Timing constraints:

Early - Sgnal is vdid within 20% of the clock cycle from the rise of the Clock signal

Copyright 2000 - 2001 by the VS| Alliance, Inc. 2
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Middle - Sgnal isvalid within 50% of the clock cycle from the rise of the Clock signal
Late - Sgnal is vaid within 80% of the clock cycle from the rise of the Clock signal

1.4 Document Organization

This standard begins with defining the basic characteristics of the VCI. The different complexity interfaces are
described in detail next, starting with the simplest one, the PV CI. The PVCI and BV CI chapters are designed so
that they can be read independently. That is, if areader wants to know how to use the PV CI, the reader does not
need to be familiar with the BV CI. The AVCI contains a set of optional features that can be added to the BV CI.
Only the differences from the BV CI are explained in the AVCI chapter. After the interface descriptions, some
design guidelines are given. The VCI Transaction Language section is described in Appendix A.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 3
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

2. VCI Characteristics

2.1 VCI Definition

The Virtual Component Interface (VCI) isan interface rather than a bus. Thusthe VCI specifies:
* A request-response protocol
» A protocol for the transfer of requests and responses
* The contents and coding of these requests and responses

The VCI does not touch areas as bus all ocation schemes, competing for a bus, and so forth.

There are three complexity levelsfor theVClI: Peripheral (PVCI), Basic VCI (BVCI), and Advanced VCI (AVCI).
The PV CI provides a simple, easily implementable interface for applications that do not need all the features of
the BVCI. The BVCI defines an interface that is suitable for most applications. It has a powerful, but not overly
complex protocol. The AVCI adds more sophisticated features, such as threads, to support high-performance
applications. The PV CI is a subset of the BV CI, and the AVCI is asuperset of the BV CI. All these interfaces are
designed to be compatible with each other.

When thisdocument refersto V Cl asopposedto PVCI, BVCI, or AVCI, itisreferring to either the entire standard,
or any non-level specific implementation of this standard.

2.2 Point-to-Point Usage

As an interface, the VCI can be used as a point-to-point connection between two units called the initiator and the
target, where the initiator issues a request and the target responds. The VCI can a so be used as the interface to a
“wrapper,” aconnection to abus. Thisishow the VVCI allowsthe VC to be connected to any bus. (See Section 3.4,
“PVCI Protocol.”) Basic point-to-point usage is depicted in Figure 1.

Thisinterface is very simple where protocol and coding are concerned. Neverthel ess, the interface contains many
sophisticated features, as explained in further chapters of this standard. Its simplicity is the reason for the small
footprint and the high bandwidth.

reguest

Initiator Target
response

Figure 1: VCI isa Point-to-Point Connection

2.3 Split Protocol

BV CI and AVCI make use of a “split protocol.” That is, the timing of the request and the response are fully
separate. The initiator can issue as many requests as needed, without waiting for the response. The protocol does
not prescribe any connection between issuing of requests and arrival of the corresponding responses. The only
thing specified is that the order of responses corresponds to the order of requests.

Inthe AVCI, requests may be tagged with identifiers, which alows such reguests and request threads to be
interleaved and responses to arrive in a different order. Responses bear the same tags issued with the
corresponding requests, such that the relation can be restored upon the reception of aresponse. Additional details
are provided in Chapter 5, “Advanced VCI.”

In the PVCI, no split protocol is used, and each request must be followed by a response before the initiator can
issue a new request. This simplification is used to support simple peripheral buses.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 5
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

2.4 VCl Usage with a Bus

The VCI can be used as the interface to awrapper, which means aconnection to abus. Thisis how the VCI allows
the V C to be connected to any bus. An initiator is connected to that bus using abus initiator wrapper. A target is
connected to that bus using a bus target wrapper. Once the wrappers for the bus have been designed, any VC can
be connected to that bus, as depicted in Figure 2. The wrapper and the VCI boxes (the non-shaded area in the
figure) together correspond to the traditional bus interface within both the initiator and the target. The whole
interface functions as a point-to-point connection. Of course, the use of VCI does not prevent using native bus
components at the same time. In fact, the presented use of VCI is completely transparent to the bus system.

Itisintended that OCB suppliersprovide VCI wrappersto their proprietary bus, orthat EDA vendors provide tools
to create such wrappers automatically. Thiswill freethe | P provider from having to understand the detail s of many

buses.

Initiator VC Target VC
VCl initiator VCI target
VCl VCl
Point to point Point to point
VCI target initiator wrapper VCl initiator
Bus master Busslave
target wrapper
Any Bus
- -

Figure 2: Two VCI Connections Used to Realize a Bus Connection

2.5 Notes

» Theinitiator and target are simpler than their equivalents directly connected to a bus. The VCI initiator
and the VCI target are much simpler than the bus initiator and target interfaces.

* Thebusinterfaceisnot removed. It isin the wrapper. The wrapper does not contain much more than the
bus interface, which is needed anyway when connecting to the bus and to the V C interface block.

» TheVClinitiator and VCI target blocks shownin Figure 2 are very simple. They do not add much to the
total footprint or timing, since some logic isoften needed anyway to connect the actual functionality of
initiator and target to their businterfaces. Only the vci_initiator — vci_target interface is standardized in
the VCI.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 6
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)
3. Peripheral VCI

This chapter defines the first member of the VCI family, the Peripheral Virtual Component Interface (PVCI). It
can be used in conjunction with peripheral on-chip buses, as defined in the VSIA OCB Specification 1 1.0, and
for point-to-point connections betweenVCs. The PVCI is a subset of the Basic VCI (BVCI), just asthe BVCI is
asubset of the Advanced Virtual Component Interface (AVCI).

3.1 Organization

This chapter contains the following sections:
Section 3.1: Describes the organization.
Section 3.2: Gives atechnical introduction to PV CI.
Section 3.3: Provides a detailed description of PV CI signals.
Section 3.4: Defines the PV CI protocol.

3.2 Technical Introduction to PVCI
The following sections give atechnical introduction to the PVCI.

3.2.1 Initiator — Target Connection

Asshown inFigure 3, the request contents and the response contents are transferred under control of the protocol,
asimple two-wire handshake.

contents
request
Initiator [handshake P Target
contents
< r
esponse

Figure 3: PVCI é- Request and Response Contents Controlled by a Simple Handshake

3.2.2 The Handshake

Notethat in Figure 3, the handshake arrow is double-pointed, showing that signalsin both directions areinvolved.

(Signal here is synonymous to net, wire, or port.) The handshake protocol is aimed at synchronizing two blocks
by transferring control information in both directions. The contents arrow points one way only. The PVCI

handshake signals are called VAL and ACK, which stand for Valid and Acknowledge.

Request contents flow from the i nitiator to the target. Response contents flow from thetarget to theinitiator. The
handshake protocol is shown in Figure 4 and Figure 5. Note that the delays are exaggerated in the figures. The
triggering events for each transition are expressed with arcing arrows.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 7
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Sample Sample Sample
contents contents contents

\ |

Contents —— < \ | X
I

[
|
| |

VAL

—

ACK

Figure 4: Control Handshake (Asynchronous ACK)

Notesfor Figure4:
» Vertical dashed lines show rising clock edges.
» VAL shows“at the next rising edge, contents can be read.” No actual timing is specified here.

« While VAL is active at the rising edge of the clock, ACK shows that the contents will be read by the
target, or that the contents are available to be read from the target. This signifies the end of the
transaction.

VAL and contents must be maintained until ACK has become asserted and there is a rising edge of the clock.
Maintaining the VAL signal in asserted mode for another clock cycle after ACK = 1 means that another request
iswaiting, as shown on the right side of Figure 4.

The ACK can be either generated asynchronously of the VAL, as shown in Figure 4, or set synchronously at the
rising edge of the clock, as shown inFigure 5. The synchronous ACK can be set at the next clock cycle after Valid,
or later (aslow reaction, or late ACK). | f asynchronous ACK is used, special design considerations are needed to
make sure that the ACK is stable at the rising clock edge. This means that if the ACK is not driven directly by a
flip-flop, it must be generated from the VAL signal in the target with a minimum amount of logic and wire delay.

vaL Y R |
Contents —(\ / >
ACK

Figure5: Fully Synchronous Control Handshake (ACK Late by Two Cycles)

Default Acknowledge

A “default acknowledge” behavior is permitted on top of this protocol. Since the acknowledge-signal is only
sampled when VAL =1, it can be asserted long before it is needed. Such an early ACK has no influence on the
protocol behavior. The early ACK means “don’t care” (that is, the signal is not being considered, if VAL is not
active). The acknowledge sgnal can even be tied permanently active, if the target is always able to serve the
reguest in one clock cycle.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 8
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

3.2.3 Request and Response Contents

Each handshake is used to transfer a cell across the interface. Cell sizeis the width of the data passing across a
VCI. Itistypicaly 1, 2, or 4 bytes. The cell is synonymous to a data word, and the cell size to word length. The
cell sizeisawaysthe same asthe size of the particular VC Interface. Figure 6 showsthe signal groups of the PV CI
belonging to the request and response. The request contents include the following: Valid, cell-address, byte-
enables within the cell, datato be written, command signal indicating whether you are reading or writing data, and
end-of -packet, indicating the end of a burst of several cells. (End-of-packet is described later in this document.)
The response contents include the following: acknowledge, response error, and the data read fromthetarget. The
initiator interfaceis similar, except that the signal directions are opposite.

7~ — VAL
—» EOP

Request << =5

—»| ADDRESS (n-1.0)
—»| BE(b-1.0/ 0:b-1)
\. —»| WDATA(8b-1.0)

\

-4—— RDATA(8b-1.0)
Response -€— ACK
-¢— RERROR

Figure6: Peripheral VC Interface—Target

3.2.4 Main PVCI Features:
* Upto64-bit Address
* Upto 32-bit Read Data
* Upto 32-bit Write Data
e Synchronous
* Allowsfor 8-hit, 16-bit, and 32-bit devices
» 8-bit, 16-bit, and 32-bit Transfers
e Simple packet, or ‘burst’ transfer
» Optiona Free-BE mode allows transfer of any combination of bytes of aword
» Least Significant Bit is bit“0”
* PVCI has no explicit endianness
* Natural byte alignment

3.3 Signal Definitions

This section defines the PV CI signals. First, the signals are summarized in table format. Next, atextual definition
of each signal is given. All signals included in Table 1 are assumed to be active-high signals unless indicated
otherwise. It isrecommended that all signal outputs become stable before Early. It can be assumed that all inputs
are stable before Late.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 9
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 1: PVCI Signals

Signal Name Driver | Receiver | Width Comments
System Signals
CLOCK System | Initiator/ 1 Supplied by the system. Interface is synchronousto therising
Target edge only.
RESETN System | Initiator/ 1 Supplied by the system. Active low reset. De-asserts VAL
Target and ACK.

Handshake, Flow Control, and Shaping

VAL Initiator | Target 1 This pair of signals provides flow control for a cell
transferring acrossthe V C Interface, and validates all signals
associated with that cell . V AL==1: indicates that the initiator
has a cell available. ACK==1: indicates that the target can
compl ete the operation on the cell. The cell istherefore
transferred when VAL==ACK==1

ACK Target | Initiator 1

EOP Initiator | Target 1 EOP==1 indicates that the current cell isthelast onein a
series of cells accessed at contiguous addresses. Can be
interpreted as an inverted burst signal.

Operation Information

ADDRESS[N- Initiator | Target N N isaparameter based upon the capabilities of the target, and

1:.0] is defined and fixed at the time of component instantiation.
The most significant bit of the addressis carried by bit N-1,
and the least significant bit is carried by bit 0. See Section
3.3.3, “Address and Data Signals,” for use of low-order
address hits.

RD Initiator | Target 1 Thisisasingle bit code giving the operation type:
RD=1: Read data from the target peripheral
RD=0: Write data to the target peripheral

BE Initiator | Target b Thisisafield with b-bits, one for each byte, which indicates

[b-1:0] 0:b-1] which bytes of the word being transferred are enabled. The
usage restrictions of BE arelisted in Section 3.4.3, “Data
Formatting and Alignment.”

WDATA [8b- | Initiator | Target 8b Thisisthe datathat i stransferred with write operationsto the

1:.0] target. For the PVCI, the allowed values of b are 4, 2, and 1.

Bit 8b-1 isthe most significant bit, and bit O is the least
significant bit. Byte [8b-1:8b-8] represents the most
significant byte. For VCs supporting a data size that isnot a
power of two, the next larger supported b will be used with
the unused bitstied to logic zero. For example, a 12-bit
device must use a 16-bit wide PV CI with the 4 Most
Significant bitstied to logic zero.

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved.

10

VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 1: PVCI Signals (Continued)

Signal Name Driver | Receiver | Width Comments

RDATA [8b-1:0] | Target | Initiator 8b Thisis the datathat i s returned from the target with read
operations. Since the Peripheral Interface has no pipelining,
RDATA isvalidated by the target when it asserts ACK. It is
defined in the same way as WDATA above.

RERROR Target | Initiator E+1 Indicates error in transfer. Optional error extension bits
[E:0] indicate nature of the error. E is defined by parameter
ERRLEN. Itiszero or more.

3.3.1 System-Level Signals

3.3.1.1 Clock

Signal Name; Clock

Signal Abbreviation: CLOCK

Polarity: Active at Positive edge
Driven By: System

Received By: VClinitiator, VCl target

Thissignal provides the timing for the VCI and is an input tothe initiator and the target that are connectedby the
PVCI. All initiator and target output signals are asserted and de-asserted relative to the rising edge of CLOCK,
and all initiator and target inputs are sampled relative to this edge.

3.3.1.2 Reset

Signal Name: Reset

Signal Abbreviation: RESETN

Polarity: Asserted Negative
Driven By: System

Received By: VCl initiator, V Cl target
Timing: Asserted > 8 clock cycles

This signal is used during power-on reset and is used to bring the PVCI to an idle or quiescent state. Thisidle
state is defined as the PV CI state in which:

1. The VAL signal is de-asserted.
2. The ACK signal is de-asserted.

The system must guarantee that RESETN is asserted for at least eight cycles of CLOCK (unless the RESETLEN
parameter is set).

Copyright 2000 - 2001 by the VSl Alliance, Inc. 11
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

3.3.2 Control Signals

3.3.2.1 Valid
Signal Name: Vvalid
Signal Abbreviation: VAL
Polarity: Asserted Positive
Driven By: VCl initiator
Received By: VCI target
Timing: Asserted at rising edge of CLOCK until ACK == 1 and next rising edge of

CLOCK

The VAL signal isdriven by a VCI initiator to indicate that there is a valid address, data, and command on the
PVCI. All of the initiator control signals are qualified by VAL. The initiator keeps VAL asserted, and all of its
control signals valid and stable, until it receives the ACK signal from the target. The initiator should not assert
VAL unless the current transaction is intended for the target. Thus, the target wrapper may need to perform
address decoding on its on-chip bus side to generate VAL for the target, thereby accomplishing device selection.

3.3.2.2 Acknowledge

Signal Name: Acknowledge

Signal Abbreviation: ACK

Polarity: Asserted Positive

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted and de-asserted & rising edge of CLOCK. The signal must change
before Late.

The ACK signal is asserted by the target to indicate the completion of atransfer between the initiator and target.
In the case of write operations, this means that the target has accepted the data that is on the write data bus, or will
do so at the end of the current clock cycle. In the case of read operations, the assertion of the ACK by the target
indicates that the target has placed data to be transferred to the initiator on the read data bus. The transaction
completes as soon as the rising edge of CLOCK samples ACK. The target may de-assert the ACK by the next
rising edge of CLOCK unless anew command has been initiated by theinitiator, or default acknowledge is used.
Similarly, theinitiator de-asserts VAL by the next rising edge of CLOCK unlessit is presenting a new command.

3.3.2.3 Read / Not Write

Signal Name; Read / Not Write

Signal Abbreviation: RD

Polarity: Read at positive, write at zero

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until ACK == 1 at rising edge of CLOCK

Thissignal isaone-bit command asserted by the initiator and indicates the direction of the requested transfer. RD
indicates that the requested transfer isaread if it isasserted high, and awriteif it is asserted low. Thissignal must
be valid any time that the VAL signal is asserted. A read transfer is a request for the target to supply data on

RDATA to be read into the initiator. A write transfer is a request for the target to accept data on WDATA from
theinitiator.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 12
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

3.3.2.4 End-of-Packet

Signal Name: End-of-Packet

Signal Abbreviation: EOP

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until ACK =1 at rising edge of CLOCK

The EOP signal is de-asserted by the initiator to indicate that the transfer being performed will be followed with
atransfer by the initiator to the next higher cell address. This signal is used by the target device to preset address
in order to improve the data transfer performance. Thus this signal can be interpreted as an inverted burst signal.
The burst is similar to a packet in the BV CI, except that rather than prescribing a strict atomicity, it merely
indicates a contiguous address behavior. The burst transfer is completed once a cell is transferred with the EOP
signal asserted, or when the target signals an Abort error. For thelegal address behavior during aburst, see Section
3.3.3.1, “Address.”

A BVCI packet with CONTIG signal asserted high and WRAP signal asserted low can be mapped to aPV Cl burst.

3.3.3 Address and Data Signals

Address
Signal Name: Address
Signal Abbreviation: ADDRESS[n-1:0]
Polarity: N/A
Driven By: VCl initiator
Received By: VCI target
Timing: Asserted at rising edge of CLOCK until ACK = 1 at rising edge of CLOCK

The PV CI initiator uses ADDRESS to identify which target resource the current transaction acts upon. The N-
lines of address bus form abinary number that represents an address. N is a parameter based upon the capabilities
of thetarget and is defined and fixed at the time of component instantiation. The most significant bit of the address
bus will be carried by bit N-1 and the least significant bit of the address will be carried by bit 0. ADDRESS[n-
1:m] provides a cell address where the cell size is specified by the total data width of the PVCI. M equals 0O for
cell sizel, 1 for cell size 2, and 2 for cell size 4. Sub-cell addressing is handled by the byte-enable signals.

It is permissible to supply the low-order address bits to allow the original full intention of the transfer to be
maintained. This relies on knowledge of the endianness of theinitiator. Thisadditional informationisnotrequired
to compl ete the operation, which is compl etely defined by a cell-aligned address and byte enables (that is, the low-
order address bits may betied to logical zero). However, in some systems, some efficiency gains may be possible
by taking advantage of thisinformation.

When the EOP signal islow, the ADDRESS of the next cell must be CELLSIZE + ADDRESS of the current cell,
and the ADDRESS of the current cell must be aligned with the cell boundary.

3.3.3.1 ByteEnable

Signal Name: Byte Enable

Signal Abbreviation: BE[b-1:0/0:b-1]

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until ACK == 1 at rising edge of CLOCK

BE isa b-bit field that indicates which bytes of the cell being transferred are enabled. The b equalsthe total data
width of the PVCI/8. These signals must be valid any time that the VAL signal is asserted. The usage of byte
enablesis described in Section 3.4.3, “ Data Formatting and Alignment.”

BE[3:0] isused for little endian VCs where the LSB (Least Significant Byte) islabeled Address 0.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 13
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

BE[0:3] is used for big endian VCs where the MSB (Most Significant Byte) is labeled Address 0.

3.3.3.2 Write Data

Signal Name; Write Data

Signal Abbreviation: WDATA[8b-1: 0]

Polarity: N/A

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until ACK == 1 at rising edge of CLOCK

The write data lines are driven by the VClI initiator, and are used to transfer write datafrom an initiator to a target
device. Write data consists of b logical byte lanes, based upon the capabilities of the target, and is defined and
fixed at the time of component instantiation. Allowed values of b are 1, 2, and 4, allowing &, 16- or 32-bit
interfaces. Bit 8*b-1 is the most significant bit of the most significant byte and bit O is the least significant bit of
the least significant byte. The write data lines must contain valid write data while the VAL signal is asserted and
the RD isindicating awrite transfer.

For VCs supporting a data size that is not an eight-bit increment, the next larger supported bus size will be used
with the unused bits tied to logic zero. For example, a 12-bit device must use a 16-bit wide PV CI with the four
most significant bitstied to logic zero.

3.3.3.3 Read Data

Signal Name; Read Data

Signal Abbreviation: RDATA[8b-1: Q]

Polarity: N/A

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted at rising edge of CLOCK until ACK == 1 at rising edge of CLOCK

The read data lines are driven by the VCI initiator, and are used to transfer read data from atarget to an initiator
device. Read dataconsists of b logical bytelanes, based upon the capabilities of the target, and is defined and fixed
at the time of component instantiation. Allowed values of b are 1, 2 and 4, allowing 8-, 16- or 32-hit interfaces.
Bit 8*b-1 is the most significant bit of the most significant byte, and bit O is the least significant bit of the |east
significant byte. The read data lines must contain valid read data while the ACK signal is asserted and the RD is
indicating aread transfer.

For V Cs supporting a data size that is not an eight-bit increment, the next larger supported bus size will be used
with the unused bits tied to logic zero. For example, a 12-bit device must use a 16-bit wide PV CI with the four
most significant bitstied to logic zero.

3.3.4 Error Signals

3.3.4.1 Response Error

Signal Name: Response Error

Signal Abbreviation: RERRORJ[E:Q]

Polarity: Positive

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted at rising edge of CLOCK when ACK == 1 at rising edge of CLOCK

Error signal is valid only when ACK=1, with the following meaning:
For ERRLEN = 0 (E=0)

RERROR=0: Normal (no error)

RERROR=1: General data error. The entire packet is considered bad.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 14
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

For ERRLEN =1 (E=1)

RERROR = 00: Normal (no error)

RERROR = 01: General dataerror. The entire packet is considered bad
RERROR = 10: Reserved

RERROR = 11: Abort Disconnect

For ERRLEN = 2 (E=2)

RERROR =000: Normal (no error)

RERROR = xx0: Reserved

RERROR = 001: General data error. The entire packet is considered bad
RERROR = 011: Reserved

RERROR = 101: Bad data (retry)

RERROR = 111: Abort Disconnect

After receiving an error, the initiator may or may not continue with the current packet. If it chooses to end the
packet prematurely, it can do so by asserting EOP. After this, it can choose not to try atransfer anymore (Abort)
or Retry part or al of thetransfer. For any error, the target must process the subsequent pending cells and packets
with the normal protocol, i.e. it must continue sending responses until it has processed the EOP with or without
further errors signaled. In general, the RERROR is more informative than prescriptive, and the target may not
assume any special behavior from the initiator. The initiator is anyhow encouraged to act responsibly, when it
meets an error.

While sending an error, the target should continue with the burst, with or without further errors until it receives a
cell with EOP. The initiator can choose to continue with the burst or set the EOP on the next cell. In the case of

bad data, just the data of the error may be considered bad. If ERRLEN=2 is supported, the target must be capable
of accepting aretried request to the same address where it sets Retry-error, but the initiator can choose to retry a
cell, burst, or nothing at all. It is strongly recommended that all PV Cl components support at least one bit error.

The PV CI target is strongly recommended to signal an error when it receives areguest it does not support.

3.4 PVCI Protocol

3.4.1 Operation Types

The operation types listed here define the legal PV CI requests and responses. Any other operations are outside the
PV CI specification.

3.4.1.1 Transfer Request

The following is alist of the default transaction types that may be initiated by an initiator across the PVCI. An
initiator should not initiate an operation of awidth that the target does not support.

* Read8: Read one byte. The byte may be on any byte lane expressed with the BE field. Thisis supported
by all PVCI components.

* Readl6: Read two bytes. The bytes must be on contiguous byte lanes, and are expressed with the BE
field. The operations must be aligned to 16-bit sub-word boundaries, that is, transfer with BE=0110 is
not allowed. Thisis supported by 2- and 4-byte PV CI components.

* Read32: Read four bytes. This is supported by 4-byte PV CI components.

* Read N Cells: Read a packet of N cells. The addresses of consecutive cells must be ascending, cell
aligned, and consecutive. The byte enables of individual cells may have any legal values. The last cell is
indicated with the EOP signal. Each cell of a packet isindividually requested and handshaken. Only one
pending request for acell isalowed at atime.

Write operations are similar to read operations, except for the data direction.

e Write8: Write one byte.

o Writel6: Write two bytes.

e Write32: Write four bytes.

e WriteN Cells: Write a packet of N cells.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 15
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

All transfers are packet transfers of one or more cells. A packet transfer of length 1 is indistinguishable from a
singletransfer. The initiator and the target do not need support packets that cross address selection boundaries.

The optional Free-BE mode operations are:
* Read: Read any combination of the bytesin the cell as expressed by the BE field.
* Write: Write any combination of the bytes in the cell as expressed by the BE field.
» Read N: Similar to Read N Cells, but with any combination of bytesin the cells enabled with BE field
* Write N: Similar to Write N Cells, but with any combination of bytesin the cells enabled with BE field.

3.4.1.2 Transfer Response

Thefollowingisalist of theresponsesthat are allowable by atarget across the PV CI:
* Not Ready
* Transfer Acknowledged
e Error (with possible extension specifiers)

3.4.2 Handshake Protocol

The two-wire handshake was introduced in Section 3.2.2, “ The Handshake.” The PV Cl handshake protocol is a
subset of the BV Cl handshake protocol. (For more information, see Section 4.2.2, “ Technical Introduction to the
BVCI.") Connecting a BVCI target to a PVCI initiator is trivial; the extra signals are tied into constants. The
performance achieved is similar to native Peripheral connection. It is also possible to connect a BV Cl initiator to
aPVCI target, if theinitiator knows the limitations of the target.

TheVAL-ACK pair of signals providesaflow control for acell transferring acrossthe VC Interface, and validates
all signals associated with that cell. See Figures 7 through 10 for examples.

* VAL==1: Indicates that the initiator is presenting a request.

» ACK==1: Indicates that the target is ready to present a response.

3.4.2.1 Handshake Rules:

R1: not changeable Once an initiator has asserted VAL, it is not permissible to de-assert it or to change any
request field, until acknowledged. This rule may be overridden by system timeout function, in a case where prior
knowledge exists that the target has stalled and will not respond.

R2: default_ack: ACK is permitted to be asserted when VAL islow.

R3: valid response: The target must be presenting stable response fields at the rising edge of the clock while both
ACK and VAL are asserted.

Theinitiator must keep VAL asserted, and all of its control signalsvalid and stable until it receivesthe ACK signal
from the target. Theinitiator should not assert VAL unless the current transaction is intended for the target.

3.4.2.2 Packet Transfer

The packet (burst) transfer makes it more efficient to transfer a block of cells with consecutive addresses. While
the EOP signal is de-asserted during a request, the address of the next request will be ADDRESS+cell_size. The
ADDRESS must be aligned to the cell boundary. The packet transfer is completed once a cell is transferred with
the EOP signal asserted. Interms of the BV Cl o perations, the PV Cl burst equalsto apacket transfer with CONTIG
signal asserted and WRAP signal de-asserted. (For more information, see Section 4.3, “BVCI Signa
Descriptions.”) The byte-enable signals may have any legal combination in each cell of the packet.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 16
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

3.4.2.3 Handshake Examples:

Figure 7 shows waveforms of read and write operations to atarget, which needs two clock cyclesto complete the
read, and one cycle to complete the write. If the RERROR signal is not drawn, it is 0 (“Normal”) for all the
examples. Notice that while mixing asynchronous and synchronous ACK behavior islegal, and must be supported
by al initiators, it is not recommended for targets.

Sample Sample Sample Sample Sample

control read write read write

signals data data data data
CLOCK | | | | | | | | | |
ADDRESS | | Adar] | Addr | Addr [Adar] |
WDATA Data Data
RDATA | Data | | Datal
BE Bytena Bytena| Bytena |Bytend

o
w o \

EOP
read write read write
cycle cycle cycle cycle
Figure 7: PVCI Read and Write
Copyright 2000 - 2001 by the VSl Alliance, Inc. 17

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Sample Sample Sample Sample
read write read write
data data data data
cook [T LT LTI L L L rer
ADDRESS | | Adar | | Addr | Addr | Adar |
WDATA | | Data | | Data |
RDATA | | Data | | Data |
BE | | Bytenal | Bytena| Bytena| Bytenal

. U
VAL /—_/ \

ACK

EOP

read write ' read write
cycle cycle cycle cycle

Figure 8: PVCI Read and Writewith Default Acknowledge

Figure 8 shows waveforms of read and write operations to a target, which has default acknowledge. That is, a
single cycleisrequired to complete the read and write operations.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 18
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

CLOCK

ADDRESS

RDATA

BE

RD

EOP

VAL

ACK

VSl Alliance (OCB 2 2.0)

Uy L

0 4 8 12 |16 |20 |24 |28

[+ J2 Js fa |5 Jo 7 [s | |

| BYTENA

|
| |
— —
| |

|

Figure 9: PVCI Burst Read

Figure 9 shows how the EOP signal can be used to indicate address predictability to asimilar target, which has an
internal address counter to support pre-fetching read data. Notice that the cell size is 4 in the example, resulting
in the ADDRESS being incremented by 4 at each read. In this example, the target can respond to the read in two
clock cyclesin singletransfer, and in one cyclein burst transfer. The ACK signal can be generated from the VAL,

RD, and EOP signals.

Copyright 2000 - 200
All Rights Reserved.

1 by the VS| Alliance, Inc.
VSIA CONFIDENTIAL LICENSED DOCUMENT

19

VSl Alliance (OCB 2 2.0)

coc | UUUUUUULLE

ADDRES 0 4 8 12 |16 | 20 | 24

RDATA 1 2 3 4 5 6 7

BE BYTENA

RD

EOP

VAL

ACK

RERROR Normal Abort Normal

Figure 10: Aborting a Burst

Figure 10 shows how an “Abort” error response terminates a burst transfer.

3.4.3 Data Formatting and Alignment

This section describes the PV CI conventions used for bit and byte ordering and alignment. The PV Cl defines bit
“0” asthe least significant bit of avectored field, such asWDATA, RDATA, or ADDRESS It definesbit “8b-1"
as the most significant data bit of each data bus, and bit “N-1" as the most significant address bit. N is defined to
be the number of physical ports or wires associated with a particular instantiation of a PV ClI.

The PVCI is endian-independent at the interface. Even though the naming convention may imply alittle endian
interface, the DATA[7:0] means address =0 for little endian, and address = 3 for big endian (in the case of a 32-
bit interface). On the other hand, the PVCI component must choose an endianness and declare this to the system
(unless the component is a memory, in which case it does not matter). When any component interprets a byte
address, it makes a decision about which byte lane to use.

The PVCI uses natural alignment to support peripherals and V Cs that handle multiple size transfers (for example,

byte and word transfers). This means that transfer sizes that are smaller than the physical width of the datalines
(WDATA or RDATA) will occur in their natural byte lanes and not be right or left justified. The byte enablelines
(BE) indicate which byte lane(s) contain the desired data. Table 2 shows the various data alignments defined for
the PV CI datatransfers. The entries labeled” X X” ae“don’t cares,” which provide flexibility and support for byte
replication if desired.

The PVCI standard has two operational modes related to byte enables: Default mode and Free-BE mode.

3.4.3.1 Byte Enables in Default Mode

Every PVCI component must support usage of the byte enable lines that are restricted to the contiguous cases.
Referring to the following table and the 32-bit exampl e, the allowabl e patterns for the byte enables are 0000, 0001,
0010, 0100, 1000, 0011, 1100, and 1111. Patterns such as 1011 or 1101 are not allowed.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 20
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 2: PVCI Data Alignment

VC

Data éf;; (3 ;E 3 Data[31:24] Data[23:16] Data[15:8] Data[7:0]
bussize Bl
32 32 Others Undefined
0000 XX XX XX XX
1111 Byte Byte Byte Byte
16 0011 XX XX Byte Byte
1100 Byte Byte XX XX
8 0001 XX XX XX Byte
0010 XX XX Byte XX
0100 XX Byte XX XX
1000 Byte XX XX XX
VC Data | Xfer |BE Data[31:24] Data[23:16] Data[15:8] Data[7:0]
bussize | size [1:0[0:1]
16 16 00 XX XX
11 Byte Byte
8 01 XX Byte
10 Byte XX
VCData | Xfer | BE[Q] Data[31:24] Data[23:16] Data[15:8] Data[7:0]
bussize | size
8 8 0 XX
1 Byte

In both big or little endian mode, the BE[0] always corresponds to the byte address 0 in the cell.

3.4.3.2 Byte Enables in Free-BE Mode

The Free-BE mode is an optional operation mode for PV Cl components. It islegal in this case to support any BE
pattern. This mode can be used to make connections to some buses more efficient (for example, abus that support
3-bytewidetransfers). A target that supports the Free-BE mode automatically supports the default mode. A PV CI
initiator must not require that the target supports Free-BE mode, but it can take advantage of it if the target does
support this mode. The operation mode is selected in component instantiation; it is not a runtime parameter.

For more information, see Section 6.2, “VCI Parameters.”

Copyright 2000 - 2001 by the VSl Alliance, Inc. 21
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

22

VSl Alliance (OCB 2 2.0)
4. Basic VCI

This chapter defines a Basic Virtual Component Interface (BVCl) to be used in conjunction with on-chip system
buses, and for point-to-point connections betweenVCs. The BV CI is a subset of the Advanced VCI (AVCI). The
BV CI isdesigned to fulfill most on-chip interfacing protocol needs.

4.1 Organization

This chapter contains the following sections:

Section 4.1: Describes the organization.

Section 4.2: Gives atechnical introduction to BV CI.

Section 4.3: Provides a detailed description of BV CI signals.
Section 4.4: Defines the BV CI protocol.

4.2 Technical Introduction to the BVCI

The following sections give atechnical introduction to the BVCI.

4.2.1 Initiator — Target Connection

Asshown in Figure 11, the request contents and the response contents are separately transferred under control of
the protocol, a simple handshake.

< handshake >
Initiator Target
contents
request -
< handshake >
contents
< response

Figure 11: BVCI Request and Response - Handshake and Contents

422 The Handshake

The BVCI handshake is different from the Peripheral VCI (PVCI) handshake, in that the request and response
handshakes are completely independent of each other. The handshake protocol is aimed at synchronizing two
blocks by transferring control information in both directions. In the request, the handshake signals are called
CMDVAL and CMDACK. In the response, they are called RSPVAL and RSPACK. (These signal names stand
for Command Valid, Command Acknowledge, Response Valid, and Response Acknowledge, respectively.)
BV ClI handshakes can be reduced to PV CI handshakes using the rules presented in Section 6.1.5, “VCl-to-VCI
Conversions.”

Request contents flow from initiator to target. Response contents flow from target to initiator. Figure 12 shows
the handshake protocol.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 23
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Sample Sample Sample
contents contents contents
I I
i (N
Valid | ?-I -

| \

I
|
I
I
|
Contents —— < \ : X
|
I
I
I

Acknowledge

I
!

Figure 12: Control Handshakefor Both Request and Response (Asynchronous ACK)

Notesfor Figure 12:
» Vertical dashed lines show rising clock edges.
» VAL shows“at the next rising edge, contents can be read.” No actual timing is specified here.
* ACK,wherethereisacoinciding VAL, shows*contentswill beread.” No actual timing is specified here.

As indicated on the right-hand side of Figure 12, maintaining the VAL signal in asserted state for another clock
cycle after ACK = 1 means that another request or response is ready for reading. VAL and contents must be
maintained until the next rising clock edge after the ACK has become asserted.

The ACK can be either generated asynchronously of the VAL as shown in Figure 12, or set synchronously at the
rising edge of the clock as shown in Figure 13 (which shows a slow reaction, or late ACK). | f asynchronous ACK
isused, special design considerations are needed to make sure that the ACK is stable at the rising clock edge. For
thisreason, it is not recommended to use acknowledge, which is not generated synchronously except with “ default
acknowledge” behavior, as shown in Figure 13.

valid Y 3]
Contents —(\ /)

Acknowledge

Figure 13: Fully Synchronous Control Handshake (ACK Late by Two Cycles)

4.2.3 The Default Acknowledge

A “default acknowledge” is permitted on top of the protocol. Sincethe Acknowledge signal isonly sampled when
VAL =1, the Acknowledge signal can be asserted long beforeit is needed. Such an early ACK has no influence
on the protocol behavior. The early ACK ismerely “don’t care,” meaning that the signal is not being considered
unless VAL isactive at aclock edge. This makes it possible to tie ACK permanently active.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 24
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

424 Cells, Packets, and Packet Chains

4241 Cell

Each handshake is used to transfer a cell acrossthe interface. The cell size isthe width of the data passing across
aVCI. Itwill typically be 1, 2, 4, 8, or 16 bytes.

4.2.4.2 Packet

Cell transfers can be combined into packets, which may map onto aburst on abus. A VCI operation consists of a
request packet and aresponse packet. Asnoted in Chapter 2, although the responsesin a packet arrive in the same
order as their requests, there is no further relation between the timing of the series of requests and the series of
responses. The protocol isasplit protocol. Packets have been introduced for three reasons:

1. When connecting the BV CI to a bus, if the underlying bus system is aware that more operations are to follow,
no bus arbitration is required between operations of one packet. This may gain val uable bus capacity and speed.

2. Packets are atomic. That is, the point-to-point connection is maintained over the packet, no matter what is
between initiator and target. This complex interconnection consists of one or more buses, or “nothing at all.”
This dlowsfor monopolizing abuffer. Note that long packets block any other use of the connection system. It
isstrongly advised to keep packets as short as possible to prevent degradation of system performance.

Packets are similar in concept to “frames” in Peripheral Component Interconnect (PCl), where a connection is
established to enable data to be transferred until the initiator indicates the termination by closing the frame.

4.2.4.3 Packet Chain

Packets can be combined into chains. This dlows longer chains of operations to go uninterrupted, as long as no
higher priority operation claims part of the connection, such as a bus. Packet chains thus produce the same bus
efficiency that packets provide, without actually excluding any other usage of the connection system. The VCI

initiator may merely “notice” that the CMDACK to thefirst operation of a new packet iswithheld for along time.

After this pause, the accepting of requests proceeds asif no other usage of the connection system had been served.

To obtain thisbehavior, CMDV AL should be held asserted between the packets of achain. Thereisno upper limit
to the length of a packet chain.

4.2.5 Request Contents

Request contents are partitioned into three signal groups:

1. Opcodeto specify the nature of the request (asread or write)
2. Packet Length and Chaining to control packets

3. Address and Data to further detail aread or write action.
Request contents are validated by the CMDVAL signal.

4251 Opcode

This subset of the request contents is constant for all the operationsin a packet.

« Command: The two-bit field CMD can specify no operation, read operation, write operation, or read
locked.

* Flags (address algorithm indicators): When none of the flags is asserted, there is no predefined
relationship among the addresses of subsequent operations in a packet or in a packet chain. Three flags,
though, can indicate a predefined al gorithm among subsequent addresses. This allows targets to compute
addresses before they actually arrive on the bus and thus, in some cases, to gain valuable clock tidks. The

Copyright 2000 - 2001 by the VSl Alliance, Inc. 25
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

address, even when obeying a predefined algorithm, is sent with each operation, alowing cost
effective targets to function without address prediction. The three flags are:

1. Contiguous: Indicates that the addresses within a packet areincreasing in a contiguous manner.
2. Wrap (only valid with contiguous addressing): The increase is done modul o the packet length,

and only when packet length is apower of two. This alows for a cache line refill starting with the
missing word rather than with the word at the lowest address.

3. Constant (no change in address): This mode is useful for the case when a series of FIFOs have
contiguous addresses and a packet or a chain is used to empty or fill just one of these FIFOs
(In the AV CI, more such flags are defined.)

4.25.2 Packet Length and Chaining

This subset of the request contents is constant for all the operations in a packet, apart from the indicator “End of
Packet,” which isonly asserted in the last cell of a packet. Contents include:

Packet Length: Thelength of the packet expressed in bytes.

End of Packet: This bit is asserted in the last operation of a packet. The bit could be considered
redundant in th presence of a defined packet length, but it allows atarget to be designed without its own
explicit remaining length counter. Furthermore, end-of-packet is a necessity with an undefined packet
length.

Chain Length: Presents the amount of packets yet to come in a packet chain. Chain length = 0 thus
represents a one-packet chain. Thereis no need for an “eoc” (end of chain).

Chain Fixed : Thisindicates that the opcode fields (see Section 4.2.5.1) and packet length are equal for
all packets of the chain. Otherwise each packet of achain hasits own such fields and flags.

4.2.5.3 Address and Data
This subset of the request contentsisissued anew for each cell within apacket. The contentsinclude thefollowing
fields:

Address: The address field designates the target if several targets can be reached through the VCI, and

the detailed location within the target to which the request is made.

o Thisstandard does not prescribe how target addresses are allocated to address space. For example,
four FIFOs may be assigned consecutive word addresses, while memories may occupy Megabytes.

o Theaddressisupdated for every operation in a packet even if the address algorithm is specified by
means of the flags.

o Theaddressis specified as the lowest byte address of the concerned data.

Byte enable The main role of byte enable isin write operations. Each asserted hit in thisfield designates
a byte in the cell to be actually written into the target. Each non-asserted bit marks a byte not to be
overwritten. | n read operations, byte enable is needed in those wrappers or bridges where cell length or
data alignment changes.

There are two separate naming conventions for byte enable, corresponding to a natural endianness:
o BE[3:0] isused for little-endian VCswhere the LSB (Least Significant Byte) islabeled Address 0.
o BE[0:3] isused for big-endian VCswhere the MSB (Most Significant Byte) islabeled Address 0.

Write data: The write data field is only used in write operations. The data lines carry the bytes to be
copied to the target. Data are “naturally aligned,” so the byte corresponding with byte address modulo
cell size=0isat byteline 0 on the bus.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 26
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.2.6 Response Contents

Each request has its response. The response contents are validated with the RSPVAL signal. Contents include:
Response Error: This field indicates whether the request could be handled correctly.

Read Data: The datareturned as aresult of aread request. Thisfield has no meaning in write operations.
Data are “naturally aligned,” so the byte corresponding with byte address modulo cell size= 0 isat byte
line O on the bus.

4.3 BVCI Signal Descriptions

This section contains a detailed technical description of the BV CI. Descriptions of the signals used between the
initiator and target over the BV CI are provided in the following sections.

4.3.1 Signal Type Definition

Table 3 specifies the signal types that are used in Section 4.3. They are defined from the point of view of the
devices rather than the wrapper or arbiter.

Table 3: Signal Type Definition

Type Description
1A Input to all devices
IT Generated by the Initiator and sampled by the Target
TI Generated by the Target and sampled by the Initiator

MA Mandatory signal for both Initiator and Target

MI Mandatory signal for the Initiator but an optional signal for the Target

MC Mandatory signal for supporting chaining function for both Initiator and Target

Signalsthat do not have one of the mandatory descriptors|isted above are optional and do not support theindicated
function.

4.3.2 Signal Parameters
Table 4 specifies parameters that are used in Section 4.3.

Table 4: Signal Parameters

Parameter Description

Number of bytesin acell (must be a power of 2)

Number of bitsinthe PLEN field (maximum valueis 9)

Number of bitsinthe ADDR field (maximum value is 64)

Number of bitsin the RERROR extension (maximum valueis 2)

Q| m| 2| XN| @

Number of bitsinthe CLEN field (maximum valueis 9)

Copyright 2000 - 2001 by the VSl Alliance, Inc. 27
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

4.3.3 Signal Directions

Figure 14 diagrams the signal directions between the initiator and the target.

4.3.4 Signal List

CLOCK
RESETN
CMDACK
CMDVAL
ADDRESS
BE
CFIXED
CLEN
CMD
CONTIG
WDATA
EOP
CONST
PLEN
WRAP
RSPACK
RSPVAL
RDATA
REOP
RERROR

Initiator

VSl Alliance (OCB 2 2.0)

Figure 14: Diagram of VCI Signal Directions

CLOCK
RESETN
CMDACK
CMDVAL
ADDRESS
BE
CFIXED
CLEN
CMD
CONTIG
WDATA
EOP
CONST
PLEN
WRAP
RSPACK
RSPVAL
RDATA
REOP
RERROR

Target

All signalsincluded in Table are assumed to be active-high signals unlessindicated otherwise. It isrecommended
that all signal outputs are stable before Early. It can be assumed that all inputs are stable before Late. A detailed
signal description follows the summary table.

Copyright 2000 - 2001 by the VS| Alliance, Inc.

All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

28

VSl Alliance (OCB 2 2.0)

Tableb5: Signal List

Name Type Description
Global Signals
CLOCK 1A CLOCK providesthe timing for all transactions. All signals are sampled on the
Clock MA rising CLOCK edge. All timing parameters are initiated with respect to this edge.
RESETN A Reset is used to bring all devices up on acommon signal. RESETN is an active
Reset MA low signal and must be asserted for a minimum of eight CLOCK cycles. The
rising edge of RESETN is synchronous to the rising edge of CLOCK.
Request Handshake
CMDACK TI Acknowledge is used by the target to indicate to the initiator that a given cell can
Command MI betransferred. Hence, acell istransferred from theinitiator when both CMDVAL
Acknowledge and CMDACK signals are asserted.
CMDVAL IT Validindicatesthat theinitiator wishesto perform acell transfer to thetarget. The
Command MI cell istransferred when both the CMDVAL and CMDACK signals are asserted.
Valid
Request Content
ADDRESYn |IT ADDRESS isthe address of the request generated by the initiator and received by
1:0] MA thetarget. Theaddressupdatesfor every cell transferred within apacket and must
Address remain within the address space of asingle target. The pattern of permissable
addresses are defined by the flags (CONTIG, WRAP, and CONST signals).
ADDRESS containsthelowest byte addressfor thefirst transfer in the packet. For
al cells after the first transfer, ADDRESS is aligned to a cell boundary. The
combination of acell-aligned address and byte enablesis sufficient to perform the
transfer correctly. However, the addition of extrainformation in the first address
may allow performance advantage in some systems. Note that a non cell-aligned
address is endian dependent.
BE IT Byte Enableindicates which bytes of the cell being transferred or requested by the
[b-1:0]0:b-1] MA initiator are enabled.
Byte Enable
CFIXED IT Chain Fixed indicates that the opcode (CMD, CONTIG, WRAP, and CONST)
Chain Fixed MC and PLEN fields will be constant across the chain, and that the address field
behavior is the same among packets within a chain.
CLEN[g-1:0] IT Chain Length indicates the number of packets remaining in achain. The last
Chain Length MC packet transferred in a chain has azero CLEN value. The CLEN value can also
betied off to zero if packet chaining is not required.
CMDJ1:0] IT Command is a 2-bit code defining the operation type being attempted by the
Command MA Initiator to the Target and is encoded as follows:
00b = NOP, no data is actually transferred (optional)
01b = READ, datais requested by theinitiator from the target
10b = WRITE, dataistransferred from theinitiator to thetarget
11b = LOCKED READ, dataisrequested by theinitiator from thetarget with the
added function of locking out access to at |east the particular cell until aWRITE
packet is transferred to the same cell (optional)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

29

VSl Alliance (OCB 2 2.0)

Tableb: Signal List (Continued)

Name Type Description

Request Content (continued)

CONTIG IT CONTIG indicates that the sequence of addresses that will be performed within

Contiguous the packet is contiguous. When CONTIG is asserted, the address is normally
increased by the cell sizein bytes. If a packet does not start or end at a cell
boundary, thefirst or last transfers contain less bytesthan acell. In such cases, the
addressisincreased not by the length of acell but by the amount of bytes actually
transferred in such afirst or last cell.

WDATA[8b- IT WDATA isthe data transferred by the initiator to the target during a WRITE

1:0] MA command. The actual data bits that are enabled during a given cell transfer are

Data defined by the byte enables. The most significant bit is always on the LHS — bit
8b-1. The least significant bit is always on the RHS — hit 0.

EOP IT End Of Packet is asserted on the last cell of a packet, indicating that al cells

End Of Packet | M1 associated with the given packet have been transferred.

CONST IT CONST indicates that the address will remain constant throughout the entire

Constant packet. When CONST isasserted, CONTIG and WRAP are ignored.

PLEN[k-1:0] IT Packet Length indicates the length of the packet in bytes. The valid range for

Packet Length PLEN is1to 2X-1 (1 to 511 given that k is limited to 9). A value of O for PLEN
can be used to indicate that the packet length is undefined (no implied packet
length).

WRAP IT WRAP isused in conjunction with CONTIG to specify how to handle addresses

Wrap that increment past the boundary indicated by PLEN. If WRAP is asserted and
PLEN has only asingle bit set (indicating a power of 2 packet size), the address
will wrap around. Itisillegal to set WRAP otherwise.

Response Handshake

RSPACK IT Response Acknowledgeisused by theinitiator to indicateto the target that agiven

Response MA cell will betransferred. Hence, aresponse cell istransferred from the target when

Acknowledge both RSPVAL and RSPACK signals are asserted.

RSPVAL TI Response valid indicates that the target wishes to perform aresponse cell transfer

Response Valid | MA to theinitiator. The response cell istransferred when both the RSPVAL and
RSPACK signals are asserted.

Response Content

RDATA [8b- TI Response data is the data that is returned by the target to the initiator with read

1:0] MA operations.

Response Data

REOP TI Response End of Packet is asserted on the last cell of the response packet,

ResponseEnd | MA indicating that all cells associated with the given response packet have been

Of Packet transferred.

RERROR TI Response Error is asserted by the target during a response packet to indicate that

Response Error an error has occurred during the current packet.

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

30

VSl Alliance (OCB 2 2.0)

435 System-Level Signals

4.3.5.1 Clock

Signal Name: Clock

Signal Abbreviation: CLOCK

Polarity: Active at Positive edge
Driven By: System

Received By: VCl initiator, VCI target

This signal provides the timing for the VCI and is an input to both the initiator and target that are connected via
the BVCI. All initiator and target output signal s are asserted/de-asserted relative to the rising edge of CLOCK and
al initiator and target inputs are sampled relative to this edge.

4352 Reset

Signal Name; Reset

Signal Abbreviation: RESETN

Polarity: Asserted Negative

Driven By: System

Received By: VCl initiator. VCI target

Timing: Asserted > 8 or RESETLN clock cycles

This signal is used during power-on reset, and is used to bring the BV CI to an idle or quiescent state. Thisidle
state is defined as the BV Cl state in which:

1. The[CMDI|RSP]VAL signals are de-asserted.

2. The[CMD|RSP]ACK signals are de-asserted.

The system must guarantee that RESETN is asserted for at least eight cycles of CLOCK (unless the RESETLEN
parameter is set).

4.3.6 Request Signals

4.3.6.1 Command Valid

Signal Name: CommandValid

Signal Abbreviation: CMDVAL

Polarity: Asserted Positive

Driven By: VCI initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK == 1 and next rising edge
of CLOCK.

The CMDVAL signal isdriven by aVCl initiator to indicate that there is avalid request cell on the BVCI. All of
the initiator request signals are qualified by CMDVAL. The initiator keeps CMDVAL asserted, and all of its
control signals valid and stable, until it receives the CMDACK signal from the target. The initiator should not
assert CMDVAL unless the current transaction is intended for the target. Thus, the initiator may need to perform
address decoding on its on-chip bus side to generate CMDVAL for the target, thereby accomplishing device
selection.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 31
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.3.6.2 Command Acknowledge

Signal Name: CommandA cknowledge

Signal Abbreviation: CMDACK

Polarity: Asserted Positive

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted and negated at rising edge of CLOCK

The CMDACK signal is asserted by the target to indicate the completion of a request between the initiator and
target. In the case of write operations, this means that the target has accepted the datathat i s on the write data bus,
or will do so at the end of the current clock cycle. In the case of read operations, the assertion of the CMDACK
by the target indicates that the target has accepted the request and has started processing it. The request completes
as soon as the rising edge of CLOCK samples CMDACK. The target may de-assert the CMDACK by the next
rising edge of CLOCK unless anew command has been initiated by theinitiator, or default acknowledge is used.
Similarly, the initiator de-asserts CMDVAL by the next rising edge of CLOCK unless it is presenting a new
request.

4.3.6.3 Command

Signal Name: Command

Signal Abbreviation: CMD

Polarity: N/A

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK == 1 at rising edge of
CLOCK

Thissignal is atwo-bit command field asserted by the initiator, and indicates the nature of the requested transfer.
It is encoded as follows:
e 00b=NOP, nodatais actually transferred (optional)
* 0lb=READ, datais requested by the initiator from the target
* 10b=WRITE, datais transferred from the initiator to the target
* 11b = LOCKED READ, data is requested by the initiator from the target with the added function of
locking out access to at least the particular cell until a write operation is performed to the same cell-
address. In contiguous address mode, all packed addresses are locked. In other address modes, only the
first accessed cell addressis |ocked.

This signal must be valid any time that the CMDVAL signal is asserted.

4.3.6.4 End-of-Packet

Signal Name: End-of -Packet

Signal Abbreviation: EOP

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK.

The EOP signal is de-asserted by the initiator to indicate that the transfer being performed will be followed with
atransfer by the initiator to the next higher cell address. This signal is used by the target device to pre-calculate
the address in order to improve the data transfer performance. The packet transfer is completed once a cell is
transferred with the EOP signal asserted.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 32
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.3.6.5 Chain Fixed

Signal Name: ChainFixed

Signal Abbreviation: CFIXED

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

Chain Fixed indicates that the opcode (CMD, CONTIG, WRAP, and CONST) and PLEN fields will be constant
across the chain and the address field behavior will be identical among packets within a chain.

4.3.6.6 Chain Length

Signal Name: ChainLength

Signal Abbreviation: CLEN

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

Chain Length indicates the number of packets remaining in achain. The last packet transferred in a chain will
have azero CLEN value. The CLEN value can also be tied off to zero if packet chaining is not required.

4.3.6.7 Contiguous

Signal Name: Contiguous

Signal Abbreviation: CONTIG

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

Contiguous-signal indicates that the sequence of addresses that will be accessed within the packet is contiguous.
When CONTIG is asserted, the address is normally increased by the cell size in bytes. If a packet does not start
or end at a cell boundary, the first or last transfer contains less bytes than a cell. In such cases, the address is
increased not by the length of a cell but by the amount of bytes actually transferred in the first or the last cell. In
themiddle part of the packet, the address always increases by cell sizewhen CONTIG is active.

4.3.6.8 Packet Length

Signal Name; PacketL ength

Signal Abbreviation: PLEN

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

Packet Length indicates the length of the packet in bytes. The valid range for PLEN is 1 to 2k1 (1to 511, given
that k islimited to 9). A value of 0 for PLEN can be used to indicate that the packet length is undefined (thereis
no implied packet length). In this case, the packet ends as a cell is transferred with EOP active. PLEN is held
constant over the packet. Thus, PLEN does not indicate “remaining length.”

Copyright 2000 - 2001 by the VSI Alliance, Inc. 33
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

PLEN does not indicate the actua transferred bytes (the number of enable bytes in a packet). The
PLEN=CELLSIZE* (transferred cells-2)+index of first active BE bit in the first cell + index of the last active BE
bit in the last cell. For example, if CELLSIZE=4, PLEN=12, cells transferred=4. If BE=x100 in the first cell, it
must be 001x in the last cell. Thefirst and last active bytes indicate the start and end of the packet. If BE=xx10in
thefirst cell, it must be xxx1 in the last cell, and so on. The middie cells of the packet can have any combination
of the BE. This behavior facilitates connecting V Cls with different CELL SIZE together, and not breaking packet
addressing.

4.3.6.9 Constant

Signal Name; Constant

Signal Abbreviation: CONST

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

Constant indicates that the address will remain constant throughout the entire packet. When CONST is asserted,
CONTIG and WRAP areignored.

4.3.6.10 Wrap
Signal Name; Wrap
Signal Abbreviation: WRAP
Polarity: Asserted Positive
Driven By: VCl initiator
Received By: VCI target
Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of

CLOCK

Wrap is used in conjunction with CONTIG to indicate how addresses that increment past the boundary indicated
by PLEN are handled. If WRAP is asserted and PLEN has only a single bit set (indicating a power of 2 packet
size), the address will wraparound. If the packet length is not power of two or if CONTIG isnot active, the WRAP
signal is “don’t care.” The wrap address equals (ADDR and not [PLEN-1]) + PLEN. The next address after
wrapping equals (ADDRESS AND NOT [PLEN-1]).

4.3.6.11 Address

Signal Name: Address

Signal Abbreviation: ADDRESS[n-1:0]

Polarity: N/A

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

ADDRESS isthe address of the request generated by the initiator and received by the target. The address updates
for every cell transferred within a packet and must remain within the address space of a single target. The pattern
of addresses that are permissible is defined by the operation type (CONTIG, WRAP, and CONST signals).
ADDRESS contains the lowest byte address for the first transfer in the packet. For all cells after the first transfer,
ADDRESS is aligned to a cell boundary. The combination of a cell-aligned address and byte enables is sufficient
to perform the transfer correctly. However, the addition of extra information in the first address may allow
performance advantage in some systems. Note that a non cell-aligned address is endian dependent.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 34
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.3.6.12 Byte Enable

Signal Name: Byte Enable

Signal Abbreviation: BE[b-1:0/0:b-1]

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

BE is a b-bit field that indicates which bytes of the cell being transferred are enabled. The b equals to total data
width of the BV CI/8. These signals must be valid any time that the CMDVAL signal isasserted. In writetransfers,
the disabled bytes are not overwritten. In read transfers, the target may or may not present the disabled bytesin
the RDATA bus. They areignored by theinitiator. The direction of the BE-signal range numbering depends upon
the endianness. See also PLEN.

4.3.6.13 Write Data

Signal Name; Write Data

Signal Abbreviation: WDATA[8b-1:0]

Polarity: N/A

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK until CMDACK = 1 at rising edge of
CLOCK

The write data lines are driven by the VCI initiator, and are used to transfer write data from an initiator to atarget
device. Write data consists of b logical byte lanes, based upon the capabilities of the target, and is defined and
fixed at the time of component instantiation. Allowed values of b are powers of two. Bit 8*b-1 is the most
significant bit of the most significant byte, and bit 0 is the least significant bit of the least significant byte. The
write data lines must contain valid write data while the CMDVAL signal is asserted and the CMD isindicating a
write transfer.

For V Cs supporting a data size that is not an 8-bit increment, the next larger supported bus size will be used with
the unused bits tied to logic zero. For example, a 12-bit device must use a 16-bit wide VCI with the four most
significant bitstied to logic zero.

4.3.7 Response Signals

4.3.7.1 Response Valid

Signal Name; ResponseValid

Signal Abbreviation: RSPVAL

Polarity: Asserted Positive

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted at rising edge of CLOCK until RSPACK = 1 at rising edge of
CLOCK

The RSPVAL signal isdriven by a VCI target to indicate that there is a valid response on the BV CI. All of the
target response signals are qualified by RSPVAL. Thetarget keeps RSPVAL asserted, and all of its control signals
valid and stable, until it receives the RSPACK signal from the target.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 35
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.3.7.2 Response Acknowledge

Signal Name: ResponseA cknowledge

Signal Abbreviation: RSPACK

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted and negated at rising edge of CLOCK

The RSPACK signal isasserted by the target to indicate the completion of aresponsetransfer between theinitiator
and target. This meansthat the initiator has accepted the response data, which is on the target’ s response signals,
or will do so at the end of the current clock cycle. The response completes as soon as the rising edge of CLOCK
samples RSPACK. The initiator may de-assert the RSPACK by the next rising edge of CLOCK unless a hew
response has been initiated by the target, or default acknowledge is used.

4.3.7.3 Read Data

Signal Name: Read Data

Signal Abbreviation: RDATA[8b-1: 0]

Polarity: N/A

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted at rising edge of CLOCK until RSPACK = 1 at rising edge of
CLOCK

The read data lines are driven by the VCI initiator, and are used to transfer read data from atarget to an initiator
device. Read dataconsists of b logical bytelanes, based upon the capabilities of the target, and is defined and fixed
at the time of component instantiation. Allowed values of b are powers of 2 bytes. Bit 8*b-1isthe most significant
bit of the most significant byte, and bit O isthe least significant bit of the least significant byte. The read datalines
must contain valid read data while the RSPVAL signal is asserted and the response is to a read request.

For V Cs supporting a data size that is not an 8-bit increment, the next larger supported bus size will be used with
the unused bits tied to logic zero. For example, a 12-bit device must use a 16-bit wide BV CI with the four most
significant bitstied to logic zero.

4.3.7.4 Response End-of-Packet

Signal Name: ResponseEndofPacket

Signal Abbreviation: REOP

Polarity: Asserted Positive

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted at rising edge of CLOCK until RSPACK = 1 at rising edge of
CLOCK

Response End-of-Packet is asserted on the last cell of the response packet, indicating that all cells associated with
the given response packet have been transferred.

4.3.7.5 Response Error

Signal Name: Response Error

Signal Abbreviation: RERRORJ[E:Q]

Polarity: Positive

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted at rising edge of CLOCK when RSPVAL =1, until RSPACK =1 at

rising edge of CLOCK
Error signa isvalid only when RSPVAL=1, with the following meaning:

Copyright 2000 - 2001 by the VSI Alliance, Inc. 36
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

For ERRLEN = 0 (E=0)
RERROR=0: Normal (no error)
RERROR=1: General data error. The entire packet is considered bad.

For ERRLEN =1 (E=1)

RERROR = 00: Normal (no error)

RERROR = 01: General data error. The entire packet is considered bad.
RERROR = 10: Reserved

RERROR = 11: Abort Disconnect

For ERRLEN = 2 (E=2)

RERROR =000: Normal (no error)

RERROR = xx0: Reserved

RERROR = 001: General data error. The entire packet is considered bad.
RERROR = 011: Reserved

RERROR = 101: Bad data (retry)

RERROR = 111: Abort Disconnect

After receiving an error, the initiator may or may not continue with the current packet. If it chooses to end the
packet prematurely, it can do so by asserting EOP regardless of the PLEN value. After this, it can choose not to
try atransfer anymore (to Abort), or to Retry part or all of the transfer. For any error, the target must process the
subsequent pending cells and packets with the normal protocol. That is, it must continue sending responses until
it has processed the EOP, with or without further errors signaled. In general, the RERROR is more informative
than prescriptive, and the target may not assume any specia behavior from the initiator. The initiator is
encouraged to act responsibly when it meets an error.

It is strongly recommended that all BV CI components support at least one bit error. It is strongly recommended
that the BV CI target signal an error when it receives a request it does not support. Obviously, VCI provides a
possihility to get error records through normal Read-requests from the target, but this belongs to domain of a
particular VC i mplementation.

4.4 BVCI Protocol

The V CI protocol is described as a set of three stacked layers: the transaction layer, the packet layer, and the cell
layer.

4.4.1 Transaction Layer

The transaction layer is above the concerns of hardware implementation. It defines the system as a series of
communicating objects that can be either hardware or software modules. The information exchanged between
initiator and target nodesisin the form of arequest-response pair, asillustrated in Figure 15.

I nitiator Target
request
eq >

VCI

response

Figure 15: System Transaction Layer View of Information Transfer over the VCI

Copyright 2000 - 2001 by the VSl Alliance, Inc. 37
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.4.1.1 Transaction

A pair of request and response transfersis called atransaction. Typically, the basic unit of information exchanged
is some form of data structure. As the communication is decomposed to lower layers of abstractions, the basic
transfer unit becomes smaller.

4.4.2 Packet Layer

The packet layer adds generic hardware constraints to the system model. In this layer, VCI is a bus-independent
interface that supports point-to-point physically address-mapped split transactions between initiators and targets
in unit time. There is rot yet a commitment to a particular interface width. In thislayer, the request and response
information to be transferred across the interface is split into more manageable chunks, on the basis of generic
hardware constraints. Thisisillustrated in Figure 16.

Initiator Target
Request packets

—fVCI packet |—|VCI packet |—|VCI packet |—>

VCI

<—|VCI packet I—}VCI packet |—|VCI packet |—

Response packets

Figure 16: Packet Layer View of Information Transfer over the VCI

4.4.2.1 Operation

A transaction is called aVCI operation if the information is exchanged using atomic request and response
transfers across the interface. The information exchanged during an operation is in the form of a VCI packet, a
packet layer transfer unit defined in the following section. In a packet layer, a VCI transaction decomposes into
one or more operations.

4.42.2 Packet

A packet is the basic unit of information that can be exchanged over the VCI in an atomic manner. The point-to-
point connection between initiator and target is maintained throughout the transfer of a packet.

The request and response transfer units of a VVClI transaction are decomposed into one or more request-response
packet pairs. Multiple packets can be combined to form larger, non-atomic transfer units called packet chains, as
explained in the next section. A VCI operation is a single request-response packet pair. For each request packet
transferred from initiator to target, there is one corresponding response packet transferred from target to initiator.
The targets return response packets in the same order as request packets are issued.

The content of a packet depends on whether it is a request or response packet and the type of operation being
carried out, such as reador write. Thedatafield of request packetsisrelevant only for write operations. The field,

RDATA, inresponse packets contains valid values only for read and locked_read operations. The request packet
header containsinformation on packet chaining. More details on other packet fields appear i n subsequent sections
of this document.

Packet length is the number of bytes transferred during a read, write, or locked_read operation. This field is
irrelevant for NOP operations. A zero value specified for PLEN in read, write, or locked_read operations indicates
that the length of the packet is undefined. Long packets can result in reduced arbitration overhead and some
optimization in certain areas, like read pre-fetching and SDRAM access. This can improve the data transfer rate
for that particular thread. However, very long packets transferred over a shared interconnect system lock out all
other agents, causing degradation of the system performance. Hence, it is highly recommended to use short
packets to optimize the overall system performance and to use the packet chaining mechanism, described in the
next section, to create long, but non-atomic, transfers.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 38
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.4.2.3 Packet Chain

The packet chainmechanism allowsaV Cl initiator to describe linkage between rel ated packetsto the system. The
system can combine chained packets into larger, more efficient, higher performance transfers that satisfy the
constraints of the system application. Packet chains produce the same transfer efficiency that long packets provide
without requiring the entire transfer to be atomic.

Two fields in the request packet header, CLEN and CFIXED, specify the packet chaining information. CLEN
describes the number of packets remaining in the chain (not including the current packet). Thisfield is normally
decremented with every transmitted packet.

The flag, CFIXED, provides information about the linkage between the header fields among the packets in a
packet chain. If set, CFIXED guarantees that the opcode and packet length fields are constant across the chain.

The packet chain mechanism allows the VCI initiators to minimize their packet length to that which is required
for proper operation (that is, functionality). This mechanism concurrently provides the interconnect logic and the
target with enough information for optimizing the chained transfers to meet application performance and
efficiency requirements.

443 Cell Layer

The cell layer adds more hardware details such as interface width, handshake scheme, wiring constraints, and a
clock to the system model. Thislayer isnot concerned about shared interconnects and arbitration for such services.
In the cell layer, VCI is viewed as a bus-independent, point-to-point interface that supports physically address-
mapped split transactions between initiators and targets, using a cycle-based handshake protocol. Introduction of
interface width information enables decomposing of packets (the basic transfer unit defined in the packet layer)
into cells that are handshaken under a cycle-based protocol across the definitive sized interface.

4431 Cell

A cell is the basic unit of information, transferred on rising CLOCK edges under the VAL-ACK handshake
protocol, defined by the cell layer. Multiple cells constitute a packet. Both request and response packets are
transferred as series of cells on the VCI. The number of cellsin a packet depends on the packet length and the
interface width.

The structure of acell isvery similar to that of a packet, except for the decomposing of WDATA and byte enable
fields and theintroduction of end-of-packet fields. The opcodefields, chaining information, and PLEN in arequest
cell are the same as the corresponding request packet fields.

The request cell structure and response cell structure are detailed in Table 6 and Table 7.

Table 6: Request Cell Structure

Comment Field Description

Packet chain CLEN Number of remaining packets in the chain

information CFIXED Indicatesif opcode and PLEN are the same acrossall packetsinthechain
ADDR Address of each cell being transferred
PLEN Packet length: Total number of enabled and disabled data bytes

transferred in the operation
Opcode CMD Command: read, write, nop, or locked read
Flags CONTIG Contiguous address mode
WRAP Wrapped address mode
CONST Constant address mode
BE Byte Enable: indicates which bytes are involved in the operation
Copyright 2000 - 2001 by the VS| Alliance, Inc. 39

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 6: Request Cell Structure (Continued)

Comment Field Description
Optional field WDATA Datain write requests
EOP Indicatesif the cell isthe last one in the request packet

Table 7: Response Cell Structure

Comment Field Description

RERROR Error status for the cell
Optiona field RDATA Datain read, locked_read responses

REOP Indicatesif the cell isthe last one in the response packet

4.43.2 VAL-ACK Handshake

The VAL-ACK handshake provides unambiguous synchronization of initiator and target modules for transferring
cells over the interface. It is a simple handshake protocol based on two control signals. Two separate sets of
handshake signals are used in the V ClI interface: one for transferring request cells from initiator to target, and the
other for transferring response cells from target to initiator. The transfer of request and response cells over the
interface are completely de-coupled, concurrent events. The handshake fundamentals explained below apply to
both request and response channels. Generic names, VAL and ACK, are used in the discussion for the control
signals. These names represent CMDVAL and CMDACK signals of the request channel and RSPVAL and
RSPACK signals of the response channel.

Cell transfer on the channel is solely controlled by the following two signals, as shown in Table 8.

Table 8: Handshake Signals

Signal Description
VAL Driven by aninitiator module to indicate that acell was placed on the interface and isready
for transfer
ACK Driven by atarget module to indicate that it has received the cell, if any was present as
announced by VAL

Table 9 summarizes different encoding for the VAL-ACK signals and the corresponding channel states.

Table 9: VAL-ACK Encoding and Channel States

VAL ACK State Description
0 0 IDLE The channel isin idle state.
1 0 VALID Validisasserted. Waiting for Acknowledge.
0 1 DEFAULT_ACK Ready to Grant
1 1 SYNC Handshake synchronization
Copyright 2000 - 2001 by the VS| Alliance, Inc. 40

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

The channel isin IDLE state when both VAL and ACK are de-asserted. The initiator module unconditionally
asserts VAL when the cell information is placed on the interface. The target module may delay the assertion of
ACK if it isnot ready to accept the cell. The channel is said to be in REQUEST state if ACK is not asserted for a
VAL on the rising edge of the CLOCK. The channel state transitions to SYNC when both VAL and ACK are
asserted. The handshake synchronization and cell transfer occur on each CLOCK edge when the VCl isin SYNC
state. (See Figure 17.)

coe [LU L LU
VAL , \ / \

CELL EE Y cell2) cell3)}

ACK / \ / \

Figure 17: VAL-ACK Handshake for Single-Cell Transfer

While transferring a multi-cell packet, either module can insert wait cycles by de-asserting VAL or ACK. The
receiving module can assert ACK, evenwhen VAL isnot present, to indicate that it isready to ACK the next VAL.
The corresponding channel state is DEFAULT_ACK. In this case, cell transfer will occur on the first CLOCK
edge on which VAL is asserted.

Once the initiator module asserts VAL, it cannot change that signal until the requested cell is transferred,
regardless of the state of ACK. Similarly, once the receiving module asserts ACK, it should not de-assert that
signal until acell istransferred. Generally, neither module shall change its mind once it has committed to the cell
transfer.

However, de-committing the ACK signal may be necessary in certain scenarios, such asadefault ACK from abus
wrapper module to an initiator, where this bus is “parked.” Such deviations from the recommended interface
behavior should be clearly documented when V Cs are implemented. Table 10 summarizes all the permitted state
transitions.

Table 10: Permitted State Transactions

From To Validity Description
IDLE IDLE Valid Continuesinidle
IDLE VAL Valid New Valid asserted
IDLE DEFAULT_ACK Valid Default Acknowledge asserted
IDLE SYNC Valid New Valid acknowledged on same CLOCK
VAL IDLE Invalid Valid de-committing not allowed
VAL VALID Valid Valid maintained
VAL DEFAULT_ACK Invalid Valid de-committing not allowed
VAL SYNC Valid Valid Acknowledged
DEFAULT_ACK IDLE Invalid Acknowledge de-committing not allowed
DEFAULT_ACK VAL Invalid Acknowledge de-committing not allowed
DEFAULT_ACK DEFAULT_ACK Valid Acknowledge maintained
Copyright 2000 - 2001 by the VSl Alliance, Inc. 41

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 10: Permitted State Transactions (Continued)

From To Validity Description
DEFAULT_ACK SYNC Valid Valid Acknowledged
SYNC IDLE Valid Back toidle
SYNC VAL Valid New Valid asserted
SYNC DEFAULT_ACK Valid Default Acknowledge asserted
SYNC SYNC Valid Consecutive Valid-Acknowledge

4.4.3.3 VAL Time and ACK Time

VAL_time and ACK_time are introduced as a way of classifying the handshakes. The definitions are:
* VAL_time = number of cycles where VAL is de-asserted between cell transfers.
* ACK_time = number of cycleswhere VAL is asserted before ACK is asserted.

Figures 18 through 20 illustrate different VAL-ACK handshakes.

CLOCK l \ ’ \ ' \ ’ \ J \ J \ J
VAL / \

CELL Y cellr Y cell2 Y cellz) cella)

ACK J _

Figure 18: VAL-ACK Handshakewith VAL Time=0,ACK Time=0

SIS A Y [V L U L WY R Y I Y
VAL / \

CELL X cen X cez X

ACK / \ _J -

Figure 19: VAL-ACK Handshakewith VAL Time=0,ACK Time=1

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

cock [L L L UL L
CELL [an X X ez X
ACK / \]/ _

Figure 20: VAL-ACK Handshakewith VAL Time=1, ACK Time=1

4.4.4 BVCI Operations

The basic transfer mechanism in BV CI is packet transfer. Every operation on the VCI consists of arequest packet
transfer from the initiator to the target and a response packet in return. Both initiator and target modules are
responsible for transferring the VCI request and response packets across the interface in an atomic manner. A
packet is sent as a series of cells with the EOP (end of packet) field in the last cell set to value 1. Each cell is
individually handshaken across the interface under the VAL-ACK handshake. Either the initiator or the target can
insert wait cycles between cell transfers by de-asserting VAL or ACK. The order of packets and the number and
order of cells within packets should be maintained the same between request and response transfers.

The transfer of request and response cells over the interface is a completely de-coupled concurrent event. The
signals used for encoding cell information, handshake signals, and the timing of the request and response transfers
are totally separate.

All VCI signals are sampled on the rising edge of the CLOCK. The handshake signals CMDVAL, CMDACK,
RSPVAL, and RSPACK are sampled on every rising CLOCK edge. The rest of those signals that encode the
reguest and response cells are sampled on rising CLOCK edges, qualified by the corresponding VAL signal. The
timing diagrams in this section show the relationship of relevant signalsinvolved inillustrated operations.

4.4.4.1 Transfer Requests

Thefollowing isacompletelist of operation types that may beinitiated acrossthe BV Cl. Seethe VCI Parameters
section of this document for definition of the parameters indicated in bold text type.

* Readacell with any or all of bytes active.

* Read and lock a cell with any or all of bytes active.

* Wrkite a cell withany or all of bytes active (and release ock).

* Read a packet of plen bytes from random addresses, with any combination of bytes enabled in each cell.

* Read a packet of plen bytes from random addresses, with any combination of bytes enabled in each cell,
and lock the first accessed address.

* Wkite a packet of plen bytes to random addresses, with any combination of bytes enabled in each cell,
and release the lock of the first accessed address.

* Read a packet of plen bytes from contiguous addresses, with any combination of bytes enabled in each
cell.

* Read a packet of plen bytes from contiguous addresses, with any combination of bytes enabled in each
cell, and lock the accessed addresses.

* Wkite a packet of plen bytesto contiguous addresses, with any combination of bytes enabled in each cell,
and release locks.

* Read a packet of plen bytes from contiguous addresses, wrapping the address at boundary indicated by
PLEN, with any combination of bytes enabled in each cell. Packet length must be a power of 2.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 43
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

* Read a packet of plen bytes from contiguous addresses, wrapping the address at boundary indicated by
PLEN, with any combination of bytes enabled in each cell, and lock the accessed addresses. Packet
length must be a power of 2.

* Wkite a packet of plen bytes to contiguous addresses, wrapping the address at boundary indicated by
PLEN, with any combination of bytes enabled in each cell, and release locks. Packet length must be a
power of 2.

* Read a packet of plen bytes from one address, with any combination of bytes enabled in each cell.

* Read apacket of plen bytes from one address, with any combination of bytes enabled in each cell, and
lock the address.

* Wkite a packet of plen bytes to one address, with any combination of bytes enabled in each cell, and
release lock.

* When Packet Chaining is supported (CHAINING = True):

o Issue a chain of packets (chain any of the above transactions), so that all the other packet header
fields are identical over the chain but the address and chain length counter (chain fixed).

o Issueachain of packets (chain any of the above transactions), so that all packets may have different
header fields (chain not fixed).

4.4.4.2 Transfer Responses

The following is alist of responses that are allowable by atarget across the BVCl.
» Read of cell/packet successful, return read data.
* Wite of cell/packet successful.
» Read packet general error, the entire packet bad, return datainvalid.
» Wkite packet general error, the entire packet bad.
* Read bad data error, suggestion to retry transfer of packet or cell, return datainvalid.
» Wkite bad data error, suggestion to retry transfer of packet or cell.
» Read/Write Abort disconnect, suggestion for not to try the transfer again.

445 Read Operation

Figure 21 illustrates a 32-byte read operation on a 32-hit wide VCI. The operation starts with the initiator placing
the first cell of arequest packet on the interface and asserting CMDVAL on CLOCK 2. The cell information is
encoded in the signals: CMD, CONTIG, WRAP, CONST, PLEN, EOP, ADDRESS, and BE. The fields on
chaining information, CLEN and CFIXED, are both set to value O for this operation and are not shown in the
diagram.

Asshown in Figure 21.

e The CMD and addressing mode flags, CONTIG, WRAP, and CONST, specify that the packet is part of
aread operation with contiguous cell addresses.

» Thefield PLEN indicates that the packet length is 32 bytes.

* The address field contains the address of the target and the byte address of the location from where the
datais requested.

e BE indicates which byte lanes are involved in the first cell transfer.

» EOPisset to 0to indicate that the current cell is not the last one in the packet.

The earliest the cell transfer can complete is in CLOCK period 2 itself, if the signal CMDACK is asserted
combinatorialy or if the channel isin default acknowledge state.

The initiator module updates the ADDR and BE signals to reflect the address and byte enable information for the
second cell of the packet being transferred. Note that the address(n-1:m) field does not change. (It isillegal to
address more than one target within the same packet.) The signals: CMD, CONTIG, WRAP, CONST, and PLEN
(also CLEN and CFIXED, which are not shown) are common to all the cells in the request packet.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 44
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

cLock 1 2 3 4 5 6 7 8 9

=
o
[y
[N

CMDVAL

CMDACK

CMD read

CONTIG

WRAP

CONSTANT

IRRINTIRD

PLEN(K:0) 32

EOP

T

ADDRESS (N-1:M) targetl

ADDRESS (M-1:0) addrlX aderX addrSX addr4X addrSX addr6X addr?X addr8X

><><></|

& x
RSPVAL / o
RSPACK
RERROR ~ \vaid vaid vaid |vaid vaid vaid vaid vaid [
RDATA \ data1) data2) data3) datad) dates | datas) data7) datas)}

Figure 21: 32-byte Read Operation on a 32-bit VCI

All eight cells in the request packet are transferred in eight CLOCK cycles with CMDVAL and CMDACK
asserted corresponding to VAL time=0and ACK time= 0. The CMDVAL for thelast cell is asserted at CLOCK
period 9, and the cell transfer completes on the same cycle. Note that the initiator asserted the signal EOP at
CLOCK 9 to indicate that the cell being transferred is the last one in the packet.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 45
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

In the response channel, the initiator continuously asserts the signal, RSPACK, indicating its readiness to accept
the response cell with ACK time = 0. Thisis adefault acknowledge condition, asthe CMDACK is asserted when
CMDVAL isnot present. All eight response cells are transferred ineight CLOCK cycles, as both VAL time and
ACK time are 0. Thefirst cell istransferred in CLOCK 3 when the Target module asserts RSPVAL. The target
continues to assert RSPVAL until CLOCK 10, transferring one cell on every CLOCK edge. At CLOCK 10, the
target also indicates to the initiator through REOP that the current cell isthelast one in the response packet. Each
response cell contains the read data (on RDATA) and the error flag (on RERROR).

4.4.6 Write Operation
Figure 22 illustrates a 32-byte write operation on a 32-bit VCI. A write operation is similar to a read operation
except that:

* Theinitiator provides the write data on signal WDATA as part of each request cell.

» Thefield RDATA isnot significant.
The operation starts with the initiator placing the first cell of a request packet on the interface and asserting
CMDVAL on CLOCK 2. The cell information is encoded in the signals: CMD, CONTIG, WRAP, CONST,
PLEN, EOP, ADDRESS, BE, and WDATA.
As shown in Figure 22:

» Thesignal, CMD, indicates that the packet is part of awrite operation.

* The addressing mode flags, CONTIG, WRAP, and CONST, specify that the cell addresses are
contiguous.

* BE indicates which byte lanes are valid in the write data.
Theinitiator module updates the ADDRESS, BE, and WDATA signals upon every cell transfer to reflect the byte

address, enable information, and the data, until al four cellsin the packet are transferred. Note that the addressis
updated for every cell, even though the opcode field indicates that the cell addresses are contiguous.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 46
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

CLOCK 1_/2_/3_/4_/5_/6_/7_/8_/9_/10_/11_/
CMDVAL / \
CMDACK / \

CMD X write X

CONTIG / \
WRAP \

—
constant 1\ [
A
[\
X

PLEN(K:0) X 32

EOP \

ADDRESS (N-1:M) X targetl
ADDRESS (M-1:0) Y addr1) addr2 addr3 addr4) addr5) addr6 | addr7) addrg)
DATA | data1) data2} data3) datad) datas | data6 | data7 | datas X
BE 1111 X

RSPVAL

|-

RSPACK
REOP

[\

valid | vaid |valid |valid |vaid |valid valid | vaid |

RERROR

HHLF

Figure 22: 32-byte Write Operation on a 32-bit VCI

Copyright 2000 - 2001 by the VSl Alliance, Inc. 47
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

All eight cells in the request packet are transferred in eight CLOCK cycles with CMDVAL and CMDACK
asserted corresponding to VAL time = 0 and ACK time = 0. The response cells are also transferred in eight
CLOCK cycles. The only information contained in write response cellsis the error flag (on RERROR).

4.4.7 Other Operations

Two other operation types supported on VCI are NOP and Locked Read. The NOP operation is similar to aread
or write operation, except that the CMD field of the request packet contains value “00” (NOP), and there is no
data transferred along with request and response cells.

The locked read operation is similar to aread operation. The only difference isin the CMD signal encoding. The
target module or g/stem locks out the memory locations addressed by the locked read request until another
operation is issued to the same locations by the same initiator. For more information on the exact behavior, see
Section 4.4.4, “BVCI Operations.”

Packet Chain Transfer

Figure 23 illustrates a read transaction on the VCI composed of two operations grouped through the packet
chaining mechanism. The operations are similar to the normal read operations except that the packet chaining
information is provided along with the request packets. This information is encoded on signals CLEN and
CFIXED.

CLEN specifies the number of packets remaining in the chain, excluding the current one. In this example it is 2-
1 =1. Note that thisinformation is CONST within the packet and dynamic across packets. CLEN is specified as
0 for the second request packet, indicating that it is the last packet in the chain.

The flag, CFIXED, is asserted for the first packet to indicate that same opcode will be used for all the packetsin
the chain. CFIXED also guarantees that the address relationship between the last cell of a packet in the chain and
the first cell of the following packet will be the same as the one defined by the ADDRESS mode flags for cells
within packets. In this example, CFIXED = 1 guarantees that the cell addresses will be contiguous across the
packet chain.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 48
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

cLockK |1

cMpvAaL - \
CMDACK o O U e W /Y W W
cMD X read I read \
CONTIG /] \
WRAP ™| ' —
CONSTANT | [\ [
PLEN { 16 X_J 7 _ 16 L
CLEN X 1 X 0 |
CFIXED_/ _/ \
eor T EaE— i
ADDRESS (N-1:M) J{ targetl | targetl X

ADDRESS (M-1:0) [addrl [addr2 | addr3 | addr4 {) addr5 | addr6 { addr7) addrs)

BE { 1111) 11111 J
RSPVAL / _
RSPACK

REOP \ [\ [\
RERROR \val val val val val val val va [
RDATA [d1)d2) d3)da Y d5) d6) d7{ds)

Figure 23: Packet Chain Transfer on the VCI

The chaining information on the first packet, along with the packet header information, conveys to the target
module that the initiator module intends to read (CLEN + 1) x PLEN = (1 + 1) x 16 = 32 bytes of data from
contiguous address locations starting from ADDR1. This information provides an option to the target module to
combine the two request packets to improve the transfer efficiency, if possible. In thisexample, it is assumed that
the target treats the packet chain as a single packet containing eight cellsto perform a high efficiency data fetch.
Note that the first response packet has a latency of nine CLOCK cycles, whereas the second response packet
arrives four CLOCK cycles after the arrival of the corresponding request packet.

448 Address Modes

The VCI requires the initiator to provide cell addresses along with every request cell transferred to the target
module. In addition, the initiator may also specify a predefined algorithm to calculate subsequent cell addresses
from the previous cell address using the three addressing mode flags, CONTIG, WRAP, and CONST. When no
flags are asserted by the initiator, there is no predefined relationship among cell addresses.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 49
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.4.8.1 Random Address Mode

When no opcode flags are asserted, the initiator specifies random cell addressing mode. In this case, there are no
predetermined relationships among cell addresses. Figure 24 illustrates a 12-byte read operation with random
address mode.

cLock 1 2 3 4 5 6 7 8 9 0] 1 2

CMDVAL

:

CMDACK

CMD X read X

coNTIG | /

WRAP | /
CONSTANT | /
PLEN(K:0) X 12 X

eop [T)

ADDRESS (N-1:M) \ targetl \
ADDRESS (M-1:0) \ a3 Y et)\ addra | adar2
BE \ wmo f uu k mn [oom

RSPVAL / __

RSPACK
REOP \ / \
RERROR \vaiid valid vaid valid /_

RDATA \ datas) data) datad | dataZX:

Figure 24: 12-byte Read Operation with Random Address M ode

Copyright 2000 - 2001 by the VSI Alliance, Inc. 50
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.48.2 Contiguous Address Mode

When CONTIG is asserted and WRAP is not asserted, the cell addresses advance in a contiguous manner. In this
case, cell addresses can be cal culated by adding the number of bytestransferred in the previouscell to the previous
cell address. Figure 25 illustrates a 12-byte read operation with contiguous address mode.

cLock |1 \ 2 3 4 5 6 7 8 9 10 11 12
CMDVAL / \
CMDACK / \ / _/—_/—\

CMD x read

X
cone | \
weap T\ [

/
X

CONSTANT \

PLEN(K:0) X 12
eop [\
ADDRESS (N-1:M) X targetl X
ADDRESS (M-1:0) X opaddr Y\ poaddrr X paddr+ | padare)
BE Y wmoo Y wunm Y wm f o
RSPVAL / \
RSPACK
\ ‘e
RERROR \valid valid valid valid [
RDATA data1) data2) data) datad)

Figure 25: 12-byte Read Operation with Contiguous Address M ode

Copyright 2000 - 2001 by the VSl Alliance, Inc. 51
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Wrap AddressMode

This addressing mode is specified by assertion of the flagsCONTIG, and WRAP. If the WRAP mode is specified

and the field PLEN is specified as 2"A, then the following action takes place. The cell address advances in a
contiguous manner and wraps around when the sum of the number of bytes transferred and the lower A+1 bits of

the cell address are more than the value of PLEN. (The carry bit does not propagate beyond bit location A.) A 16-

byte read operation in WRAP address mode isillustrated in Figure 26.

CLOCK m 4 5 6 7 /?_ 9 0\ [11\ [12

CMDACK / \ / \ / \ ’ \

CMD

CMDVAL

:

read

CONTIG

WRAP

CONSTANT

PLEN(K:0) 16

EOP

\
\
\
/
X
[)

ADDRESS (N-1:M) targetl

ADDRESS (M-1:0)

BE 1111

SO UL L

X
addr3 X addr4 X addrl X addr2 X
X

RSPVAL / _

RSPACK
REOP \ /—L
RERROR \ valid | valid vaid valid[
RDATA { datas) datad) datar) dataZX:
Figure 26: 16-byte Read Operation with Wrap Address Mode
Copyright 2000 - 2001 by the VS| Alliance, Inc. 52

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Constant Address M ode

The constant address mode is specified using the flag CONST. When this mode is specified for arequest packet,
the cell address remains the same as the starting cell address across al the cells in the packet or packet chain.
Figure 27 illustrates a 16-byte read operation in constant mode. Note that all the bits in the ADDRESS(n-1.0)
remain constant for al the cellsin the packet.

cLock 1 2 3 4 5 6 7 8 9 10 11 12

CMDVAL

CMDACK / \ / \ / \ / \

CMD

:

read

CONSTANT

PLEN(K:0) 16

EOP

targetl

ADDRESS (N-1:M)

ADDRESS (M-1:0) p_addr

BE 1111

I L

RSPVAL

\

RSPACK

A
\
A

[T)
A
\
A

/

\

RERROR \valid valid vaid valid /

REOP

RDATA X datalX data2 X data3X data4X:

Figure 27: 16-byte Read Operation with Constant Address M ode

Copyright 2000 - 2001 by the VSI Alliance, Inc. 53
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

4.4.9 BVCI Signaling Rules
The following rules apply:

4.5

For each packet transferred on the request channel, there should be exactly one response packet
transferred back on the response channel.

The order in which packets are transferred on the response channel should be same as the order in which
the corresponding packets appear on the request channel.

The number of cells in response packets should be same as in the corresponding request packets
regardless of the opcode.

The order of cells within a response packet should be same as the order in the corresponding reguest
packet.

Once CMDVAL is asserted, the initiator module cannot change that signal until the requested cell is
transferred regardless of the state of CMDACK.

Once acell is placed on the interface and CMDVAL is asserted, the initiator module cannot modify the
cell content until the requested cell transfer is complete.

ADDRESS(n-1:m), the top n-m bits of the ADDRESS signal which indicates the target being addressed,
should remain constant across al the cellsin a packet.

Opcode signals, CMD(1:0) and the ADDRESS mode flags should remain constant throughout the packet
transfer.

PLEN signal, which indicates the length of the request packet, should remain constant throughout the
packet transfer.

CLEN and CFIXED signals should remain constant across al the cells within a packet. It is
recommended that the CLEN field should either stay constant or decrement by one with every packet
transfer. It islegal for the initiator to change CLEN in unexpected ways between packets. This behavior
is discouraged, as it adds complexity to the target. Initiators that exhibit this discouraged behavior must
document it, and targets must document what CLEN behavior they can accept.

Changing the CMD field between packetsin apacket chainisstrongly discouraged. Initiatorsthat exhibit
this discouraged behavior must document it.

Asserting the flag WRAP without asserting CONTIG isinvalid. Asserting WRAP when PLEN is not a
power of 2 valueisalso invalid.

The initiator shall not assert byte enable bits for those bytes that are outside the address range indicated
by the address and PLEN fields.

It is recommended that once the receiving module asserts CMDACK, the module cannot change that
signal until the next clock cycle. This ensures that the transferred cell is not corrupted.

Additional Timing Diagrams

The following figures show additional examples of timing diagrams.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 54
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

CLOCK 1 2 3 4 5

CMDVAL / \
CMDACK / \

CMD ' write

PLEN(K:0) X 1 X

ADDRESS (N-1:M) \ TArcETL)

ADDRESS (M-1:0) { aAoor X

e oo)

DATA N
RSPACK

REOP /_\—
RERROR \vaia /-

Figure 28: 1-byte Write Operation on a 32-bit VCI

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

cLock [1 2 3 4

CMDVAL / \
CMDACK /—_

CMD Y write)
PLEN(K:0)) 4 \
EOP / \

ADDRESS (N-1:M) Y TARGETL |
ADDRESS (M-1:0) X ADDR X
BE R

DATA Y DpATA r

RSPVAL / \
RSPACK

REOP /—_
RERROR \M

Figure 29: 4-byte Write Operation on a 32-bit VCI

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)
5. Advanced VCI

This chapter defines the Advanced Virtual Component Interface (AVCl), a set of optional extendgonsto the Basic
Virtual Component Interface (BVCI). The AVCI isto be used in conjunction with the on-chip system bus or for
point-to-point connection between high performance V Cs or bus(es). The AV CI is a superset of the BVCI.

The AVCI signals and protocols are optional features that can be added to the BVCI components to enhance
performance in certain conditions. Thus it is mostly safe to ignore those signals in interconnections that do not
support them, such as connecting an AVCIl component to a BVCI component. Usually, only the system
performance may suffer, not the functionality.

5.1 Organization

This chapter contains the following sections:
e Section 5.1: Describes the organization.
* Section5.2: Givesatechnical introductionto AVCI.
» Section 5.3: Provides a detailed description of the AVCI signals.
» Section 5.4: Defines the AV CI protocol in detail.
» Section 5.5: Shows additional timing diagrams.

5.2 Technical Introduction to the AVCI

Many system-on-chip (SoC) and multi-processor system-on-chip (MPSOC) applications require the system bus
or interconnect to route multiple high bandwidth initiators, such as processor(s), DSP(s), DMA engine, and other
high-bandwidth, real-time, special-application VCs. The interconnect of such systems often has severa
performance-enhancing features that are not supported by BV CI.

The AV CI was designed to close the feature gap described above. AV Cl was defined as an optional extension of
BVCI. As optional features, the extensions can be safely ignored without resulting in an error condition. A VC
with an AV CI can easily be connected to a bus that supports BVCI, albeit with some performance degradation,
due to loss of transfer efficiency.

The only major incompatibility between AVCI and BVCI is support for out-of-order transactions, and an
advanced packet model. For this reason, the AV CI has parameters BV CIMODE and PUREPACKET indicating
whether it isin BV CI compatibility mode or not. In BV CI compatibility mode, out-of-order transactions are not
allowed, and addressing and other behavior matches BV CI specification.

The definitions for handshake protocol, cell, and packet layer are similar to the BV CI, introduced in Section 4.2,
“Technical Introduction to the BVCI,” and not repeated here. The technical featuresthat AV CI addsto the BVCI
are introduced below.

5.2.1 Advanced Packet Model

The AVCI can make use of Advanced Packet Model, where request and response packets do not have the same
size. An advanced read request packet consists of one cell, which sets the start address and address behavior

signaling. The read response packet consists of as many cells asrequired for returning the read data. An advanced

write request packet consists of as many cells as needed for write data, but the control information (address,

command, and so forth) is only needed in the first cell. The packet model that an AV CI component supports is
indicated with parameter PUREPACKET. This parameter may be either static or dynamic. In the case of a
dynamic parameter, the default packet model is the BV CI model. The dynamic parameter can be implemented

with a configuration pin or a configuration register.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 57
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5.2.2 Arbitration Hiding

Arbitration hiding signals allow pipelines of both the request and response packets through the system, allowing
latency hiding of any arbitration delays. These signals, when presented to the interface, indicate the intent of the
presenter (theinitiator for Arbitration Command Valid and Arbitration Address, and the target for Arbitration
Response Valid and Arbitration Source) to continue sending requests (initiator) or responses (target). The
interconnect responds to these signals by presenting Arbitration Command Acknowledge (to an initiator) or
Arbitration Response Acknowledge (to atarget) on the interface. Upon detecting the acknowledge signals, the
initiator or the target understands that it has the right to use the next cycle(s) to send arequest or aresponse. These
signals overlap the arbitration of the following packet with the transfer of the current packet. Note that these
signals operate at packet-level rather than cell-level. The support for arbitration hiding is indicated with
parameters. (For more information, see Chapter 6, “Design Guidelines.”)

5.2.3 Source Identification

The AV CI provides a system with a unique identifier for each initiator. Thisidentifier can be used by the target,.
for example, to detect which initiator has used the locking command, and to deny access from other initiators.
5.2.4 Multi-Threading and Out-of-Order Transactions

Packet Identifier, Thread Identifier, and Source Identifier signals can be used together to implement a multi-
threaded system. The thread identifier is an extension to the source identifier, which can be used to create virtual
initiators. An AVCI target may return response packets out of order with respect to request packets if the
BVCIMODE parameter is not set. The packet identifier signal is required to indicate in which packet the response
cells belong.

5.3 AVCI Signal Description

This section initiates adetailed AV CI technical description. Descriptions of signals used between the initiator and
target over the VCI are provided in the following sections. Only the signal s specific to the AVCl areincluded. The
total AVCI signal set consists of BV CI signals and AV CI extensions.

5.3.1 Signal Type Definition

Table 11 specifiesthe signal typesthat are used in Section 5.3. The signal types are defined from the point of view
of the devices, rather than the wrapper or arbiter.

Table 11: Signal Type Definition

Text Description
1A Input to all devices
IT Generated by the initiator and sampled by the target
TI Generated by the target and sampled by the initiator
MA Mandatory signal for both initiator and target
MI Mandatory signal for initiator but an optional signal for the target
MC Mandatory signal for supporting chaining function for both initiator and target
MGA Mandatory signal for general arbitration hiding support
MW Mandatory signal for advanced wrapping support
MD Mandatory signal for defined address mode support
MO Mandatory signal for out-of-order transaction support

Signals that do not have one of the mandatory descriptors listed above are optional.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 58
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5.3.2 Signal Parameters
Table 12 specifies parameters that are used in Section 5.3.

Table 12: Signal Parameters

Par ameter

Description

Number of bytesin acell (must be a power of 2, maximum value is 32 bytes)

Number of bitsin the PLEN field (maximum value is 9)

Number of bitsin the ADDRESS field (maximum value is 64)

Number of bitsin the RERROR extension field (maximum valueis 3)

Number of bitsin the CLEN field (maximum valueis 8)

Number of bitsin the RFLAG field (maximum value is system dependent)

Number of bitsin the SRCID and RSRCID fields (maximum value is 5)

Number of bitsin the PKTID and RPKTID fields (maximum value is 8)

—H| Ol | M| O M| Z| X| @

Number of bitsin the TRDID and RTRDID (maximum value is system
dependent)

=

Number of bitsin the WRPLEN field (maximum value is 5)

5.3.3 Signal Directions

Figure 30 diagrams the signal directions between the initiator and the target.

BVCI BVCI
Signals Signals
DEFD DEFD
WRPLEN WRPLEN
RERROCR |4 RERROR
RFLAG |« RFLAG
SCRID SCRID
TRDID | TRDID
PKTID PKTID
RSRCID RSCRID }¢— RSRCID_| RSCRID
RTRDID RTRDID
RPKTID RPKTID
ARADDR ARADDR
ACMACK ACMACK
ACMVAL ACMVAL
ARSACK ARSACK
ARSVAL ARSVAL
ARSCID ARSCID
Initiator Target

Figure 30: Diagram of VCI Signal Directions

Copyright 2000 - 2001 by the VS| Alliance, Inc.

All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

59

5.3.4 Signal List

VSl Alliance (OCB 2 2.0)

All signalsincluded in Table 13 are assumed to be active-high signals unless explicitly indicated otherwise. It is
recommended that all signal outputs are stable before Early. It can be assumed that al inputs are stable before
Late. A detailed signal description follows the summary table.

Table 13: Signal List

Name Type Description

Request Content

DEFD IT If “1,” indicates the relationship among ADDRESS and BY TE

Defined MD ENABLE of each cell in the transaction follows a predefined pattern,
understood by both initiator and target.

WRPLEN[W-1:0] IT Address larger or equal to 2"WRAPLEN will be mapped to Address

Wraplen MW modulo (2"WRAPLEN).
Maximum wrap length: 2 (2" W)

Response Content

RERRORJ[E:Q] TI Response Error is asserted by the target during a response packet to

Response Error indicate that an error has occurred during the current packet. The
RERROR consists of error indicator bit number 0, and an extension
field. The extension field iswider in AVCI than in BVCI.

RFLAG[F-1:0] TI Optional user-defined response code.

Response Flag

Request Threading Signals

SRCID[S-1.0] IT Unique description for each initiator in the system.

Source ldentifier

TRDID[T-1:0] IT Non-unique description of athread.

Thread Identifier MO

PKTID[P-1:0] IT I dentifies packets in atransaction for out-of-order systems. Together

Packet Identifier MO with SCRID identifies virtual or logical identifiers.

Response Threading Signals

RSRCID[S-1:0] TI Copy of SRCID that isreturned with aresponse to a request.

Response Source

Identifier

RTRDID[T-1:0] TI Copy of TRDID that is returned with a response to a request.

Response Thread MO

Identifier

RPKTID[P-1:0] TI Copy of PKTID that isreturned with aresponse packet.

Response Packet MO

Identifier

Arbitration Hiding Signals

ARADDR[N-1:0] IT Next/early version of ADDRESST or general arbitration hiding mode.

Arbitration Address MGA The source isVC initiator. The target is the arbiter or theinitiator
wrapper, which connects to the underlying bus system arbiter. This
signal isintended to the interconnect, not to the VC target. The signal
existsonly inVC targets that are initiator wrappers.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 60

All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 13: Signal List (Continued)

Name Type Description
ACMVAL IT Arbitration hiding request valid. Valid indicates that the initiator
Arbitration Command MGA wishes to indicate the next packet’ s start address to the interconnect.
Vvalid The sourceisthe VC initiator. The target isthe arbiter or the initiator

wrapper, which connectsto underlying bus system arbiter. Thissignal
isintended for the interconnect, not the VCtarget. The signal exists
only in VC targets that are initiator wrappers.

ACMACK TI Arbitration hiding request-acknowledge. Acknowledgeis used by the
Arbitration Command MGA interconnect to indicate to the initiator that a given arbitration address
Acknowledge can be transferred. Hence, ARADDR is transferred from the initiator

when both ACMVAL and ACMACK are asserted at the rising edge
of the clock. The sourceis the arbiter or the initiator wrapper, which
connectsto underlying bus system arbiter. The target isthe VC
initiator. This signal comes from the interconnect, not the VC target.
The signal exists only in VC targets that are initiator wrappers.

ARSVAL TI Arbitration hiding response valid. Similar to the ACMVAL, but for
Arbitration Response the response handshake. The source isthe V C target, which connects
Vvalid to theunderlying bus system arbiter. Thetarget isan arbiter or atarget

wrapper. Thisisintended for the interconnect, not the VC initiator.
The signal exists only inVC initiators that are target wrappers.

ARSACK IT Arbitration hiding response-acknowledge. Similar to the ACMACK,
Arbitration Response but for the response handshake. The sourceisthe VCI target, which
Acknowledge connects to the underlying bus system arbiter. The target is an arbiter

or atarget wrapper. Thisisintended for theinterconnect, not the VC
initiator. The signal exists only inVC initiators that are target

wrappers.
ARSCID[S-1:0] TI Next/early version of RSRCID given with ARSVAL.
Arbitration Source
Identifier
5.3.5 Request Signals
5.3.5.1 Defined
Signal Name: Defined
Signal Abbreviation DEFD
Polarity: Asserted Positive
Driven By: VCI initiator
Received By: VCI target
Timing: Same as CMDVAL (See Chapter 4, “Basic VCI.”)

The BV CI supports a2-bit cmd field, andthreei ndividual flags (CONTIG, WRAP, and CONST). AV CI adds one
more flag called DEFINED. The definition of thisflag is: while asserted, the relationship among address and byte
enable of each cell in the transaction follows a predefined pattern, understood by both initiator and target.

The “defined” flag can be used to move a specific data structure. It assumes that its target is fully aware of the
structure and capable of sending the appropriate data when the starting ADDRESS and BE have been presented
with CMD and CMDVAL. The “defined” flag is intended to support an algorithmic address increment (such as
striding or double striding), that is commonly found in 2D and 3D graphic applications and in imaging and
scientific computing. Since thereis only one bit for the defined field for each initiator-target pair, there is exactly
one predefined operation supported. In a case where there are more supported predefined operations, virtual target
and initiator can be defined with a thread identifier to support more predefined operations.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 61
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5.3.5.2 Wrap Length

Signal Name; Wraplen

Signal Abbreviation: WRPLEN[W-1:0]

Polarity: N/A

Driven By: VCl initiator

Received By: VCI target

Timing: Same as CMDVAL (See Chapter 4, “Basic VCI.")

BV CI uses plen as the wrap boundary when WRAP flag is active. AVCI adds WRAPLEN as a new parameter,
which indicates that the wrap operation should usethe WRAPLEN wrap boundary instead of PLEN. Enabling this
option, wrap operation is not limited anymore to the size of the packet.

e Addresslarger or equal to 2 * WRAPLEN will be mapped to (Address modulo (2 * WRAPLEN)).

* Maximumwrap length =2*2"W)
One of the applications of WRAPLEN is to prevent a packet from crossing a device boundary. In this case,

WRAPLEN is set to have the value of the size of adevice address range. It can also be used for optimizing cache
linefill of aCPU.

5.3.5.3 Source Identifier

Signal Name: Sourcel D

Signal Abbreviation: SRCID[S-1:0]

Polarity: N/A

Driven By: VCl initiator

Received By: VCI target

Timing: Same as CMDVAL (See Chapter 4, “Basic VCI.")

Each initiator in a system is assigned a unique identifier, called SRCID. This identifier can be used by the target
to detect which initiator is using lock.

5.3.5.4 Thread ldentifier

Signal Name: Threadl D

Signal Abbreviation: TRDID[T-1:0]

Polarity: N/A

Driven By: VCI initiator

Received By: VCI target

Timing: Same as CMDVAL (See Chapter 4, “Basic VCI.")

A device (an initiator and/or a target) may behave as more than one logical device. This kind of device is
considered to have multiple virtual devices. TRDID can be used as an extension to the SRCID to create logical,
or virtual devices. In a system where the number space of the SRCID runs out, the space can be al so extended with
TRDID.

5.3.5.5 Packet Identifier

Signal Name: Packet!D
Signal Abbreviation: PKTID[P-1:0]
Polarity: N/A
Driven By: VCl initiator
Received By: VCI target
Timing: Same as CMDVAL (See Chapter 4, “Basic VCI.")
Copyright 2000 - 2001 by the VS| Alliance, Inc. 62

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

In a system where out-of-order transfer completion is supported, PKTID and RPKTID ae required to identify
which response packet matches which request packet. If there is confusion with packets coming from different
initiators, SRCID can be used to make the packets unique.

5.3.6 Response Signals

5.3.6.1 Response Error

Signal Name: ResponseError

Signal Abbreviation: RERRORJ[E:Q]

Polarity: N/A

Driven By: VCI target

Received By: VCl initiator

Timing: Same as RSPV AL (See Chapter 4, “Basic VCI.")

Thebit 0 of the RERROR isthe bit O of the BV CI RERROR. The extension bits are encoded differently. The error
signal isvalid only when RSPVAL=1, with the following meaning:
bit [3:0]
RERROR = 0001: No info
RERROR = 1001: Transaction supported and serviced, but not completed
RERROR = *101: Transaction supported, but not serviced, retry later
RERROR = 0011: Transaction not supported, but not serviced
RERROR = 1011: Transaction not supported, degraded into basic read or write, or other, indicated by
RFLAG (without RFLAG, it is degraded to basic read or write)
RERROR =*111: Fatal error, target disconnect (itself)

5.3.6.2 Response Flag

Signal Name: ResponseFlag

Signal Abbreviation: RFLAG[F-1:0]

Polarity: N/A

Driven By: VCI target

Received By: VCl initiator

Timing: Same as RSPVAL (See Chapter 4, “Basic VCI.")

RFLAG isdefined for supporting optional user-defined response code. A specific response status can be returned
to theinitiator directly using one of these flags. In the system where there are two different interpretations of user
defined flags, they will be mapped onto different bits in the RFLAG. This mapping is system specific. For
example, RFLAG[1:0] = (RFLAG1, RFLAGO).

5.3.6.3 Response Source Identifier

Signal Name; ResponseSourcel D

Signal Abbreviation: RSRCID[S-1:0]

Polarity: N/A

Driven By: VCI target

Received By: VCl initiator

Timing: Same as RSPV AL (See Chapter 4, “Basic VCI.")

Thisisacopy of SRCID that isreturned along with the response. It helps identify the destination of the response.

5.3.6.4 Response Thread Identifier

Signal Name: ResponseThreadl D
Signal Abbreviation: RTRDID[T-1:0]
Polarity: N/A
Copyright 2000 - 2001 by the VS| Alliance, Inc. 63

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Driven By: VCI target
Received By: VCI initiator
Timing: Same as RSPV AL (See Chapter 4, “Basic VCI.”)

Thisisacopy of TRDID that is returned along with theresponse. It helpsidentify the thread of destination of the
response if the target is multi-threaded.

5.3.6.5 Response Packet Identifier

Signal Name: ResponsePacketI D

Signal Abbreviation: RPKTID[P-1:0]

Polarity: N/A

Driven By: VCI target

Received By: VCl initiator

Timing: Same as RSPV AL (See Chapter 4, “Basic VCI.”)

This is a copy of PKTID that is returned along with the response. It helps identify the originating request, and
reorders the packet if the system supports out-of-order transactions.

5.3.7 Side Band Signals

These signals are not for VCI initiator-target communication, but for initiator-bus arbiter and target-bus arbiter

signaling. Thus the target for ARADDR, ACMVAL, and ARSACK is not a VCI target device (such as a
peripheral), but the VCI target acting as a wrapper, which connects the VCI initiator to the bus interconnect.

Similarly, the sourcefor ACMACK, ARSACK, and ARSCID isnot the VCI initiator device (such as aprocessor),

but the VCI initiator acting as a target wrapper, which connectsV Cl target to the bus interconnect.

5.3.7.1 Arbitration Address

Signal Name: ArbitrationAddress

Signal Abbreviation: ARADDR[N-1:0]

Polarity: N/A

Driven By: VCl initiator

Received By: VCI target

Timing: Same as ACMVAL (See Chapter 4, “Basic VCI.")

Provides an early version of the address of the first cell of the next packet for arbiter. In some cases this may
contain only the higher address bits used for device selection.

5.3.7.2 Arbitration Command Valid

Signal Name: Arbitration Command Valid

Signal Abbreviation: ACMVAL

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK, until ACMACK ==1 and next rising edge
of CLOCK

This signal is activated at exactly two cycles before the first CMDVAL of the packet to which the arbitration
hiding applies. CMDV AL must be issued at latest one cycle after the initiator samples ACMACK a the rising
clock edge. Arbitration hiding isdone only oncein apacket. Thesignal validatesthe AADDRin arbitration hiding
mode.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 64
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5.3.7.3 Arbitration Command Acknowledge

Signal Name; ArbitrationCommandA cknowledge

Signal Abbreviation: ACMACK

Polarity: Asserted Positive

Driven By: VCI target

Received By: VCl initiator

Timing: Asserted at rising edge of CLOCK, when ACMVAL == 1 until next rising

edge of CLOCK.

Arbitration hiding command acknowledge. Acknowledge is used by the interconnect to indicate to the initiator
that a given arbitration address can be transferred. Hence, AADDR is transferred from the initiator when both
ACMVAL and ACMACK ae asserted at rising clock edge.

5.3.7.4 Arbitration Response Valid

Signal Name: ArbitrationResponseValid

Signal Abbreviation: ARSVAL

Polarity: Asserted Positive

Driven By: VCI target

Received By: VCl initiator

Timing: é%r(t:elg at rising edge of CLOCK, until ARSACK == 1 and rising edge of

Arbitration hiding response valid. VAL-handshake signal for arbitration response. Thissignal is activated exactly
two cycles before the first RSPVAL of the response packet the arbitration hiding applies to. RSPVAL must be
issued at latest on the cycle after the target samples ARSACK at the rising clock edge.

5.3.7.5 Arbitration Response Acknowledge

Signal Name; ArbitrationResponseA cknowledge

Signal Abbreviation: ARSACK

Polarity: Asserted Positive

Driven By: VCl initiator

Received By: VCI target

Timing: Asserted at rising edge of CLOCK, when ARSVAL == 1 until next rising

edge of CLOCK.

Arbitration hiding response acknowledge. ARCID is transferred from the target when both ARSVAL and
ARSACK are asserted at rising clock edge. Thissignal can be generated synchronously or asynchronously of the
ARSVAL.

5.3.7.6 Arbitration Source ldentifier

Signal Name: ArbitrationSourcel D
Signal Abbreviation: ARSCID[S-1:0]
Polarity: N/A

Driven By: VCI target
Received By: VCl initiator
Timing: Same as ACMVAL.

The next or early version of RSRCID isreturned with ARSVAL instead of RSPVAL.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 65
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5.4 AVCI Protocol

The AVCI protocol is described similarly to the BV CI with three layers: the transaction layer, the packet layer,
and thecell layer. There are no differences between the protocols in the transaction layer, but the packet and cell
layersdiffer slightly. See Section 4.4, “BVCI Protocol,” for an introduction to BV CI protocols.

5.4.1 AVCI Packet Layer

The AVCI packet layer, and thus packet, operation, and packet chain, are the same as in the BV CI, with AVCI
having a new, optional, advanced packet model. In the advanced packet model, the request and response packets
do not have the same number of cells, as shown in Figure 31. Since most of the difference is in the cell-level
behavior of the packet, the advanced packet model is explained in Section 5.4.3, “AV CI Operations.” The packet
model that aVC uses is indicated with a parameter. See Appendix A for message sequence charts of packet
communication in PVCI, BVCI, and AVCI.

Request packets
Initiator . P Target

VCI packet VCI packet VCI packet

—1 | L]] >~

VCI packet

Figure 31: Advanced Packet Model

5.4.2 Cell Layer

The AVCI cell layer differs from the BVCI with a couple of additional fields, and with side band signals for
arbitration hiding. The arbitration hiding signals are not part of cells; they are separately handshaken. The AV CI
cell handshake is similar tothe BV CI handshake.

The request cell structure and theresponse cell structure are detailed in Table 14 and Table 15. AVCI signals are
shown on a grey background.

Table 14: Request Cell Structure

Comment Field Description
Packet chain CLEN Number of remaining packets in the chain
Information
CFIXED Indicates if opcode and PLEN are same across all packets in the chain
ADDRESS Address of each cell being transferred
PLEN Packet length: Total number of data bytes transferred in the operation

Optional fields WRPLEN Wrap length: Address wrapping boundary

SRCID Source identifier
PKTID Packet identifier
TRDID Thread identifier
Copyright 2000 - 2001 by the VS| Alliance, Inc. 66

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 14: Request Cell Structure (Continued)

Comment Field Description
Opcode | Flags | CMD Command: read, write, nop, or locked_read
CONTIG Contiguous address mode
WRAP Wrap address mode
CONST Constant address mode
DEFD Defined address mode
BE Byte Enable: indicates which bytes are involved in the operation
Optiona field WDATA Datain write requests
EOP Indicatesif the cell isthe last one in the request packet

Table 15: Response Cell Structure

Comment Field Description

Optional fields RERROR Error status for the cell

RFLAG User specific response flag

RSRCID Returned source identifier

RPKTID Returned packet identifier

RTRTID Returned thread identifier

RDATA Datain read and locked read responses

REOP Indicatesif the cell isthe last one in the response packet

5.4.2.1 Extended Error Reporting

Currently RERROR i s defined as a4-bit field, with bit O identical to bit 0 of RERROR of the BV CI. The optional
bits 1 to 3 provide additional information of the transaction’s status. Thus, it does not break the system should it
be ignored.

Error condition is associated with a packet. However, error reporting should occur along with every response cell,
to indicate errors as early as possible. Error code provides additional status information of the transfer, and the
state of the target (in case of “abort”).

The transaction may be degraded to generic read or write instruction, which is indicated by the RERROR signal.
The target may also degrade the transaction into a transaction other than generic read or write operation. In this
case, RFLAG can be used to accompany RERROR to indicate the operation performed.

5.4.2.2 Response Flag for Optional Status Reporting

RFLAG provides the user with a way to return status information that cannot be encoded in RERROR. The
encoding is system specific.

5.4.2.3 Arbitration Hiding Fields

Table 16: Arbitration Hiding Signals

Comment Field Description

Optional fields ARADDR Arbitration address
ARSCID Returned source identifier

Copyright 2000 - 2001 by the VSl Alliance, Inc. 67
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5.4.2.4 Arbitration Hiding Handshake

The arbitration hiding isindicated with handshake signals. The arbitration hiding handshake protocol is similar to
the BVCI and AVCI cell handshake. The acknowledge signals can be synchronous or asynchronous, or tied
permanently high. Figure 32 and Figure 33 show the handshake protocols. Dashed lines indicate active clock
edges.

Sample
contents

[ACMD|ARSP]VAL

AADDR|ARSCID

[ACMD|ARSP]ACK

Figure 32: Arbitration Hiding Handshake (Asynchronous)

[ACMD|ARSP]VAL Cjﬁ ® \
AADDR|ARSCID_< \ />
[ACMD|ARSP]ACK

O—/

Figure 33: Arbitration Handshake (Synchronous)

5.4.3 AVCI Operations

5.4.3.1 Transfer Requests

Thefollowing isacomplete list of the default transaction types that may beinitiated across the AV Cl. See Section
6.2, “VCI Parameters,” for the meaning of the parameters indicated in bold text.
Standard Transactions (BVCIMODE = Trug PUREPACKET = False):

» Readacell with any or al bytesactive.

* Read and lock a cell with any or all bytes active.

* Write a cell with any or all bytes active (and release lock).

* Read a packet of plen bytes from random addresses, with any combination of bytes enabled in each cell.

* Read a packet of plen bytes from random addresses, with any combination of bytes enabled in each cell,
and lock the first accessed cell address.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 68
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Write a packet of plen bytes to random addresses, with any combination of bytes enabled in each cell,
and release lock of the first accessed cell address.

Read a packet of plen bytes from contiguous addresses, with any combination of bytes enabled in each
cell.

Read a packet of plen bytes from contiguous addresses, with any combination of bytes enabled in each
cell, and lock the accessed addresses.

Write a packet of plen bytesto contiguous addresses, with any combination of bytes enabled in each cell,
and release locks.

Read a packet of plen bytes from contiguous addresses, wrapping the address at boundary indicated by
PLEN, with any combination of bytes enabled in each cell. Packet length must be a power of 2.

Read a packet of plen bytes from contiguous addresses, wrapping the address at boundary indicated by
PLEN, with any combination of bytes enabled in each cell, and lock the accessed addresses. Packet
length must be aapower of 2.

Write a packet of plen bytes to contiguous addresses, wrapping the address at boundary indicated by
PLEN, with any combination of bytes enabled in each cell, and release locks. Packet length must be a
power of 2.

Read a packet of plen bytes from one address with any combination of bytes enabled in each cell.

Read a packet of plen bytes from one address, with any combination of bytes enabled in each cell, and
lock the address.

Write a packet of plen bytes to one address with any combination of bytes enabled in each cell, and
release lock.

When Defined Address modeis supported (DEFINED = True):

Read a packet of plen bytes from addresses known to both initiator and target, with any combination of
bytes enabled in each cell.

Read a packet of plen bytes from addresses known to both initiator and target, with any combination of
bytes enabled in each cell, and lock the accessed addresses.

Write a packet of plen bytes to addresses known to both initiator and target, with any combination of
bytes enabled in each cell, and release locks.

When Advanced Wrapping is supported (WRPLENSIZE > 0:

Read a packet of plen bytes from contiguous addresses, wrapping the address at boundary indicated by
WRPLEN, with any combination of bytes enabled in each cell.

Read a packet of plen bytes from contiguous addresses, wrapping the address at boundary indicated by
WRPLEN, with any combination of bytes enabled in each cell, and lock the accessed addresses.

Write a packet of plen bytes to contiguous addresses, wrapping the address at boundary indicated by
WRPLEN, with any combination of bytes enabled in each cell, and release locks.

When Packet Chaining is supported (CHAINING = True):

Issue a chain of packets (chain any of the above transactions), so that all the other packet header fields
areidentical over the chain except for the address and chain length counter (chain fixed). Responses must
be in order.

Issue a chain of packets (chain any of the above transactions), so that all packets may have different
header fields (chain not fixed). Responses can be out of order.

With Advanced Packet mode (PUREPACKET =Trué:

5.4.3.2

Read transaction requires only the first cell of the request packet.

Transfer Responses

Thefollowingisalist of theresponsesthat are allowable by atarget acrossthe AVCI:

Read of cell/packet successful, return read data

Write of cell/packet successful

Read packet general error, the entire packet bad, return datainvalid
Write packet general error, the entire packet bad

Copyright 2000 - 2001 by the VSI Alliance, Inc. 69
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

* Read bad data error, suggestion to retry transfer of packet or cell, return datainvalid
» Wkite bad data error, suggestion to retry transfer of packet or cell
* Read/Write Abort disconnect, suggestion to not retry the transfer

When the Response Flag is supported (RFLAGSIZE > 0):
» All the previous responses apply, together with user defined response code.
* When Out-of-Order Transactions are supported, (PKTIDSIZE > 0, BVCIMODE = False)

All the previous responses apply, but response packets are allowed to come in adifferent order than the request
packets. Each packet has a set of identifiers by which they can be identified.

5.4.3.3 Arbitration Hiding Note

The arbitration hiding signals are not part of the transaction, but they give additional informationthat helps build
the system interconnect.

5.4.4 Incrementing Address (BVCI Packet Model)

This packet model requires that addresses be sent with each cell requested. The entire packet has as many cellsas
addresses. The following are properties of an incrementing packet model:

* Arequest cycleis aslong asthe number of cells. A request of 16 bytes on a4-byte interface is asserted
for four (16/4) cycles (not necessarily consecutive).
» Theaddress changes every request cycle. A request of 16 bytes ona4-byte interface--> A0, Al, A2, A3.

» Theresponseis expected to be aslong as the request. A request of 16 bytes on a 4-byte interface --> RO,
R1, R2, R3. Thus, respond and request are balanced. Note that RO, R1, R2, and R3 can be non-
consecutive, interface-cycle-wise.

» Thesystemisvery error tolerant. The way the cmd (command) field isdefined, it will degrade gracefully,
since the only real command (that can cause error) is the first 2 bits in the cmd field. The remaining 4
bits are performance enhancement bits. Since valid address (along with byte enable) is present for every
cell (cycle) requested, ignoring the last 4 bits will not produce any error. In this model al of the
unsupported commands will degrade gracefully (completed correctly even if slower).

5.4.5 Non-Incrementing Address (Advanced Packet Model)
This packet model only requires asingle address, and arequest for the entire packet. The following are properties
of a non-incrementing packet model:

» A read request packet has always one cell. A request of 16 bytes on a 4-byte interface is asserted for 1
cell.

* Only thefirst addressis sent. A reguest of 16 bytes on 4 bytes interface --> AO.

» Theresponseis expected to be as long as response for the BV Cl model above. A request of 16 bytes on
a4-byteinterface --> R0, R1, R2, R3. Thus, response and request are not balanced. Note that RO, R1, R2,
and R3 can be non-consecutive, interface-cycle-wise.

» Shorter request time meansthat the initiator can start another request sooner. This can potentially lead to
higher performance (especiallyin the case of aburst read followed by aburst write).

« Potentialy better clustered transactionslead to better, | essfragmented utility of the bandwidth.
* |t may indicate unnecessary errors.

5.4.5.1 Comparison between Incrementing and Non-Incrementing Packet Models

The following are the similarities and differences of the packet models described above:
* A non-incrementing packet model with contig off is similar to an i ncrementing packet model.

» The bandwidth of the bus remains the same for burst write. In case of burst read followed by burst write,
the non-incrementing packet model has a better bandwidth. Overall, non-incrementing modelswill have
alittle better performance (for latency and bandwidth).

Copyright 2000 - 2001 by the VS| Alliance, Inc. 70
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Figure 34 showstheadvanced write of two packets. The transfer isnot faster than anormal packet transfer. Notice
that the constant, contiguous, wrapped, and defined address modes could each be used. In contiguous address
mode, the byte enable of the first cell isindicated by the BE signal. The byte enable of the last cell is calculated
of the PLEN and the first BE. For example, BE1 = “0011,” PLEN = 7 => last BE becomes “1000.” The byte
enables from the cells in the middle of the packet are all ones (“1111"). The byte enable of the first cell must be
contiguously high, starting from the byte corresponding to the lowest active byte address. For example, “0001,”
“0011,” “0111,” and “1111” (the leftmost bit is the lowest byte address) are legal first-cell byte enables for a 32-
bit interface. In constant address mode, the byte enable of thefirst cell isreplicated over the packet. In the defined
address mode, the byte enable depends on the agreement between the initiator and the target for the address

pattern.

cock™\ A\ A\ APUM UM P PR AU PR

CMDVAL | f A\ \
cmpack | (| U
cmp ___\(_ wie X wie
conme [\ 1\
consT — | |
wrap —\ (A
Len | T S S
ADDRESS | y™addr0p § Y Yddrio |
Be (B X =)
=P = /T i
RSPVAL / U \
RSPACK] \ / _
Reor |\ L M
RERROR — | N (.

RDATA

Figure 34: Advanced Write of Two Packets

Copyright 2000 - 2001 by the VSl Alliance, Inc. 71

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

ctoe T PP AR PP
eMOvVAL T\)\
CMDACK I I

o R)
come [[
WRAP *\—I— ,

PLEN \ 28)\ x 20 X

WDATA

ADDRESS | addro0 | IEE
BE A be X X be)
o _ N] \ ,
RSPVAL / \ [| .

RSPACK / \ [L
reor /[[\
RERROR | | —
RDATA —/ 02Y 03 Y04 E m

Figure 35: Advanced Read of Two Packets Over a 32-Bit Interface

Figure 35 shows an advanced write of two packets of 28 and 20 bytes over a 32-bit interface. The latencies
between the packets are for example only. The packets can be requested and responded back-to-back if the system

alows that.

5.4.6 Multi-Threaded Transactions

Initiators in a multi-threaded system are allowed to initiate multiple outstanding transactions. Hence, additional
identification fields are required to properly differentiate each packet flowing in the system. These fields are
transferred with each packet (and cell), and their values are constant over a packet. These fields are SRCID,
TRDID, and PKTID. This information is sent with a request CMDVAL) and returned with a response
(RSPVAL). These signals act as labels (tags) for the initiator (or the interconnect) to identify and reorder the
response packets in a multi-threaded, out-of -order completion interconnect.

Ingeneral, the SRCID and PKTID fields allow atransaction and its parts (packets) to be uniquely identified in the
system. The TRDID extends SRCID, in case an initiator supports multiple threads. Figure 36 shows advanced
packet transfer of two out-of-order packets, which have different source, packet, and thread identifiers. In the
response, the packets comein reverse order. Some mandatory signals have not been drawn for readability. Notice
that a packet is atomic, and the cells within a packet cannot be out of order. The RSPACK is in default
acknowledge mode.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 72
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

CMDVAL [[T\
CMDACK ™\ /
CMD e) N red X
SCRID T X L2 X
PKTID 2 X 3 X
TRDID T A0 X
eor L T
ADDRES _addrl | {_addr2 X
RSPVAL / L
RSPACK
reor \ M .
RERROR ' \val val val val val val val val /_
RseRD R0) 6 0 0 3 R €3
weD B D 8 8 D € €2 3 6
RTRDID)
ROATA

Figure 36: Advanced Read of Two Packetswith Different Source, Packet, and Thread Identifiers

5.4.7 Arbitration Hiding Mode

A full-featured general arbitration hiding mode, where the request and response are arbitrated separately, may
require al of the signals ACMVAL, AADDR, ACMACK, ARSPVAL, ARSCID, and ARSPACK. A lesser
system will only use a subset of these signals. A parameter is required to indicate this matter.

Figure 37, Figure 38, and Figure 39 show how arbitration hiding works. Notice that the arbitration hiding is shown
only for the second packet transfer for simplicity. Nothing prevents applying it to the first packet also. Figure 37
shows a normal packet transfer for comparison. The one-cycle delay between the packets is for example only; it
isnot arequirement of the packet transfer. The handshake is synchronous, which can be seen as aone-cycle delay
in the first cells. The target uses the EOP signal to do an efficient burst transfer, which is seen from the lack of
further acknowledge delays; the rest of the cells in the packets are transferred in one cycle each.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 73
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

T A R N W AR AW W W e W W W e W A W W AW L

CMDVAL] \ \
CMDACK / \ [\
cuo) e) W X
CONTIG J _/ \ S
const |\ [\ 1 |
WRAP |\ [\ =
el | e) 7 X
WDATA |7 data00) o1 o,z)‘ﬁmﬁ dalal0 Y 1if L2 | 13 (14 J15 ﬁ:

ADDRESS — addr0,0:'x oﬂ O'ZK 03[oA 05 | 08 | der 10 XEK 12713 K1,4E_ *
S e O W OO W e o e S L S

RSPVAL [L/ L

RSPACK / \ f A

REOP \ — [} |
RERROR —\ _ [/_\

Figure 37: Normal Packet Transfer

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

S O O W 0 Y e WG N W N e O W G W N e W i W B

CMDVAL i \
CMDACK , \
CMD (write X write }(
CONTIG / \
CONST _\ /
WRAP \ [
PLEN x plen X plen
SRCID X srcid X srcid X

WDATA {0emuT Y01 [02/ 03 0,4)\15";(0% X 10 K TV IT)QTay T4) E@
sooness, Y s#0n (T 52 03 o) 0% 0B | £ I | £y 5 Vs |
EOP T\ | [T

ACMVAL / \

ACMACK /_\
AADDR)(:1»0 ' |

ARSPVAL

ARSPACK /_\

ARSCID 7 (rsreid

RSPVAL T \

RSPACK [\
reop T\ [an

RERROR |\

RDATA

Figure 38: Packet Transfer with Arbitration Hiding

Figure 38 shows the general arbitration hiding. As can be seen, the second packet transfer can start earlier than
normally. The arbitration hiding handshake acknowledges are asynchronous in the examples. The arbitration
reguest handshake gives the first address and source identifier of the second packet, and the response handshake
returns a copy of the source identifier.

5.4.8 Address Modes

The AVCI addressing is similar to the BV CI with two exceptions: there are two different wrap address modes,
and there is a defined address mode. By default, AV CI requires the initiator to provide cell addresses along with
every request cell transferred to the target module. In addition, the initiator may also specify a predefined
algorithm to calculate subsequent cell addresses from the previous cell address using the four addressing mode
flags: CONTIG, WRAP, CONST, and DEFD. When none of the flags is asserted by the initiator, there is no
predefined relationship among cell addresses.

The random, contiguous, and constant address modes are the same as in the BVCI. The defined and wrapped
modes are described below.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 75
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

5.4.8.1 Defined Address Mode

Figure 39 shows an example using the defined address mode. In this example, the initiator and the target have a
mutual agreement that if the DEFD signal is active, the address isincremented by 28 in each cell. The addressis
drawn in the figure. In the example, the target can respond to the defined address pattern as quickly as to an

incrementing address burst. Both handshakes are synchronous in the example. (Those signals irrelevant for
illustrating the behavior are not shown.) If more address patterns are needed, the source identifier can be utilized
to create virtual initiators. Each virtual initiator (with a different TRDED) can have a different address pattern.

ook T2\ APPSR

CMDVAL [\
CMDACK / \

command X

CMD !

DEFD \

ADDRESS X 4 X 32 X 60 X 83 X116 Xl44 X 172X

=P [\

RSPVAL /

L
RSPACK / _
[

REOP \

Figure 39: A Packet with Defined Address M ode

5.4.8.2 Wrap Address Modes

AVCI can use two wrapping modes: the BV Cl wrapping based on PLEN, and a special mode based onthewrap
length specifier. Figure 40 shows how the wrap length specifier is used to indicate a wrapping address different
from that indicated by the packet length field. If thevalue of the WRPLEN signal is> 0, thePLEN is overridden
in wrapping. For this reason, this wrapping mode is not compatible with BVCI. When connecting an AVCI
initiator with aWRPLEN signal to aBV Cl target, this wrapping mode cannot be used. In Figure 40 the RSPACK
istied high.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 76
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

CMDVAL / \

WRPLEN(W-1:0)

CMDACK /L
CMD X read X
contis | \
wrap | \
consTanT T\ T
PLEN(K:0) Y % Y
X
—
\

ADDRESS (N-1:M) targetl \
ADDRESS (M-1:0) X 8 X 12 X 0 X 4 X
=) |

RSPVAL / _

RSPACK

REOP \ /—_

RERROR \ vaid = vaid valid = valid /_

RDATA X data3Xdata4 X datalX dataZX:

Figure 40: Packet Writewith Specified Wrap Length

5.4.9 AVCI Signaling Rules

The BVCI signaling rules apply to AV CI, with the following exceptions

* For each packet transferred on the request channel, there should be exactly one response packet
transferred back on the response channel.

» Theorder in which packets are transferred on the response channel should be same as the order in which
the corresponding packets appear on the request channel.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 77
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

The number of cells in the response packets should be same as in the corresponding reguest packets,
regardless of the opcode.

The order of cells within a response packet should be same as the order in the corresponding request
packet.

Once acell is placed on the interface and CMDVAL is asserted, the initiator module cannot modify the
cell content until the requested cell transfer is complete, or system defined time-out occurs.
ADDRESS(n-1:m), thetop n-m bits of the ADDRESS signal indicating the target being addressed should
remain constant across all the cellsin a packet.

Opcode signals, CMD(1:0), and the ADDRESS mode flags should remain constant throughout the
packet transfer.

The PLEN signal, which indicates the length of the request packet, should remain constant throughout
the packet transfer.

The CLEN and CFIXED signals should remain constant across all the cells within a packet. It is
recommended that the field, CLEN, should either stay constant or decrement by one with every packet
transfer. It islegal for theinitiator to change CLEN in unexpected ways between packets. This behavior
is discouraged, as it adds complexity to the target. Initiators that exhibit this discouraged behavior must
document it, and targets must document what CLEN behavior they can accept.

Changing the CMD field between packetsin apacket chainis strongly discouraged. Initiatorsthat exhibit
this discouraged behavior must document it.

Asserting the flag WRAP without asserting CONTIGisinvalid. Asserting WRAP when PLEN is not a
power of 2 valueisalso invalid.

The initiator shall not assert byte enable bits for those bytes that are outside the address range indicated
by the address and PLEN fields.

It is recommended that once the receiving module asserts CMDACK, the module cannot change that
signal until the next clock cycle. This ensures that the transferred cell is not corrupted.

The order of packetstransferred in request and response channels may be different, if the packets can beidentified
based on source identifier, packet identifier, and thread identifier.

5.5

In advanced packet mode, the number of cellsin request and response packets may be different. A read
request may have only one cell, and a write response may have only one cell. However, aread response
and awrite request can have multiple cells, depending on the PLEN field and cell size.

Asserting CONTIG-flag overrides DEFD-flag.

Asserting WRPLEN field with avalue other than 0 while wrap is high overrides PLEN field for defining
the wrapping address. Thus, asserting WRAP for packets with lengths not a power of 2 islegal.

The arbitration hiding request handshake must be completed at least one clock cycle before the packet to
which the arbitration hiding applies.

The addressfield isinvalid for the current packet duringthe special arbitration hiding request handshake.
The special arbitration hiding handshake cannot be performed during the first cell of any packet.

Additional Timing Diagrams

Figure41 and Figure 42 are additional timing diagrams. These diagrams show arbitration hiding without response
arbitration handshake in AV CI packet write and read operations.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 78
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

crock T2 PP PP B AP A A AL
CMDVAL [| W S
CMDACK / \

CMD \ cmd 0 X)m—]{
WDATA _X_m—) 01 02y 0304) 05)06 Y10 Y IIY 12 J13 L4 Y15 Y16 |

ADDRESS \ addr 0,0 x X 1’0A

EOP —\ 5‘\ /—\

RSPVAL
IR |
RSPACK [‘

REOP —\ / —" ’_ \
ACMVAL /—\

ACMACK / \

Figure4l: Advanced Packet Write with Arbitration Hiding, Without Arsval Handshake

S N D L LN LW LA L0 W N 0 L G N G W0 G W W W e Wi W

CMDVAL [—\—,—\
CMDACK T\ —/
CMD y cmdo Y Y omdt
ADDRESS Y addro0 |) addr T)
EOP —/—\—/_ \
RDATA E_\MEE—
RSPVAL /
RSPACK / —
REOP Immt =
ey v R B R
ACMACK 1\ 1\
AADDR X addr 0,0) \ addr 1,0)

Figure42: Advanced Packet Read with Arbitration Hiding, Without Arsval Handshake

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

79

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

80

6.1 User Guide

VSl Alliance (OCB 2 2.0)

6. Design Guidelines

This section describesthe high-level responsibilities of the VCinitiator and V C target, together with the associated
implementation considerations. It also discusses the differences between Basic VCI (BVCI) and Peripheral V CI
(PVCI). The focusisin describing use of the VCI with an on-chip bus.

TheVCinitiator to OCB initiator wrapper interfaceisidentical in protocol to the OCB target wrapper to V C target
interface. The differences between the V C and the OCB show up in the implementation considerations. There are

at least two good reasons to keep the VC->OCB interface identical to the OCB->VC interface:
» Thisfacilitates direct VC=> VC connections (that is, without an intervening OCB).

» VCinitiators have communication features similar to OCBs. Thus, we can use existing VC initiators as
reasonabl e test cases to ensure that the OCB initiator responsibilities are reasonable. A similar argument
may be made for the OCB target responsibilities.

Wrapped Bus Example

General Case

VC Initiator VC Target
VCI

VC Initiator VC Target

VCI
OCB Initiator OCB Target
Wrapper Wrapper

Your Favorite OCB

Figure 43: VCI Block Diagram

Copyright 2000 - 2001 by the VS| Alliance, Inc.

All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

81

VSl Alliance (OCB 2 2.0)

The intended use for the PVCI isin VC-VC communication, and wrapping a VCI target to an on-chip bus.
Although it is possible to use the PV CI asabusinitiator, thisisan unlikely case, since the peripheral businitiator
is usually a bus bridge from a system bus. The PV CI properties are tuned more towards their use as a peripheral
bus target. The BV CI ismore versatile, and its features are tuned towards use as either an initiator or atarget for
an OCB.

Another possible topology is presented in Figure 44. In this case, there is no bus, but all the VCI targets are
connected point-to-point to acentral OCB-V CI bridge. In this case, the bridge looks like asingle target to the OCB
in question, and contains a number of V CI initiators. The bridge is more complicated than a bus wrapper, but the
electrical design of point-to-point VCI connections may be easier than the design of a shared bus.

System
I nitiator

System OCB

VCI Bridge

VC Targetl

VCl VVC Target2

VVC Target3

Figure 44: VCI with Star Topology

The following discussion covers the responsibilities of four different entities, as depicted in Figure 43: VC
initiator, OCB initiator wrapper, OCB target wrapper, and V C target. It also covers the main differences between
the BVCI and the PVCI.

6.1.1 VC Initiator Responsibilities

TheVCinitiator isin complete control over the presentation of requests on itsV C interface; thereisno arbitration.
It assertsthe CMDVAL (VAL for PVCI) signal to indicate that avalid request information is present. The size of
ADDRESS and [W|R]DATA are dictated by the VC’ s capabilities, asisthe set of supported transfer widths. The
initiator must hold the request i nformation stable until it sasmplesCMDACK (ACK for PVCI) asserted at therising
edge of CLOCK. On aread transfer, the PVCI initiator must acquire RDATA after it samples ACK asserted at the
rising edge of CLOCK in PVCI. In BVCI, the VCinitiator can delay acquiring RDATA by holding RSPACK de-
asserted while RSPV AL isasserted. Once the BV Cl initiator asserts the RSPACK, it must complete the response
transfer after it samples RSPV AL asserted at the rising edge of CLOCK.

The provider of the VC initiator must provide alist of VCI configuration parameters for the VC, including such
aspects as address and data bus widths, supported transfer widths, and timing data. These parameters allow the

system integrator to configure the OCB initiator wrapper to meet the constraints of both the system and the VC
initiator.

Copyright 2000 - 2001 by the VSl Alliance, Inc. 82
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

6.1.2 OCB Initiator Wrapper Responsibilities

The OCB initiator wrapper is responsible for accepting the request from the V Cinitiator, and controlling the OCB
(asan OCB initiator) to accomplish thetransfer. In particular, the OCB initiator wrapper is responsible for making
requests to and accepting responses from the bus arbiter, initiating the transfer on the OCB (inserting any required
OCB turn-around cycles), handling any OCB-level handshaking, and getting Read data from the OCB. In most
instances, the OCB initiator wrapper should not need to store any request information (particularly address or
write data) on behalf of the VC initiator, since the OCB initiator wrapper CMDACK (ACK) signal can be used to
forcetheVCinitiator to hold the request information. It may need to store response information (such asRDATA)
inthe BVCI, if the VC initiator expresses that it cannot accept the read data by not asserting the RSPACK.

However, electrical concerns will typically force the OCB initiator wrapper to buffer the request signals to drive
long OCB wires, as well as dealing with OCB topology issues (for example, tri-state and multiplexed buses). The
OCB initiator wrapper is responsible for ensuring that the OCB timing is correct, and that VCI RDATA and
handshaking signals make the required setup time to the VC initiator.

The OCB initiator wrapper should be configurable enough to adapt to arange of possible VC initiator capabilities.
In particular, the OCB initiator wrapper should have variable address and data bus widths, and support for multiple
transfer widths. This configurability allows the system integrator to match the OCB initiator wrapper to the VC
initiator.

Several issues arise with respect to the configuration of the OCB initiator wrapper. A VC initiator with a 16-bit
address may need to connect to an OCB with a 32-bit address. In such a case, the system integrator should be free
to synthesize the most significant 16 bits of the OCB address by whatever means are appropriate for the system.
One way might be to statically configure the upper bits into the OCB initiator wrapper. Another method might
involve placing a writable register somewhere on the OCB to hold the upper bits. The OCB initiator wrapper is
also responsible for any required data shifting. Data shifting, which can arise from width mismatches or
endianness differences between the VC initiator and the OCB, should not be required. This requirement can
generally be lifted by the appropriate connection of the VC byte lanes to the VCI byte lanes, if the endiannessis
of static nature.

6.1.3 OCB Target Wrapper Responsibilities

The OCB target wrapper isin complete control over the presentation of requests onits VCI; thereis no arbitration.

The OCB target wrapper acts as an OCB target; it must convert the OCB transfer into a V Cl-compliant transfer.

In particular, it must translate OCB request information into the VCI CMDVAL (VAL) signal, which indicates
the presence of avalid VCI request that isintended for the VC target. Device sel ection mechanicsarevery specific
todifferent OCBs. Traditional approachesto device selection include distributed address decoding and centralized
address decoding. For a distributed-decoding OCB, the address decoder to determine VCI CMDVAL (VAL) will

likely be inside the OCB target wrapper. For a centralized-decoding OCB, the VCI CMDVAL (VAL) signal is
likely just abuffered version of the select signal from the centralized decoder.

The OCB target wrapper presentsthe request information acrossthe V CI to the V C target. It must hold the request
information stable until it samples the VCI CMDACK (ACK) asserted. Since the OCB target wrapper is
responsible for ensuring compliance with the OCB transfer protocol, most OCB target wrappers will use OCB
target handshaking to force the OCB target wrapper to hold the request information stable (that is, insert wait
states). Thus, dataand address storageis rarely required in the OCB target wrapper. The OCB target wrapper may
need to delay the assertion of CMDVAL so that it and the other request fields satisfy the VC target setup time. It
should wait until the V C target returns CMDA CK before releasing the OCB resources associated with the transfer.
It isthe OCB target wrapper’s responsibility to ensure that VCI RDATA makes the timing path back across the
OCB to the OCB target wrapper. Since the two-wire PV Cl handshake does not allow the OCB target wrapper to
forcethe VC target to hold RDATA, the OCB must run slow enough to allow RDATA to make it back across the
OCB or else data storage isrequired inside the OCB initiator to acquire RDATA. The BV Cl handshake alows for
the OCB target wrapper to stall the VC target. In any case, it istypically the OCB target wrapper’s responsibility
to buffer RDATA to drive the OCB data wires, thereby isolating the V C target from the loading and topology (tri-
state, multiplexed, and so on) of the OCB.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 83
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

The OCB target wrapper should be configurable enough to match its V Cl address and data bus widths, and transfer
widthsto the VC target’s implementation of the VCI. This configurability is key to allow the system integrator to
design working systems using the VCI. When the OCB has a different data bus width than the VC target, it isthe
OCB target wrapper’s responsibility to accomplish any required data multiplexing. The VC target ADDRESS is
typically much narrower than the OCB ADDRESS,; the V C target should be configurable so that only the required
ADDRESS hits are presented to the VC target.

6.1.4 VC Target Responsibilities

The VC target is responsible for accepting the request from the OCB target wrapper and accomplishing the
transfer. Since every request presented to the VC target is intended for it, the VC target should be designed to
acknowledge every transfer. In simpler terms, the ACK response will often be adelayed version of the VAL. The
V C target should typically delay assertion of ACK until it has completed the transfer of the request; thisforcesthe
OCB target wrapper to hold the request information steady, thus eliminating the need for the VC target to store
the request.

The provider of the VC target must provide a list of VCI configuration parameters for the VC, including such
aspects as address/data bus widths, supported transfer widths, and timing data. These parameters allow the system
integrator to configure the OCB target wrapper to meet the constraints of both the system and the VC target.

6.1.5 VCI-to-VCI Conversions

VCI components with different parameters, such as size, are not supposed to connect together directly. A special
wrapper has to be used in this case, as shown in Figure 45. The wrapper is aV C, which takes care of buffering,
and other logic needed to map different VCls together. This situation occurswhen using VCI for point-to-point
communication. When connecting different VCls through an OCB, the OCB wrappers take care of size
conversions.

8-bit VC 16-bit VC
Initiator Target

Wrapper

Figure 45: Inter connecting Different-Size VCI Components

6.1.5.1 General VCI-VCI Interoperability

In general, VCI components can be connected with the following conditions:
* Aninitiator can be connected to atarget, and vice versa.

* The address size of theinitiator and the target must match. If the initiator’ s address space is smaller than
the target’s address space, all the target’ s addresses cannot be accessed. However, the target’s address
size can be smaller than the initiator’ s address size.

* The cell size must match. If the initiator's cell is wider than the target’s cell, a wrapper is needed to
convert one wide access into two or more narrower ones.

* The endianness must match. If it does not, awrapper is needed to convert the endianness.
» If thetarget does not support Free-BE mode, the initiator must honor that.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 84
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

6.1.5.2

VSl Alliance (OCB 2 2.0)

AVCI-BVCI Intero perability

A BVCl initiator can be connected to an AV CI target with the following conditions:;

General VCI-VCI interoperability rules must be satisfied.

The signals with the same namesin AV CI and BV CI aredirectly connected.
DEFT istied low.

WRPLEN istied low.

Arbitration hiding input signals are tied low.

TRDID signal istied low.

PKTIDsignal istied low.

SRCID signal istied low.

Therest of the AVCI output signals are not connected.

An AVCI initiator can be connected to a BV Cl target with the following conditions:

6.1.5.3

General VCI-VCI interoperability rules must be satisfied.

Only BV CI transactions can be used.

The signals with the same namesin AV CI and BV CI are directly connected.
PUREPACKET must be False, and BV CIMODE must be True.

RFLAG dgnal istied low.

Arbitration hiding input signals are tied low.

RTRDID signal istied low.

RPKTID signal istied low.

RSRCID signal istied low.

The rest of the AVCI output signals are not connected.

BVCI-PVCI Interoperability

Connecting a PVCI initiator to a BVCI target is not a likely scenario. It can be done through a wrapper, if
necessary. The wrapper must take care of the handshake conversion.

A BVCl initiator can be connected to a PV Cl target through awrapper without compromising BV ClI performance.
It is the wrapper’s responsibility to store pipelined BV CI transactions, and to convert these transactions to non-
pipelined and non-split PV CI transactions.

A BVCl initiator can be connected directly to a PV ClI target with following conditions:;

General VCI-VCI interoperability rules must be satisfied.

Only PV CI transactions are allowed. Packets with other than contiguous, unwrapped address modes are
converted to single-cell packetsin PV CI. Read Lock cannot be used.

The CMDVAL isconnected to VAL. (Notice also the CMD encoding listed below.)

The ACK is connected to CMDACK and RSPVAL.

The RSPACK is set to Default ACK mode.

The EOPsignal of the PVCI target is set high, except when CONTIG = 1, WRAP = 0, CONST = 0, EOP
signals can be connected.

The REOP signal is created from the PV CI EOP signal.

The CMD signal is connected to the RD and CMDV AL signals with the following encoding:

o CMD RD VAL

0 00 don't care 0

o 01 1 CMDVAL

o 10 0 CMDVAL

0 1 1 CMDVAL (in addition RERRORJ[0] = 1)
ADDRESS sgnals are connected.

RDATA signals are connected.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 85
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

* RERROR signals are connected.

» BEsignalsare connected.

WDATA signals are connected.

* Therest of the BVCI signals are not connected.

6.2 VCI Parameterization

This section deals with parameters that are not part of operations, that is, they are not communicated with VCI
signals.
The VCI parameters can control:

* Generation of the VCitself asasoft VC

» Configuration signal tie-offs

* Dynamic configuration of aVC through registers, pins, and so on
Independent of the implementation model abstraction level, language, or format, these parameters must be
documented. The implementation of the parameters in the models can be done with generics (for example, in
HDL), setup or header files, etc. In case of aconfigurable hard V C, some of these parameters may beimplemented
with external pinsthat can be tied-off. Table 17 presents the notation for the scope where each parameter applies.
In addition, each of the parameters can be used to control generation of the VC, for example, by setting the values
ina GUI (graphical user interface).

Table 17: Parameter Scopes

Name Description

DOC Required in documentation.

HARD Can be used as a pin parameter in any kind of VC to set the parameter in integration time
statically.

SOFT Can be used as a soft parameter for generating or parameterizing the VC implementation
source code.

DYN Can be used dynamically, either with a dynamically connected pin, or aregister that can
be accessed through the VCI. In either case, the behavior is customized, and must be
documented.

6.2.1 Background for Parameterization

For this discussion, VCs can be broadly divided into three separate categories, two of which are only subtly
different. These are:

* Hard VC (for example, a Standard Cell VC with layout)
» Soft VC Generated
e Soft VC Compiled

A Firm VC can fal into either the soft or hard category, depending on the configurability.

Each of these has differing needs when it comes to parameterization. A Hard VC can not be further customized
without the need for re-layout, unless the VC developer has the forethought to provide additional configuration
pins. One issue that Hard VC developers face is that they do not want to have multiple flavors of their VC lying
around. An approach to thisissueis to add the small extralogic to configure the component to satisfy the system
needs. This does cost silicon, and is not always possible. The chief benefit of Hard VC is that it gives known
performance in agiven technology.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 86
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

The Soft VC Generated and Soft VC Compiled have opposite goal s. In these categories, the VC vendor is often
specifically seeking to have the V C be technology independent. Thisisin contrast to the Hard VC, whichispainful

to migrate from one technology to another. Most V C developers who develop Soft V Cs do so using the C method:
“Soft VCs Compiled.” I n this method, the VC model is built once up front with all the options required. Through
a means of telling the VC what options are wanted, the VC is compiled and the logic not required is removed
during compilation. This method is analogous to #ifdef in the C programming language. However, there are some
disadvantagesto this method. First, there is additional overhead during compilation to remove unneeded f eatures.
This means that a lot of CPU time can be used for unneeded features. Second, the compiled code is often not as
good as it could be if the feature set were simply instantiated up front. In the other software method, “Soft VC
Generated,” the HDL code for the desired feature set isinstantiated all at the same time. Most important, only the
desired features are present. This method leads to the optimal combination of time and performance at the VC
user’s end, with amodest investment in time at the VC devel oper’ s end. With the use of the “ Soft VC Generated”

method, the VVC can be algorithmically generated for each appropriate instance.

These different approaches require different parameterization schemes. For example, the Hard VC must
inherently utilize pins on the V C to tie options Off or On by tying the pin to a power or ground. On the other hand,
the Soft VC options can support their parameterization in a few different ways. by adding hardware pins which
get tied to power or ground; by reading in afile or command line and logically or physically applying the values
read to the pins; or by specifying the options in a GUI-based software program that either applies values,
instantiates code, or doesboth.

6.2.2 Parameters

In tables 18, 19, 20, and 21, “True” means high signal value, and “Falsg’ means low signal value or “0.” The
default valueis“ 0" for al the size- and width-type parameters. The default value of the binary-type parametersis
“True” or “1.”

Table 18: Common Parametersfor all VC Interfaces

Name Description Range Scope
INITIATOR Trueif aVCl initiator 01 DOC
ADDRSIZE Address size, width of address busin bits Oto 64 DOC, SOFT
(N)

CELLSIZE Cell size, number of bytesin the data bus. If 1,2,4for PVCI DOC, SOFT
(B) either RDATA or WDATA isnarrower thanthis, | 1 2 4, 8 for BVCI
the unused signals must betied to logic zero in [
either theinitiator or the target interface. If a 2,i1{01,2,3,4,5}
BVCI is made wider than eight bytes, it becomes | for AVCI
an AVCI.
BIGENDIAN | True, if thecomponent isbig endian, Falseifitis | 0, 1 DOC, HARD,
little endian. SOFT, DYN
NOENDIAN | True, if the component does not care about 0,1 DOC
endianness (such as a memory). Overrides the
BIGENDIAN parameter.
RESETLEN Minimum number of clock cyclesreset required | Positive integer DOC
being active. If 0, use default = 8 clock cycles.
ERRLEN Number of error extension bits (defined as E). Oto2for PVCI, DOC, SOFT
(E) Thedefault is 0. BVCI
Oto3for AVCI

Copyright 2000 - 2001 by the VS| Alliance, Inc.

All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

87

VSl Alliance (OCB 2 2.0)

Table 19: Parameters Specificto PVCI

Name Description Range Scope

FreeBE True, if the VCI supports unrestricted 0,1 DOC
combinations of byte enables. The restricted BE
combinations, as defined in Section 3.4.3, “Data
Formatting and Alignment,” must be supported
by al VCI implementations.

DefACK True, if ACK isallowed to be asserted evenwhen | 0,1 DOC, HARD,
VAL islow (de-asserted) SOFT

Table 20: Parameters Specificto BVCI

Name Description Range Scope

CHAINING Trueif theVCI is capable of packet chaining. 0,1 DOC, SOFT
Chaining VCI contains all signals and fields of
type MC shownin Table 5.

PLENSIZE Width of PLEN signal in bits O0to9 DOC, SOFT

(K)

CLENSIZE Width of CLEN signal in bits Oto8 DOC, SOFT

Q)

DefCMDACK | True, if CMDACK isallowed to be asserted 01 DOC, HARD,
even when CMDVAL islow (de-asserted) SOFT

DefRSPACK Similar to DefCMDACK, but for the Initiator. 0,1 DOC, HARD,
True, if the initiator is always ready to SOFT

acknowledge RSPV AL (the initiator is not
allowed to insert await state).

6.2.2.1 General for BVCI

Theinitiator contains al the signals and fields of thetype MA and MI. Thetarget contains all the signalsand fields
of typeMA. Table 21 showsthe default valuesfor command extensions. These are used to document theinitiator’s
and the target’ s behavior while they do not support full functionality of fixed packet, constant packet, contiguous
packet, or wrapping address. For the initiator, the following parameters state that it will always send request of a
certain behavior, and atarget only expects requests with a certain behavior. The signal itself may or may not exist,
but the behavior is known through these parameters, and the signals can be connected (tied off) accordingly.

Table 21: BVCI Default Values

Name Description Range Scope
DCFIXED Signal CFIXED istied to High/Low 0,1 DOC, HARD
DCONST Signal CONST istied to High/Low 0,1 DOC, HARD
DCONTIG Signal CONTIG istied to High/Low 0,1 DOC, HARD
DWRAP Signal WRAP istied to High/Low 0,1 DOC, HARD

Copyright 2000 - 2001 by the VSI Alliance, Inc. 88

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Table 22: Parameters Specific to AVCI

Name Description Range Scope
DEFINED True, if support for defined transfer mode. 0,1 DOC, SOFT
(DEFD signal must exist)
PUREPACKET True, if non-incrementing packet model. 0,1 DOC, HARD,
SOFT, DYN
BVCIMODE True, if strictly in-order transactions are 01 DOC, HARD,
supported and WRPLEN = 0. SOFT, DYN
GENERALARI True, if general arbitration hiding request 0,1 DOC, SOFT

signals are supported. (ACMVAL,
ACMACK, AADDR must exist.)

GENERALART | True, if general arbitration hiding response 0,1 DOC, SOFT
signals are supported. (GENERALART must
betrue + ARSPVAL, and ARSPACK must

exist.)
RFLAGSIZE Number of bitsin the RFLAG field Positive integer DOC, SOFT
(F)
SRCIDSIZE Number of bitsin the SRCID and RSRCID Oto5 DOC, SOFT
(S fields
PKTIDSIZE Number of bitsin the PKTID and RPKTID 0to 8 (greater or DOC, SOFT
(P) fields equal than
CLENSIZE)
TRDIDSIZE Number of bitsin the TRDID and RTRDID Positive integer DOC, SOFT
Q) fields
WRPLENSIZE Number of bitsin the WRPLEN field Oto5 DOC, SOFT
(W)
DefACMACK True, if ACMACK isallowed to be asserted | 0,1 DOC, HARD,
even when ACMVAL islow (de-asserted). SOFT
DefARSACK Similar to DeFACMACK, but for theinitiator. | 0,1 DOC, HARD,
True, if theinitiator is always ready to SOFT

acknowledge ARSVAL (the initiator is not
allowed to insert await state).

6.2.2.2 General for AVCI

The AV CI consists of BVCI signals and parameters added with AV CI extensions. Thus the signals indicated as
mandatory in Table 5 and the parametersin Table 20 apply to AVCI.

6.3 Implementation Guidelines

Sincethe VCI isfully synchronous, and the wiring between the wrapper and aV Cl component is supposedly very
short, the VCI implementation should be very easy to design. A legal VCI component must sample all the signals
at the rising edge of the CLOCK. To create alegal VCI bus wrapper for an OCB that samples at the falling edge
of the clock, buffering registers must be added.

The VCI standard should not pose any restrictions to making EDA tools that synthesize the bus wrapper
automatically. This approach is preferred over manual wrapper design, since it theoretically reduces the need for
implementation verification

Copyright 2000 - 2001 by the VSI Alliance, Inc. 89
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

In register transfer level implementation of the VCI, there are few restrictions: The flip-flops inferred must be
rising-edge clocked and have active-low reset. The VCI standard does not pose any other electrical constraintsto
the physical implementation except for those timing constraints given in signal definitions. The VCI component
provider must document the physical implementation parameters and constraints, such as voltage swings. The
guidelinesgiveninVSIA Implementation/V erification DWG specifications and in On-Chip Bus DWG Attributes
specification are to be followed. The manufacturing test constraints and debug structures are not defined in the
VCI standard. The guidelines given in the VSIA Manufacturing Test DWG specifications are to be followed.

In the case of apartly or fully combinatorial wrapper, the delay paths starting and ending at the VCI component
traverse all the way through the on-chip bus. It isthe system integrator’ sresponsibility to ensure the proper system

timing in this case.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 90
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

7. VCI Glossary of Terms

Advanced Packet M odel A packet model where request and response may have different number of cells.

Arbitration Hiding

AVCI

Bus Wrapper
BVCI

Cell

DWG

Initiator

IP
MPSOC
OCB
Packet

Packet Chain

PCI
PVCI
Signal
SoC
Target

Transaction

Transaction Layer

VvC
VCI

VCI operation

Mechanism to give advance information to the arbitration logic to prevent arbitration
cycles adding latency to VCI operation.

Advanced Virtual Component Interface (VCI)
Logic between the VCI and a bus.
Basic Virtual Component Interface (VCI)

A cell is a grouping of one or more bytes. It contains a number of bytes that is
characteristic to the natural width of the VCI implementation. It is the basic unit of
information transferred across the VCI in one cycle.

Development Working Group

A VC that sends request packets and receives response packets. It is the agent that
initiates transactions for example, DMA.

Intellectual Property
multi-processor system-on-chip
On-Chip Bus

A transport object consisting of an atomic ordered set of cells transferred across the
VCI.

A non-atomic specialized transport object consisting of a set of logically connected
packets transferred in the same direction across a VC Interface. The chain of packets
is connected because no intervening packets are allowed on the same channel.

Peripheral Component Interconnect, the industry-standard PCI bus.
Peripheral Virtua Component Interface (VCI)

Synonymous to electrical wire or net.

System-on-Chip

A VC that receives request packets and sends response packets. It is the agent that
responds (with a positive acknowledgment by asserting) to a bus transaction initiated
by ainitiator, for example, memory.

Generic term used for any pair of request and response transfer.

This deals with point-to-point transfers between blocks or VCs. It does not define
signal names or clock-cycle protocols.

Virtual Component

Virtual Component Interface, an OCB-standard for communicating between a bus and
avirtual component, which is independent of any specific bus or VC protocol.

A transport object consisting of a pair of packets that ae transferred in different
directions, for example, a single request-response packet pair.

VC wrapper Logic between an existing VC and the VCI.
VSIA The Virtual Socket Interface (VSI) Alliance.
Copyright 2000 - 2001 by the VSl Alliance, Inc. 91

All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

92

VSl Alliance (OCB 2 2.0)
A. Transaction Language

A transaction-based language has been defined by the VSIA to facilitate easier testing and simulation of
components and systemsthat use aV C Interface. The language providesthe VC devel oper and the SoC integrator
with away to use the same test suite when the VC stands alone, and through the bus when the VC is integrated
into a system. This can potentially save many hours of translating tests or redevel oping test suites. The language
itself consists of a number of commands that represent VC Interface operations. There are formats for these
commands for different uses. For example, there is aformat for HDL simulator stimulus/response vectors, and a
behavioral C function call format for easy writing of these vectors.

T VC Testing
) Results i
Transactio Simulation Si?nﬁjtin W Fhe System
Vectors File = With the Same
Transaction
Vectors
é
Behaviora Behaviord VC Target
VCI Modd \VCI Modd Mode
|><_ VvC ~<— VC__» >
Interface Interface
VC Target Bl Logic Bl Logic
Modd

< BUS >
SandaloneVC Tedin

g

Figure 46: Simulating VCswith VC Interfaces

A.1 Use of VC Interface in VC and System Test

The example in Figure 46 shows how an integrator should be able to test and verify the VC’ sintegration into a
bus. In this example the VC provider will provide a set of transaction vectors as a compliance test for their VC.

The integrator can verify the correctness of the VC (at the RT level or after synthesis or physical design) by using
the behavioral model shown above. It can be expected that a number of VC vendors will offer such atool to their

customers. Thistool could be tailored to the specific size and options of interface on the VC. Thereal productivity
gains occur when the same parameterized, behavioral model can be connected to the On-Chip Bus, after the VC
has been integrated with the bus. At this point the behavioral model can be retailored to the bus requirements for

better system performance, and the compliance vectors can be used to check out the integration of the VC into the
system. Furthermore, all the other VCs can also be tested individually through this same interface. It can be
expected that anumber of other toolslikethisbehavioral model can then be created to generate more sophisticated

tests, such as interleaving the various VC compliance vectors to create pseudo system tests, all with very little
additional effort from the system integrator.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 93
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

A.2 Language Levels

There are two levelsto the language as currently defined by the VSIA. At the lowest level the basic languageisa
direct mapping to the VC interface signals and cell transfers. There are two formats: a simple function call set of
statements, and a file (simulation vector) oriented set of commands. The latter format supports simple binary
expressions. This allows for assignment of constant values to variables. The file-oriented language is limited to
single-pass variable assignments, to simplify the interpreter.

The highest language level abstracts the details of the VC Interface implementation, and concentrates on the
essence of transferring arbitrary blocks of data. Single operations can be translated into multiple lower level
operations that are mapped to a specific implementation of the interface. Thislevel is structured to be compatible
with a subset of the SL-VCI (asdescribed in the VS Alliance System-Level Interface Behavioral Documentation
Standard) transactions.

A.2.1 VC Interface Language
The VC Interface Language is targeted to writing portable simulation vectors for VCI components.

There are two syntaxes defined: afunction call format (here in C++) and a set of file based commands. The file-
based commands are simple in the sense that they do not contain any comparison operations, or other features to
help verification. Comparison of return values to expected values can be done by inspection, or by tools external
to the language. The purpose of this syntax isto provide alanguage- and platform-independent vector format. The
function call syntax implements the same transactions, but since it is meant to be embedded into a host language,
the host language’ s constructs can be used for building intelligent tests.

This section definesfirst the abstract transactionsand their parameters. Any implementation of the language must
implement those.

A.2.1.1 Interface Parameters

The VCI parameters discussed in Chapter § “Design Guidelines,” nust be made visible to the language
implementation also. These parameters are used for mapping the Transaction language to VCI language, and VCI
language to V Cinterface signals. Any implementation must set default values for the parameters, and they must
be documented. The SLD/DWG defined data types are used for the parameters as follows:

e vsi_bit for binary parameters,

e vsi_int for integer parameters.

Vsi _int CELLSI ZE: VCI word length in bytes

Vsi _int MAXPLEN: Maximum allowed packet length for the VCI in bytes
Vsi _i nt ADDRSI ZE: VCI address length in bytes

Vsi _bit BI GENDI AN: Endian transl ation parameter.

Vsi _bit NOENDI AN: no specified endianness

char * VCI TYPE: “PVCI”, “BVCI”", “AVCI”

vsi _bit CHAI NI NG Trueif chaining VCI

vsi _i nt CLENSI ZE: Size of CLEN field

vsi _int PLENSI ZE: size of PLEN field

vsi _i nt RFLAGSI ZE: size of RFLAG field
vsi _int WRLENSI ZE: size of WRPLEN field

vsi _bit DCFI XED: field cfixed istied to High/Low

vsi _bit DCONST: field const is tied to High/Low

vsi _bit DCONTI G field contig is tied to High/Low

vsi _bit DWRAP: field wrap istied to High/Low

vsi _bit DEFI NED: True, if support for defined transfer mode (defaulting command extensions)
vsi _bit PUREPACKET: True, if non-incrementing packet model

vsi _bit BVCI MODE: True, if in-order transactions are supported

vsi _int TRDI DSI ZE: Size of ThreadID signal
vsi _i nt SRCI DSI ZE: Size of SourcelD signal
vsi _i nt PKTI DSI ZE: Size of PacketID signal

Copyright 2000 - 2001 by the VS| Alliance, Inc. 94
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

A.2.2 Transactions

The transactions are divided into two groups, initiator and target specific. Thus both the initiator and the target
communication can be expressed in VCI Language. For example, a VCI monitor can write two trace files of
transactions at a particular VC Interface, one for requests and one for responses. Thisdivision isthere to facilitate
expressing split transactions. The requests can be posted without waiting for response. This way, the split
transactions can be written with a sequential language implementation. The request transactions also provide a
way to wait for the response from the target. Thus a request call completes once the response arrives. To express
split transactions with this mechanism requires that the language implementation can use parallel processes or
threads.

A.2.2.1 Transaction Configuration
vciConfig, Sets the operation code parameters for the following transactions. If not used, default values are used.

A.2.2.2 Initiator Requests

vciWait, Wait for a specified number of clock cycles, there is no response for this
vciNop, Perform an empty request (No Operation), and wait for response
vciRead, “Read acell” request

vciReadLock, “Read and lock a cell” request

vciWrite, “Write acell” request

A.2.2.3 Target Responses

vciReadResp, Respond toa Read request
vciWriteResp, Respond toa Write request
vciNopResp, Respond to a Nop request

Thefollowing message sequence charts show examples how cell requests and responses can be ordered when used
in thecontext of different VCI versions. The VCI Language does not have a concept of time, but it has a concept
of event order. Each request and response causes an event (except the Wait). The requests can be the samein each
of the examples, but the responses are different, depending on the target capabilities (split-transactions, out-of-
order, error reporting).

PV CI does not support split transactions. Thus a response always follows a request in the correct order. The
vciReadL ock becomes vciRead with the PV CI, and vciNop becomes vciWait. See Figure 47.

Initiator Target
Request 1
Request 2
Response 2

| mewsz

Figure 47: Transactionsover PVCI

Copyright 2000 - 2001 by the VSI Alliance, Inc. 95
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Initiator Target

Request 1

————Rewestz |

| Resomsel

Response 2

| Resomsed

Figure 48: Transactions over BVCI

The BVCI supports split transactions, but not out-of-order responses. Thus multiple request cells, and even
packets can be pipelined. See Figure 48.

Initiator Target
Request packet 1

)

Request packet 2

N

Response 2

.

Request packet 3

Response 3

| rewoms

Figure 49: Transactions over AVCI

AV CI adds out-of-order transactions. The response packets may be in any order independent of the requests. The
responses can be re-ordered based on source, thread, and packet identifiers. See Figure 49.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 9
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Initiator Target

Request

Response 2

Response 1

Response 3

Figure50: Transactions Over AVCI in Advanced Packet Model (One request per packet)

In the advanced packet model, Read transactions require only one request event per packet. The transaction
language is still written with multiple requests, but only the first request is executed with the advanced packet
model. See Figure 50.

A.2.3 Transaction Data Fields

Transaction data fields are necessary for performing a transaction. There are two kinds of data fields: fields that
control the execution of the transaction, and fieldsthat are sent to the target with arequest or to the initiator with
aresponse. The way this is done depends on the implementation. The most straightforward way is to convert the
transaction with its data fields into VCI signals in a test bench. Some data fields are specific to different VCI
levels, and are ignored in the BV CI and the PV CI.

The default value for each data field is 0. Depending on the language implementation, the unused values may or
may not need to be given. (For example, when targeting the code to PV CI, some data fields are obsolete) When
using transactionswritten for amore complicated V Cl with asimpler VCI (such asBV Cl transactionswith PVCI),
only the performance should change.

A.2.3.1 Data Fields Used with vciRead and vciWrite

The description of each field below uses the following format:

name

(applicable interface standard, direction of field)

Description of the datafield.

wrap
(AVCI, BVCI, sent to target)

This one-bit value defines how the addresses increment for packets with Contig asserted. WRAP = 0: addresses
do not wrap, WRAP = 1. addresses wrap.

wraplen

(AVCI, sent to target)

If WRAP = 1, and the WRAPLEN > 0, the address wraps at the boundary indicated by WRAPLEN:
* Addresses larger or equal to 2 WRAPLEN, will be mapped to Address modulo (2 WRAPLEN).
¢ Max range: 2" (2 WRPLENSIZE).

Copyright 2000 - 2001 by the VSl Alliance, Inc. 97
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

const
(AVCI, BVCI, sent to target)

This one-bit value defines if the address changes during packet. CONST =1 means that the address is constant
over packet.

plen
(AVCI, BVCI, sent to target)

This value gives the length of the packet in bytes. For BV Cl, this must be in increments of natural word length in
bytes in non-wrapped packets, anda power of two in wrapped packets. If the WRAPLEN = 0 and WRAP=1, the
address wraps as indicated by PLEN. (See Section 4.4, “BV CI Protocol.”)

cfixed
(AVCI, BVCI, sent to target)

This value indicates whether the opcode will change between packetsin achain. I1f CFIXED = 1 then the opcode
does not change If CFIXED = 0 then the opcode can be changed for each packet.

clen
(AVCI, BVCI, sent to target)

This value indicates how many packets are left in current packet chain. This counts down by each packet.

defined
(AVCI, sent to target)

This value indicates whether thereis a relationship among addresses of each cell in the transaction that follows a
predefined pattern, and is understood by both initiator and target. 1 = there is arelationship, 0= if there is not.

address
(AVCI, BVCI, PVCI, sent to target)

This 32-bit value indicates the location within the target being accessed. The address is byte-aligned, but notice
that the target may ignore the lowest address bits. The byte addressing is encoded in the byte enable.

byte enable
(AVCI, BVCI, PVCI, sent to target)

Depending on the VCI size, thisisavalue up to 32 hits. It contains the byte enabling information for the access.
The leftmost bit controls thelowest byte address of data, independent of the endianness.

wdata
(AVCI, BVCI, PVCI, sent to target)

The data to be written in the current cell isgiveninthisfield.

€op
(AVCI, BVCI, PVCI, sent to target)

Thisvalueis1 at the last cell of the packet, otherwise itis 0.

edata
(AVCI, BVCI, PVCI, not sent to target)

For read accesses data, the expected data is given in thisfield. It can be used for comparing expected and returned
data.

pktid

(AVCI, sent to target)

In asystem where out-of-order transfer completion is supported, PKTID i srequired to identify which cells belong
to a packet. This descriptor is not unique.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 98
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

trdid
(AVCI, sent to target)

TRDID isused in the case where adeviceis allowed to issue multiple outstanding transactions. It is anon-unique
descriptor of athread or alogical device.

srcid
(AVCI, sent to target)

Each initiator in asystem is assigned auniqueid, called SRCID.

A.2.3.2 Data Fields Used with vciNop

cycles
(AVCI, BVCI, PVCI, not sent to initiator)

This value gives the number of VCI clock cycles for thewait statement.

A.2.3.3 Data Fields Used with vciWriteResp, vciReadResp

reop
(AVCI, BVCI, PVCI, sent to initiator)

Thisisasinglebit value of either O or 1. It indicates | ast cell of response packet.

rerror
(AVCI, BVCI, PVCI, sent toinitiator)

The response error signal from target.

rflag
(AVCI, BVCI, PVCI, sent to initiator)

RFLAG is defined for supporting optional, user-defined response code (returned code). A specific response status
can be returned to the initiator directly using one of these flags. In the case of a system where there are two
different interpretations of user-defined flags, they will be mapped onto two different bits in the RFLAG[1:0].
This mapping is system specific.

rdata
(AVCI, BVCI, PVCI, sent to initiator)

This is the actual read data from the target.

rpktid
(AVCI, sent to initiator)

A copy of PKTID, which isreturned along with the response. It helpsidentify the originating request packet, and
reorders the packet if the system supports out-of-order transaction completion.

rtrdid
(AVCI, sent to initiator)

A copy of TRDID that is returned along with the response. It helps identify the thread of destination of the
response, if the target is multi-threaded, and the request and response are arbitrated separately.

rsrcid
(AVCI, sent to initiator)

A copy of SRCID that is returned along with the response. It hel psidentify the originator of the transaction.

Copyright 2000 - 2001 by the VSI Alliance, Inc. 99
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

A.2.4 Language Syntaxes

The following sections contain the language syntaxes.

A.2.4.1 File-Based VC Interface Language

This language is meant for generating stimulus for VCI test benches. Therefore, the language is divided into
request and response parts. The test bench can read and interpret the request language from afile, and write the
response language based on the target’s behavior. The language can be generated automatically from the high-
level language statements. Thefile-based V Cl languages are case-independent. See the examples below for usage.

<syntax> ::= <coment> “\n” | <define>*“\n” | <assignnent> “\n” | <configure>
“\n>" | <request> “\n”"| <response> “\n”

<comment> ::= “//" <string>

<define> : = “#define” <unary-expressi on>[, <unary-expressi on>]+ ..
<identifier> :=<[R][0-9]+>

<unary-expression> := <*-"|“+"| * "><val ue>

<val ue> : = <hex-val | bit-val | dec-val >

<hex-val> ::= “0x"[0-9a-fA-F] +

<dec-val > ::=[0-9] +

<bit-val>::=*“0" | “1”

<bi nary-expression> : = <identifier|value><*+"“-"|“*"|“/"|“&"|“]|"><identifi-
er| val ue>

<assignnent> := <identifier> “=" <binary-expressi on>

<configure> ::= “vci Config” <opcode> “\n”

<opcode> : = <defined> <contig> <const> <wrap> <cfixed> <plen> <clen> <wra-
pl en> [<srcid> <trdid>]

<defined> ::= <bit-val > | <binary-expression> | <identifier>

<contig> ::= <bit-val> | <binary-expression> | <identifier>

<const> ::= <bhit-val> | <binary-expression> | <identifier>

<wrap> ::= <bit-val> | <binary-expression> | <identifier>

<cfixed> ::= <bit-val> | <binary-expression> | <identifier>

<plen> ::= <value> | <bhinary-expression> | <identifier>

<clen> ::= <value> | <binary-expression> | <identifier>

<wr apl en> ::= <val ue> | <binary-expression> | <identifier>

<trdid> = <val ue> | <binary-expression> | <identifier>

<srci d> = <val ue> | <binary-expression> | <identifier>

<request> ::= <nop> “\n”

| <wait> “\n”
| <input> “\n”
| <output> “\n”

<nop> ::= “vci Nop” address [<pkti d>]

<wait> ::= “vciWait” [cycles]

<i nputcnd> ::= “vci Read”| “vci ReadlLock”

<i nput > ::= <inputcnd> <address> <be> <eop> [<edata> [<pktid>]]
<output> ::= “vciWite" <address> <be> <eop> <wdat a> [<pkti d>]
<cycl es> ::= <val ue>

<opcode> ::= <val ue>

<address> ::= <value> | <binary-expression> | <identifier>
<edata> ::= <value> | <binary-expression> | <identifier>
<wdata> ::= <value> | <binary-expression> | <identifier>

<be> ::= <value> | <binary-expression> | <identifier>

<eop> ::= <value> | <binary-expression> | <identifier>

<wrapl en> ::= <value> | <binary-expression> | <identifier>
<pktid> ::= <value> | <binary-expression> | <identifier>
<response> ::= <nop-response> “\n”

Copyright 2000 - 2001 by the VS| Alliance, Inc. 100

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

| <i nput -response> “\n”
| <output-response> “\n”

<nop-response> ::= “vci NopResp” [<rsrcid> <rpktid> <rtrdid>]

<i nput -response> :: = “vci ReadResp” <rdata> <rerror> <rflag> <reop> [<rsrcid>
<rpktid> <rtdrid>]

<out put-response> ::= “vci WiteResp” <rerror> <rflag> <reop> [<rsrcid> <rp-
ktid> <rtrdid>]

<rerror> ::= <value> | <binary-expression> | <identifier>

<rdata> ::= <value> | <bhinary-expression> | <identifier>

<rflag> ::= <value> | <binary-expression> | <identifier>

<reop> ::= <value> | <binary-expression> | <identifier>

<rpktid> ::= <value> | <binary-expression> | <identifier>

<rtrdid> = <value> | <binary-expression> | <identifier>

<rsrcid> = <value> | <binary-expression> | <identifier>

The interpreter shall have the following limitations:

» The #define statement assigns specific values to variables RO through Rxxx, by the order of the listed
values.

* Thereisalimit to the number of identifiers, which is not less than 128.
* Thereisalimit to the number of charactersin an identifier, which is not more than 5.
e Anidentifier may have more than one #define statement.
* ldentifiers keep their currently assigned values until reassigned.
» Anassignment statement can also change the values of the registers, one register at atime.
This syntax allowsthe user to set and change address spaces, and calcul ate byte enables and expected values. This

isuseful to “relocate” the transactions from a standalone operation to apply them to different instances of the VC
in a system.

If binary expressions and parameters are not used, the language becomes trivial to parse and interparty in atest
bench, but non-portable. This style fits best for automatically generated code.

A.2.42 Embedded VC Interface Language

This syntax is meant for embedding V ClI testsinto ahost language, such as C++, SystemC, or an HDL. The syntax
is presented in C++, but is easily modified for other host languages. The parameter names may be abbreviated in
case of clasheswith reserved words. The function calls may also have other, implementation-specific parameters.

Control Commands

int vciWait (vsi_int cycles);
Return value: negative value on error
Cycles: VCI clock cyclestoidle

Causes the initiator simulator to wait “cycles”-clock cycles. No traffic is generated into the VCI. Thisis not a
NOP.

int vciConfig (vsi_bit contig, vsi_bit const, vsi_bit wap, vsi_bit defined,
vsi _unsigned plen, vsi_bit cfixed, vsi_unsigned clen, vsi_unsigned w apl en[,
vsi _unsigned srcid, vsi_unsigned trdid]);

Return value; negative value on error

Contig: 1=address is contiguous, O=address not contiguous

Const: 1= address is constant, O=address not constant

Wrap: 1= address wraps, 0=address does not wrap

Plen: length of packet (0 = arbitrary length)

Cfixed: 1=fixed command over chain

Clen: number of packetsin chain

Wraplen: Wrap length (0 = plen used for wrapping)

Defined: Predefined address pattern exists

Trdid: thread identifier, non-unique

Copyright 2000 - 2001 by the VS| Alliance, Inc. 101

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Srcid: source identifier, unique in the system

This configures opcode parameters for transactions. It cen be called any time before a transaction call. If not
called, default values (all 0) are assumed. This should be called before each packet, if the clen field is used, or any
other packet header value changes.

Requests

The request calls can return data through the pointer parameters. It is not mandatory to implement return values,
especialy if the language is used to generate stimulus vectors.

int vci Nop (vsi _unsi gned address);
Return value: negative value on error
Address: target address

Thisisthe No-Operation. This creates an empty packet of one cell in the Target Address. An empty packet means
that there is no active command in the request, that is, only a handshake is performed. When mapping this call to
PV Cl, the handshakeis not performed, and the command revertsto vciWait(1). This can be used to probe whether
thetarget isalive.

i nt vci Wite(vsi _unsigned address, vsi _bit eop, vsi _bitvector be,
vsi _unsigned data [, vsi_unsigned * rerror, vsi_unsigned * rflag[,
vsi _unsigned pktid]]);

Return value: negative value on error in function call (not rerror)

Address: target address

Eop: end of packet signal

Be: byte enables, bit Oislowest address

Data: write data

Rerror: response error

Rflag: user-specified response flag

Pktid: packet identifier, non-unique

vciWrite writes one cell to the target.

i nt vci Read(vsi _unsi gned addr ess, vsi _bit eop, vsi _bitvector be,
vsi _unsi gned edat a[, vsi _unsigned * rdata, vsi _unsi gned * rerror,

vsi _unsigned * rflag[, vsi_unsigned pktid]]);

Return value: negative value on error in function call (not rerror)

Address: target address

Eop: end of packet signal

Be: byte enables

Rdata: actual returned data

Edata: expected response data
Rerror: response error

Rflag: user-specified response flag
Pktid: packet identifier, non-unique

Read one cell from target.
Responses
These response calls provide a way toimplement a behavioral interface model of aVCl target.

vci WiteResp(vsi _unsigned rerror, vsi_bit reop [, vsi_unsigned rflag[,
vsi _unsigned rsrcid, vsi_unsigned rpktid, vsi_unsigned rtrdid]]);

Rerror: response error (thiswill be returned by the requesting function)

Reop: response end of packet

Rflag: user-specified response flag

Rpktid: returned packet identifier, non-unique

Rtrdid: returned thread identifier, non-unique

Rsrcid: returned source identifier, unique in the system

Copyright 2000 - 2001 by the VS| Alliance, Inc. 102

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Thisisthe response to awrite request. It isintended for the target side of the interface. REOP should be set on the
last cell of the packet. Response identifiers can be used by the interconnect to route, and re-order the responses to
the correct Initiators.

vci ReadResp(vsi _unsigned rerror, vsi_bit reop, vsi_unsigned rdata [,
vsi _unsigned rflag[, vsi_unsigned rsrcid, vsi_unsigned rpktid, vsi_unsigned
rtrdid]]);

Rerror: response error (thiswill be returned by the requesting function)
Reop: response end of packet

Rdata: actual returned data

Rflag: user-specified response flag

Rpktid: returned packet identifier, non-unique

Rtrdid: returned thread identifier, non-unique

Rsrcid: returned source identifier, unique in the system

The same as above, but for responding to a cell read. Rdatais the data returned to the read request.

vci NopResp (vsi _unsigned rerror [, vsi_unsigned rsrcid, vsi_unsigned
rtrdid]);

Rerror: response error (this will be returned by the requesting function)

Rtrdid: returned thread identifier, non-unique

Rsrcid: returned source identifier, unique in the system

This is the response from the target for a NOP. This creates an empty response packet of one cell back to the
initiator side of the VCI. The rerror is returned to the requesting NOP.

A.2.5 VCI Language Examples
Examples with hard-coded parameters, no thread identifiers used:

STIM.TXT (The Request languagefile):

vci Wit 10

vciConfig 0 0 0 00 0O0O0O0O// one cell, undefined packet length; this is
the default

vci Wite 0x00000004 3 1 0x12345678

vci Read 0x00000004 3 1 0x12340000

vci Nop 0x00000004

vciConfig 0 0 1 0 0 32 000 0 // constant address, 32-byte packet
vci Wite 0x00000004 F 0 0x03020100
vci Wite 0x00000004 F 0 0x07060504
vci Wite 0x00000004 F 0 OxO0BOA0908
vci Wite 0x00000004 F 0 OxOFOEODOC
vci Wite 0x00000004 F 0 0x13121110
vci Wite 0x00000004 F 0 0x17161514
vci Wite 0x00000004 F 0 0x1B1A1918
vci Wite 0x00000004 F 1 Ox1F1EAD1C
vci Read 0x00000004 F 0 0x03020100
vci Read 0x00000004 F 0 0x07060504
vci Read 0x00000004 F 0O Ox0BOA0908
vci Read 0x00000004 F 0 OxOFOEODOC
vci Read 0x00000004 F 0 0x13121110
vci Read 0x00000004 F 0 0x17161514
vci Read 0x00000004 F O 0x1B1A1918
vci Read 0x00000004 F 1 Ox1Fl1E1D1C

vciConfig 0 1 0 0 0 32 000 0 // contiguous address, 32-byte packet
vci Wite 0x00000000 F 0 0x03020100
vci Wite 0x00000004 F 0 0x07060504

Copyright 2000 - 2001 by the VS| Alliance, Inc. 103
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

vci Wite 0x00000008 F 0 Ox0BOA0908
vci Wite 0x0000000C F 0 OxOFOEODOC
vci Wite 0x00000010 F 0 0x13121110
vci Wite 0x00000014 F 0 0x17161514
vci Wite 0x00000018 F 0 0x1B1A1918
vci Wite 0x0000001C F 1 Ox1F1E1D1C
vci Read 0x00000000 F 0 0x03020100
vci Read 0x00000004 F 0 0x07060504
vci Read 0x00000008 F 0 Ox0BOA0908
vci Read 0x0000000C F 0 OxOFOEODOC
vci Read 0x00000010 F 0 0x13121110
vci Read 0x00000014 F 0 0x17161514
vci Read 0x00000018 F 0 0x1B1A1918
vci Read 0x0000001C F 1 Ox1F1E1D1C
vciConfig 0 1 010320000 // contiguous address, waps at plen, 32-byte
packet

vci Wite 0x00000110 F 0 0x03020100
vci Wite 0x00000114 F 0 0x07060504
vci Wite 0x00000118 F 0 0x0BOA0908
vci Wite 0x0000011C F 0 OxOFOEODOC
vci Wite 0x00000100 F 0 0x13121110
vci Wite 0x00000104 F 0 0x17161514
vci Wite 0x00000108 F 0 0x1B1A1918
vci Wite 0x0000010C F 1 Ox1F1EAD1C
vci Read 0x00000110 F 0 0x03020100
vci Read 0x00000114 F 0 0x07060504
vci Read 0x00000118 F 0 Ox0BOA0908
vci Read 0x0000011C F 0 OxOFOEODOC
vci Read 0x00000100 F 0 0x13121110
vci Read 0x00000104 F 0 0x17161514
vci Read 0x00000108 F 0 0x1B1A1918
vci Read 0x0000010C F 1 Ox1F1E1D1C
The simulation results in the f ollowing responsefile:
RESP.TXT:

vciWiteResp 0 1

vci ReadResp 0x12340000 0 1

vci NopResp

vciWiteResp 0 0

vciWiteResp 0 O

vciWiteResp 0 0

vciWiteResp 0 0

vciWiteResp 0 0

vciWiteResp 0 0

vci WiteResp

vciWiteResp 0 1

vci ReadResp 0x03020100 0 O

vci ReadResp 0x07060504 0 O

vci ReadResp 0x0B0OA0908 0 0O

vci ReadResp OxOFOEODOC 0 O

vci ReadResp 0x13121110 0 O

vci ReadResp 0x17161514 0 O

vci ReadResp 0x1B1A1918 0 O

vci ReadResp Ox1F1E1DIC 0 1
vciWiteResp 0 0

vciWiteResp 0 0

Copyright 2000 - 2001 by the VSl Alliance, Inc. 104

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp
vci ReadResp

[oNeoNoloNe
[oNeoNoloNe

01
0x03020100
0x07060504
0x0BOA0908
O0xOFOEODOC
0x13121110
0x17161514
0x1B1A1918
Ox1F1E1D1C

QO OO0 O0OO0O
QO OO0 OO0O

01
0x03020100
0x07060504
0x0BOA0908
OxOFOEODOC
0x13121110
0x17161514
0x1B1A1918
Ox1F1E1D1C

cNeololoNoNeloNe]
POOOOOOO

[eeoNololoNoeNeNe)

VSl Alliance (OCB 2 2.0)

[cNeoNoloNoNeNe

1

Following is a part of the previous example when used with the AVCI advanced packet model. While the
parameter PUREPACKET istrue, the interpretation of the request file is different. In Read requests, only the first
line of the packet isinterpreted, and the rest are skipped. (The EOP is also set in the interface.) In Write requests,
only the control information in the first line of the packet isinterpreted. The control information of the rest of the
packet isignored. The write datais used for each line. Notice that the code itself is usable with BVCI and PVCI.
Only the interpretation with AV CI pure packet model is optimized.

STIM.TXT (The Request languagefile):
0 0 0 // constant address,
0x03020100 // Use
0x07060504 // Use
0x0BOA0908 // Use
OxOFOEODOC // Use
0x13121110 // Use

vci Config O
vci Wite 0x0
vci Wite 0x0
vciWite 0x0
vciWite 0x0
vciWite 0x0

0100
0000004
0000004
0000004
0000004
0000004

32

vciWite
vciWite
vciWite

VCi
VCi
VCi
vei
vei
vei
VCi
VCi

Read
Read
Read
Read
Read
Read
Read
Read

0x00000004

0x00000004

0x00000004
0x00000004
0x00000004
0x00000004
0x00000004
0x00000004
0x00000004
0x00000004
0x00000004

TMTTTTTTT

TMTTTTTTT

POOOOOOO

0

POOOOOOOoO

0x17161514 // Use
0x1B1A1918 // Use
Ox1F1E1D1C // Use

0x03020100 //
0x07060504 //
0x0BOA0908 //
OxOFOEODOC //
0x13121110 //
0x17161514 //
0x1B1A1918 //
Ox1F1E1D1C //

Use

Ski p
Ski p
Ski p
Ski p
Skip
Ski p
Ski p

contr ol

only
only
only
only
only
only
only
this
t hi
t hi
t hi
t hi
t hi
t hi
t hi

nnnonnon

in
dat a
dat a
data
dat a
dat a
dat a
dat a
set
i ne
ne
ne
ne
ne
ne

|
|
|
|
|
i ne

32- byt e packet
this,

fo of
field
field
field
field
field
field
field
EOP =

of
of
of
of
of
of
of
1

t hi
t hi
t hi
t hi
t hi
t hi
t hi

set EOP = 1

S

nnnnonon

The simulation results in the following response file. The stimulus and response files are thus asymmetric.

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

105

VSl Alliance (OCB 2 2.0)

RESP.TXT:

vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vci WiteResp
vciWiteResp 0 1

vci ReadResp 0x03020100
vci ReadResp 0x07060504
vci ReadResp 0x0BOA0908
vci ReadResp OxOFOEODOC
vci ReadResp 0x13121110
vci ReadResp 0x17161514
vci ReadResp 0x1B1A1918
vci ReadResp Ox1F1E1D1C

QO OO OO0o
QO OO OO0o

[eeoNololoNeNoNe)
PO OOOOQOO

A.2.6 Examples with Soft Parameters

#defi ne 0x4 0x0 Ox0 Ox1F 0x110 OxFFC // assign val ues to variables Rl through
R6

vci Config 0 0 0 0 0O 0000 0O// one cell,
t he defaul t

vciWait 10

vciWite RO 3 1 R5

vciRead RO 3 1 R5

undefi ned packet length; this is

vci Nop RO

vciConfig 0 0 1 0 0 32 0 0 0 0// constant address, 32-byte packet
vciWite RO F 0 0x03020100
vciWite RO F 0 0x07060504
vciWite RO F 0 Ox0BOA0908
vciWite RO F 0 OxOFOEODOC
vciWite RO F 0 0x13121110
vciWite RO F 0 0x17161514
vciWite RO F 0 O0x1B1A1918
vciWite RO F 1 Ox1F1E1D1C
vci Read RO F 0 0x03020100
vci Read RO F 0 0x07060504
vci Read RO F 0 0x0BOA0908
vci Read RO F 0 OxOFOEODOC
vci Read RO F 0 0x13121110
vci Read RO F 0 0x17161514
vci Read RO F 0 0x1B1A1918
vci Read RO F 1 1F1E1DiC

vciConfig 0 1 0 0 0 32 0000 // contiguous address, 32-byte packet
vciWite RL F 0 0x03020100

RL =Rl + RO

vciWite RL F 0 0x07060504

RL =Rl + RO

vciWite RL F 0 0x0BOA0908

RlL =Rl + RO

vciWite R1 F
Rl = Rl + RO
vciWite RL F
Rl =Rl + RO
vciWite R1 F
Rl =Rl + RO

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved.

OxOFOEODOC

0x13121110

0x17161514

106

VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

vciWite RL F 0 0x1B1A1918
Rl = Rl + RO

vciWite RL F 1 Ox1F1E1DiC
Rl = R2

vci Read R1 F 0 0x03020100

Rl = Rl + RO

vci Read R1 F 0 0x07060504

Rl = Rl + RO

vci Read R1 F 0 Ox0OBOA0908

Rl = Rl + RO

vci Read R1 F 0 OxOFOEODOC

Rl = Rl + RO

vciRead R1 F 0 0x13121110

Rl = Rl + RO

vciRead R1 F 0 0x17161514

Rl = Rl + RO

vci Read R1 F 0 0x1B1A1918

Rl = Rl + RO

vci Read R1 F 1 Ox1F1E1D1C

Rl = R4 & R3

R4 = R4 | R3

vciConfig 0 0 0 0 0 32 000 0 // random address, 32-byte packet
vciWite RI&R4 F 0 0x03020100
Rl = Rl + RO

vciWite RI&R4 F 0 0x07060504
Rl = Rl + RO

vciWite RI&R4 F 0 0xO0BOA0908
Rl = Rl + RO

vciWite RI&R4 F 0 OxOFOEODOC
Rl = Rl + RO

vciWite RI&R4 F 0 0x13121110
Rl = Rl + RO

vciWite RI&R4 F 0 0x17161514
Rl = Rl + RO

vciWite RI&R4 F 0 0x1B1A1918
Rl = Rl + RO

vciWite RI&R4 F 1 Ox1F1E1D1C
Rl = Rl + RO

vci Read R1&R4 F 0 0x03020100
Rl = Rl + RO

vci Read R1&R4 F 0 0x07060504
Rl = Rl + RO

vci Read R1&R4 F 0 0x0BOA0908
Rl = Rl + RO

vci Read R1&R4 F 0 OxOFOEODOC
Rl = Rl + RO

vci Read R1I&R4 F 0 0x13121110
Rl = Rl + RO

vci Read R1&R4 F 0 0x17161514
Rl = Rl + RO

vci Read R1&R4 F 0 0x1B1A1918
Rl = Rl + RO

vci Read R1&R4 F 1 Ox1F1EA1D1C
Rl = R5 & R3

R5 = R5 | R3

vciWite RI&R5 F 0 0x03020100
Rl = Rl + RO

vciWite RI&R5 F 0 0x07060504
Rl = Rl + RO

Copyright 2000 - 2001 by the VS| Alliance, Inc. 107
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

vciWite R1I&R5 0x0B0OA0908
Rl = Rl + RO

vciWite R1I&R5 OxOFOEODOC
Rl = Rl + RO

vci Wite R1&R5 0x13121110
Rl = Rl + RO

vciWite R1I&R5 0x17161514
Rl = Rl + RO

vci Wite R1&R5 0x1B1A1918
Rl = Rl + RO

vciWite RI&R5 F 1 Ox1F1E1D1C
Rl = Rl + RO

vci Read R1&R5 F 0 0x03020100

Rl = Rl + RO

vci Read R1I&R5 F 0 0x07060504

Rl = Rl + RO

vci Read R1&R5 F 0 0x0BOA0908

Rl = Rl + RO

vci Read R1&R5 F 0 OxOFOEODOC

Rl = Rl + RO

vci Read R1I&R5 F 0 0x13121110

Rl = Rl + RO

vci Read R1&R5 F 0 0x17161514

Rl = Rl + RO

vci Read R1&R5 F 0 0x1B1A1918

Rl = Rl + RO

vci Read R1&R5 F 1 Ox1F1E1D1C

A.3 High-Level Transaction Language

In the low-level language, the fields for all the signal groups in the VC Interface specification are included. As a
result, there is one call for each of the cells of data being transferred. Furthermore, the size of the VC interface
and the size of the packet that can be transferred must be known. Thus, the low-level language maps directly into
aspecific VCI implementation. In the High-Level Transaction Language, the transaction is not limited to the size
of the cell or packet, or other parameters of a particular VC Interface implementation.

This language assumes that the users have minimal information about the VC interface. The user wants to read
and write chunks of data (arbitrary-size data structures) to and from a target’s address space. It is the language
implementation’ s responsibility to know the parameters and limitations of the V CI implementation, and split the
data into chains of packets of cells that fit the particular interface. This takes alot of control away from the user,
but adds great portability. The same sequence of transaction calls can be used with all the VCI levels (PVCI,
BVCI, and AVCI). Only the efficiency of the physical transfer varies as the physical channel is changed.

The primary use for the language is in writing portable simulation stimulus. In stimulus use, the language
implementation can either translate the High-L evel Language into low-level language that the VCI test bench
readsin (this makesimplementing bi-directional difficult), or controlstest bench’sVCl signalsdirectly. Thelatter
means that the language implementation is embedded into the test-bench simulation model.

The language has two kinds of statements: channel control and data transfer. The channel control calls open a
logical channel, or thread, in which the datatransfer calls operate. Thisisintroduced into the language to separate
configuring physical parameters from actual data transfer, and to support better error checking and especially
threads (introduced in Chapter 5, “ Advanced VCI™).

Only the prototypes of the calls are defined here. The implementation of these callsis not specified, but the input
and output behavior is shown in the examples.
A.3.1

The parameters of the VCI that are implementation-constant must also ke made visible to the language
implementation. These parameters are not necessary at the transaction layer, but are used for mapping the
transaction language to the VCI language.

Interface Parameters

Copyright 2000 - 2001 by the VS| Alliance, Inc.
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

108

VSl Alliance (OCB 2 2.0)

Vsi _int CELLSIZE: VCI word length in bytes

Vsi _int MAXPLEN: maxi mum al | owed packet | ength for the VCl in bytes
Vsi _int ADDRSIZE: VCI address length in bytes

Vsi _bit BI GENDI AN: endi an transl ati on paraneter.

Vsi _bit NOENDI AN: no specified endi anness

char * VCI TYPE: “pPvCl,” “BvCl,” “AVCl”

vsi _bit CHAINING true if chaining VCI

vsi _int CLENSIZE: size of CLEN field

vsi _int PLENSIZE: size of PLEN field

vsi _int RFLAGSI ZE: size of RFLAG field

vsi _int WRLENSI ZE: size of WRLEN field

vsi _bit DCFIXED: field cfixed is tied to High/Low

vsi _bit DCONST: field const is tied to H gh/Low

vsi _bit DCONTIG field contig is tied to High/Low

vsi _bit DWRAP: field wap is tied to H gh/Low

vsi _bit DEFD: true, if support for defined transfer node (defaulting com
mand ext ensi ons)

vsi _bit EXERROR: true, if support for extended error reporting
vsi _bit PUREPACKET: true, if non-incrementing packet nodel

vsi _bit BVCIMODE: true, if in-order transactions are supported
vsi _int TRDIDSI ZE: size of Threadl D signal

vsi _int SRCIDSI ZE: size of Sourcel D signal

vsi _int PKTIDSI ZE: size of PacketlD signal

A.3.2 Transactions

In contrast to the VCI language, thereis no response language.

A.3.2.1 Transaction Configuration:

vciOpenChannel: Sts the VCI parameters for the following transactions in the opened channel. A channel
corresponds to atarget address space and athread identifier.

vciCloseChannel: Closes a channel.

Datatransfer:
vciTRead: “Read datd’
vciTWrite: “Write data”

Figure 51 illustrates how higher level transactions relate to lower levels of timing and data abstraction. The high
level transactions are non-atomic, as packet chains, whereas packets are atomic. In the figure, the two transactions
overlap in time, since the packets are interleaved. VciTRead #1 is split into a chain of two packets in the packet
layer. The transaction is completed as the last packet of a chain is processed. It is assumed that both of the
transactions have the same priority in the implementation. The implementation schedules the first packet of the
second transaction after the first packet of the first transaction. This interleaving can only happen at the packet
level, since packets are atomic. The packets are mapped into cells in the cell layer. The cells can be out-of-order
within a packet, as illustrated in the previous section. The transaction languages reside a the Transaction Layer
and Cell Layer.

If the time order of transaction completion is modeled for example, for modeling traffic in a bridge), the
transactions must be parallel processes. If the transactions are unidirectional, this is not necessary to generate
stimulus for simul ation.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 109
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Transaction #1

Transaction #2

| vciTRead |JvciTRead|

Transaction #2 completed

Transaction #1 completed

Transaction
Transaction L anguage
Loy ” X p{
Pa:ket Laya' Chain#1 Chain#2
Packet #1 of Packet #1 of Packet #2 of
transaction #1 transaction #2 transaction #1
ANA A ANA A A
IvciRead]
VCi Read
vciRead i
\ \ v \ veiReadR VCI Language
Cell Layer ™
Cell #3 of
packet #2
Cel| #2 of
packet #2
Cell #1 of
acket #2

Figure51: Normal Packet M odel

Copyright 2000 - 2001 by the VS| Alliance, Inc.

All Rights Reserved.

VSIA CONFIDENTIAL LICENSED DOCUMENT

110

VSl Alliance (OCB 2 2.0)

Transaction #1 Transaction #2 completed
Transaction #2 Transaction #1 completed
—
| vciTRead | JVC|TRead| Transaction
Transaction Language
Layer [X b
Packet Layer Chain#1 Chain#2
Packet #1 of Packet #1 of Packet #2 of
transaction #1 | | transaction #2| | transaction #1
A A AlA A AA A a
|vci Read|
vciReadR
VCI Language
Cell Layer y y Y
Cell #3 of
packet #2
Cell #2 of
packet #2
Cell #1 of
acket #2

Figure 52: Advanced Packet M odel

A.3.3 Transaction Parameters

These parameters are needed to perform a transaction. There are two kind of parameters: those that control the
execution of the transaction, and those that are sent to the target with arequest or to theinitiator with a response.
The way thisis done depends on the implementation. The most straightforward way is to convert the transaction
with its parametersinto VCI signalsin atest bench. Notice that in the transaction layer, most VCI parameters are
not relevant, because they are used only for enhancing cell -layer performance. Therefore, the only parameters that
are transported between the initiator and the target inthe transaction layer are data, address, transaction identifier,
and response. The rest are attributes to the communication channel, and are transferred only when mapping the
transactions to thepacket and cell layers

The default value for each parameter is 0. Depending on the language implementation, the unused values may or
may not need to be given. (For example, when targeting the code to PV Cl, some parameters are obsolete.) When
using transactionswritten for amore complicated V Cl with asimpler VCI (such as BV Cl transactionswith PVCI),
only the performance should change, not the functionality.

Some parameters are set with the vciOpenChannel command, and some are given with the transaction calls.

A.3.3.1 Read/Write

wrap

This one-bit value defines if the address wraps or not.

Wrap = 0: addresses do not wrap, wrap = 1: addresses wrap.

wraplen

Copyright 2000 - 2001 by the VS| Alliance, Inc. 111
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

» Addresses larger or equal to 2 * wraplen are mapped to Address modulo (2 * wraplen).
* Max range: 2 (2 WRPLENSIZE).

If wraplen = 0, the wrapping boundary is calculated from the current packet length and the address as explained
in Section 4 of this document, “Basic VCI."

const

This one-bit value defines if the address changes during packet. Const =1 means the address does not change.
Notice that the contig is not visible at this level, since the target parameters are not known. It is set by the
implementation.

defined

This value indicates whether there is relationship among addresses of each cell in the transaction that follows a
predefined pattern, and is understood by boththeinitiator and thetarget. 1 = thereisarelationship, O=thereisnot.

plen
This value gives the maximum allowed length of the packet in bytes.
cmd

This character string indicates the mode of the opened channel: “R” = read mode, “W” = write mode, “RW"” =
read-write mode, “RLW" = read-locket write mode. For example, an attempt to write to a channel that has been
opened read-only resultsin an error.

vien

The number of bytes of valid data to read and write in an address stride. For example, Stride =3, Vlen= 2 equals
two active bytes followed by three inactive bytes.

sride

The number of bytes between strides. A stride means that the address and byte enable have a defined stepping
pattern. This can be used with adefined or arandom address mode.

baddress
Indicates the lowest address of the channel’ s address space. This is a subspace within atarget.
eaddress

Indicates the highest address of the channel’ s address space. These addresses are for error detection only. In BV CI
and PV ClI, the channels cannot overlap. In AV CI, the channels may overlap if separated with athread identifier.

address
(Sent to target)

This value indicates the location within the target being accessed. The address is aligned to words defined by
number of data bytesin the interface. The byte addressing is encoded in the byte _enable, which is generated from
the lowest address bits, vlen, stride, plen, wraplen, and defined fields.

wdata

(Sent to target)

The data to be writtenisgiven in thisfield.
trdid

(Sent to target)

The thread identifier. This enumerates the virtual Initiators. It is the implementation’s responsibility to assign
correct source identifiersto each real initiator.

rerror

Copyright 2000 - 2001 by the VS| Alliance, Inc. 112
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

(Returned to initiator)

The response error signal from the target.

rdata
(Returned to the initiator)
Thisis the actual read data from the target.

A.3.4 Channel Control Calls

There can be anumber of channels open at atime (positive vsi_int range), but they may not have any overlapping
address spaces unless they are used with the AV CI. Channels are identified with an integer value, trdid. This can
be assigned dynamically, or read from the configuration of the component. Storing the channel information isleft
to the implementation. The storage can be a dynamic linked list of data structures. Getting a pointer to this
structure based on the integer identifier must be implemented within the function bodies. An example of the
dynamic data structure to store the channel parameters follows:

typedef struct ch {

vsi _int trdid; /1 Thread identifier identifies the channel
char cnd[4]; /"R, "W, “RW, RLW

vsi _int plen; /1 Maxi mum plen for channel. Mist be < MAXPLEN
vsi _bit wrap; /1 address wraps

vsi _bit wraplen; // Wap length

vsi _bit const; /1 Constant address

vsi _bit defined; // Defined address

vsi _unsigned vlen;// The nunmber of bytes to the next bl ock of data to read/
wite

vsi _unsigned stride;// The nunber of bytes of valid data to read/wite in
a stride

vsi _int baddress; // Begin address of allocated channel

vsi _int eaddress; // End address of allocated channel

struct ch * next; // Pointer to next element in the linked |ist
} channel ;
/1 This type stores pointers to the |linked Iist
typedef struct {

channel *start;

channel *end;
} channel _list;

The Channel configuration calls are as follows:
VCI Open Channel

int vci Open (vsi_int *command, vsi_bit const, vsi_bit defined, vsi_bit wap,
vsi _unsigned pl en, vsi_unsigned w apl en, vsi_unsi gned baddress, vsi_unsigned
eaddress[, vsi_unsigned stride, vsi_unsigned Vlen]).

Return value: positive integer trdid, or negative error value.

Command: null terminated array of char “R”,”"W”, “RW”, “RLW"
Const: 1= Address is constant, O = address is not constant
Defined: 1= Addressis defined, O = address is not defined

Wrap: 1 = address wraps, 0 = address does not wrap

Plen: maximum packet length over the channel

Baddress: start address of reserved address space

Eaddress: End address of reserved address space

Wraplen: wrap length (0 = plen used for wrapping)

Stride: the number of bytes to the next block of datato read/write
Vlien: the number of bytes of valid datato read/writein astride
Copyright 2000 - 2001 by the VS| Alliance, Inc. 113

All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

This command opens the channel. The first parameter is the type of transactions on the channel. R is read only,
W iswrite only, RW is read/write, and RLW is read-lock-write. Baddress is the base address, and eaddress is the
end or upper address for the channel. Vlen and stride determine the repeating be operation. Plen must be amultiple
of stride, and Vlen isthe number of bytesthat are valid within a stride. The difference between stride and vlenis
the number of bytes skipped at the end of a stride. Vlen bytes are valid starting at the first byte, and control the
byte_enable signal and address sequence. If wrap =1, then plen must be a power of 2, or wraplen > 0. The rest of
the parameters are the same as in the VCI language. This returns the trdid or error for unable to open a channel.
Possible errors include wrong plen, reserved address space, and so on.

VCI Close Channel

int vciCl ose(vsi_int trdid)

Return value: 0 on success in closing, negative on unsuccessful
trdid: channel to be closed

Thiscommand closes the channel. It returnsthe last error in the channel (positive value), or O if no error. Note that
anegative error will occur if the channel is not opened for the type of operation being done.

A.3.5 Data Transfer Calls

int vci TWite (vsi_int trdid, vsi_unsigned address vsi_unsigned tlen,
vsi _int8 *data)
Return value: last rerror

trdid: channel to be used
Address: start address of transfer
Tlen: size of datain bytes
Data: array of datato bewritten

This command writes afull transaction. It stopson thefirst error and returnsthe last rerror. Tlen is the amount of
data to be transferred (sizeof(*data)). The implementation splits the transaction into a chain of packets. The
address behavior in the resulting packets depends on the channel parameters. Access to random addresses must
be done with separate calls. The datais packed.

int vci TRead (vsi_int trdid, vsi_unsigned address, vsi_int tlen,[vsi_int8
*rdata[,vsi _int8 *edata]])
Return value: last rerror

trdid: channel to be used

Address: start address of transfer

Tlen: size of data

Rdata: array of dataread

Edata: array of expected data for debugging

This command reads a full transaction. It stops on the first error and returns the last rerror. Tlen is the amount of
datato be transferred. If edatais provided, the count is to the first bad cell of data.

When invoked, these read and write commands may in turn call the simpler packet |oad and stores multiple times
to complete the required transactions. The implementations select whether to use fixed or non-fixed packet chains
based on tlen, CELLSIZE, address, and wrap, and how these parameter fit together. The primary objective is to
lay the data transfer into the address space as the user intends it, based on address control channel parameters. As
the other parameters allow, the transfer is then mapped to packet chainsin the most efficient manner.

A.3.6 Transaction Language Examples

Example 1:

/1 In this case, the channel paraneters are stored in a struct cndstruct
channel cndstruct;

int trdidi;

/1 Define a variable for a 32-byte data vector

vsi _int8 [32] datavec;

/1l Tenporary variable for return val ues

int err;

/* Open a channel with max packet size 16 bytes, no w apping, and allocated

Copyright 2000 - 2001 by the VSl Alliance, Inc. 114
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

address range from 0x100 to Ox1FF. */

trdidl = vci Open (cmdstruct, 0, 0, O, 16, 0, 0x100, Ox1FF, 0, 0);
/* Wite 32 bytes starting from address 0x100, in channel trdidl */
err = vci TWite (trdidl, 0x100, sizeof(datavec), datavec);

/* Close the channel */

err = vci Close(trdidl);

Samein VCI Language, mapped to a 32-bit AVCI

The source identifier given by the language implementation is “1” and the thread identifier is “0.” In a 32-hit
AVCI, the transaction results in a packet chain of two 16-byte, contiguous, non-wrapped packets identified with
the packet identifier. The thread identifier defaultsto “0,” since thereisonly onethread. InaBVCI, theidentifiers
areignored.

vciConfig 0 1 0 0 0 16 1 0 1 0// Configure first packet in the chain

vci Wite 0x00000100 0x15 0O 0x12345678 0

vci Wite 0x00000104 0x15 O Ox9abcdefO O

vci Wite 0x00000108 0x15 0 0x12345678 0

vci Wite 0x0000010C 0x15 1 0x9abcdefO 0O

vciConfig 0 1 0 0 0 16 0 0 1 0// Configure the second packet in the chain
vci Wite 0x00000110 0x15 O 0x12345678 1

vci Wite 0x00000114 0x15 O 0Ox9abcdefO 1

vci Wite 0x00000118 0x15 0 0x12345678 1

vci Wite 0x0000011C 0x15 1 0x9abcdefO 1

Example 2:

/1 The channel paranmeters are again stored in a struct cndstruct

channel cndstruct;

int trdidi;

/'l Define a variable for a 16-byte data vector

vsi _int8 [16] datavec;

/1 Define a variable for a 16-byte read data vector

vsi _int8 [16] rdatavec;

/1 Tenporary variable for return val ues

int err;

/* Open a channel wi th nax packet size 16 bytes, no wapping, and all ocated
address range from 0x100 to 0x200. */

trdidl = vci Open (cnmdstruct, O, 0, 0, 16, 0, 0x100, Ox1FF, 0, 0);

/* Read 16 bytes starting from address 0x100, in channel trdidl */

err = vci TRead (trdidl, 0x100, 16, rdatavec);

/* Wite the same 16 bytes starting from address 0x120, in channel trdidl */
err = vci TWite (trdidl, 0x120, 16, datavec);

/* Close the channel */

err = vci Close(trdidl);

Samein VCI Language, mapped to a 32-bit AVCI

The source identifier given by the language implementation is “1” and the thread identifier is “0.” In a 32-bit
AVCI, the transaction results in one 16-byte, contiguous, non-wrapped read packet and one write packet. The
expected datais“0” sinceit is unknown, but the field is needed as a placeholder. The thread identifier defaultsto
“0", since thereisonly one thread. In aBVCl, the identifiers areignored.

vciConfig 0 1 00 0 16 0 0 1 0// Since the clenis 0 for both packets, this
call suffices

vci Read 0x00000100 0x15 0 0 O

vci Read 0x00000104 0x15 0 0 O

vci Read 0x00000108 0x15 0 0 O

vci Read 0x0000010C 0x15 1 0 O

vci Wite 0x00000120 0x15 0 0x12345678 1

vci Wite 0x00000124 0x15 O 0Ox9abcdefO 1

Copyright 2000 - 2001 by the VS| Alliance, Inc. 115
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

vci Wite 0x00000128 0x15 0 0x12345678 1
vci Wite 0x0000012C 0x15 1 Ox9abcdefO 1

Example 3:

/1 The channel paranmeters are again stored in a struct cndstruct

channel cndstruct;

int trdidi;

/1 Define a variable for a 16-byte data vector

vsi _int8 [16] datavec;

/1l Tenporary variable for return val ues

int err;

/* Open a channel with stride address, max packet size 16 bytes, no wrapping,
and al l ocated address range from Ox100 to Ox1FF. The stride is “wite one
byte, skip three bytes”. Notice that the stride applies only to the target
address, not to the source datavec (which is “packed”) */

trdidl = vci Open (cnmdstruct, O, 0, 0, 16, 0, 0x100, Ox1FF, 3, 1);

/* Wite the same 16 bytes starting fromaddress 0x120, in channel trdidl */
err = vci TWite (trdidl, 0x120, 16, datavec);

/* Close the channel */

err = vci Close(trdidl);

Samein VCI Language, mapped to a 32-bit AVCI

The source identifier given by the language implementation is “1” and the thread identifier is “0.” In a 32-hit
AVCI, the transaction resultsin a packet chain of four 16-byte contiguous, non-wrapped write packets with byte
enables adjusted to the stride. This is because the stride step is shorter than a cell. The packet size contains also
“punctured’ bytes.

vciConfig 0 1 00016 3 010

vci Wite 0x00000100 Ox1 0O 0x12345678 1

vci Wite 0x00000104 0x1 O Ox9abcdefO 1

vci Wite 0x00000108 0Ox1 O 0x12345678 1

vci Wite 0x0000010C Ox1 1 Ox9abcdefO 1
vciConfig 0 1 00016 2010

vci Wite 0x00000110 Ox1 O 0x12345678 2

vci Wite 0x00000114 0x1 O Ox9abcdef0 2

vci Wite 0x00000118 0x1 O 0x12345678 2

vci Wite 0x0000011C 0x1 1 Ox9abcdefO 2
vciConfig 0 1 00016 1 010

vci Wite 0x00000120 Ox1 O 0x12345678 3

vci Wite 0x00000124 0x1 O Ox9abcdef0O 3

vci Wite 0x00000128 0x1 0 0x12345678 3

vci Wite 0x0000012C 0x1 1 Ox9abcdefO 3
vciConfig 0 1 000 16 0 0

vci Wite 0x00000130 Ox1 O 0x12345678 1 4 0
vci Wite 0x00000134 0x1 O Ox9abcdefO 1 4 0
vci Wite 0x00000138 0x1 0 0x12345678 1 4 0
vci Wite 0x0000013C 0x1 1 Ox9abcdef0 1 4 0

Samein VCI Language, mapped to a 16-bit AVCI

The source identifier given by the language implementation is “1” and the thread identifier is “0”. In a 16-bit
AVCI, the transaction results in a packet chain of four 16-byte, non-contiguous, non-wrapped write packets with
byte enables and address adjusted to the stride. This is because the stride step is longer than a cell. The address
pattern could also be defined, if theinitiator and the target understand this stride.

vciConfig 0 000016 3 010
vci Wite 0x00000100 Ox1 O 0x12345678 1
vci Wite 0x00000104 0x1 O Ox9abcdefO 1

Copyright 2000 - 2001 by the VS| Alliance, Inc. 116
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

vci Wite 0x00000108 0x1 0 0x12345678 1
vci Wite 0x0000010C Ox1 1 Ox9abcdefO 1
vciConfig 0 100016 2010

vci Wite 0x00000110 Ox1 O 0x12345678 2
vci Wite 0x00000114 0x1 O Ox9abcdef0O 2
vci Wite 0x00000118 O0x1 0O 0x12345678 2
vci Wite 0x0000011C O0x1 1 Ox9abcdef0 2
vciConfig 0 100016 1010

vci Wite 0x00000120 Ox1 O 0x12345678 3
vci Wite 0x00000124 0x1 O Ox9abcdefO 3
vci Wite 0x00000128 0x1 O 0x12345678 3
vci Wite 0x0000012C 0x1 1 Ox9abcdef0O 3
vciConfig 0 1 00016 00 10

vci Wite 0x00000130 Ox1 O 0x12345678 4
vci Wite 0x00000134 0x1 O Ox9abcdefO 4
vci Wite 0x00000138 0x1 O 0x12345678 4
vci Wite 0x0000013C 0x1 1 Ox9abcdefO 4

Example4:

/1 The channel paranmeters are again stored in a struct cmdstruct
channel cndstruct;

int trdidl, trdid2

/1 Define a variable for a 32-byte data vector

vsi _int8 [32] datavec;

/1 Tenporary variable for return val ues

int err;

/* Open a channel wi th nmax packet size 16 bytes, no wapping, and all ocated
address range from 0x100 to Ox1FF. */

trdidl = vci Open (cnmdstruct, O, 0, 0, 16, 0, 0x100, Ox1FF, 0, 0);
/* Open a second channel with max packet size 16 bytes, no wapping, and
al l ocated address range from 0x200 to Ox2FF. */

trdid2 = vci Open (cmdstruct, O, 0, 0O, 16, 0, 0x200, Ox2FF, 0, 0);
/* Wite 16 bytes starting from address 0x120, in channel trdidl */
err = vci TWite (trdidl, 0x120, 16, datavec);

/* Wite 16 bytes starting from address 0x136, in channel trdidl */
err = vci TWite (trdidl, 0x136, 16, datavec);

/* Wite 16 bytes starting from address 0x220, in channel trdid2 */
err = vci TWite (trdid2, 0x220, 16, datavec);

/* Close the channels */

err vci Cl ose(trdidl);

err vci Cl ose(trdi d2);

Copyright 2000 - 2001 by the VS| Alliance, Inc. 117
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

VSl Alliance (OCB 2 2.0)

Copyright 2000 - 2001 by the VS| Alliance, Inc. 118
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

B. VCI Frequently Asked Questions

Question: What's the difference between VS| and VCI? Aren’t they the same things?

Answer: VSI isaset of all the necessary specifications needed to standardize the technical attributes that make a
VC reusable. VCI isalogical interface for connectingVCsin asystem. It is one of the standards, which together
make up the VSI.

Question: Is it mandatory to support the Default ACK, especially about supporting the single cycle read/write
operation?

Answer: The Default ACK behavior is optional, and indicated with the parameter DefACK.

Question: Can any signal be narrower than its defined size, with the upper bits tied to O (as explained for
WDATA/RDATA in Section 3.3 of this document, “Signal Definitions’)? Or isit restricted to data?

Answer: Any output signal can be less than the low-limit of signal width (if one exists) and tied to O or 1,
depending on the required functionality.

Question: Will there be atime-out condition in any of these interfaces?

Answer: Time-out is a system feature. That is, if a target does not acknowledge a request within the time-out
period, the initiator may remove the request.

Question: From timing diagrams, it seemslikeit islegal for transactions to complete in 2/3/4 cycles?

Answer: It islegal to complete in 1 to n cycles. One-cycle completion means either asynchronous acknowledge
or default acknowledge. VCI does not give an upper limit to the number of transaction cycles.

Question: Non-contiguous bytes cannot be sent across the bus in one data packet. They have to be broken into
chunks of contiguous bytes per data packet in a transaction. |s there anything wrong in this understanding?

Answer : Non-contiguous bytes can be sent in one packet, if non-existing bytes are” punctured” with byte enables.

Question: If we add a signal, and VCl-compliant initiators and targets are not expecting that signal, can we
continue to be VCI compliant because we have the mandatory signals and documentation?

Answer: If your interface works in a VCl-compliant manner without using those extra signals, you would be

compliant. That is, you are missing some performance by not using asignal that you havein theinterface, but your
system would neverthel ess work.

Question: What if we want to increase the number of bits in the PVCI interface, such as using ADDR[40:0],
DATA[127:0]?

Answer: Using signals that are wider than specified would not be compliant with the current VCI. Nothing
prevents using proprietary versions of VCI, since you can map from a 256-bit interface to a 128-bit interface with
awrapper, or use an address decoder to access smaller address spaces.

Copyright 2000 - 2001 by the VS| Alliance, Inc. 119
All Rights Reserved. VSIA CONFIDENTIAL LICENSED DOCUMENT

