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Image deblurring 

• Main goal: invert degradation of acquisition 
– Linear shift invariant system + additive noise 

– PSF of the system and type of the noise are known 

• Can be considered as a MAP estimation 
–   

 

–            : loss term – penalizing the inconsistency between 
the deblurred and the input image 

–         : regularizer term – ensures stability and defines 
some constraints 
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Image deblurring 

• Loss term (    ): 
– Typically quadratic functions of the error 

• Assumption of additive observation Gaussian noise 

– Examined the Huber and the Sum of Absolute Error as well 

• With Gaussian observation noise 

• Regularizer term (   ): 
– PSF typically is a kind of low-pass filter 

– High noise sensitivity of the deblurring in high frequencies 

– Therefore the size of the gradient penalized with this term 

– Introduced domain constraints of the intensities 
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The size of the gradient 

L2 norm: 
• Total Variation minimization 

based regularization 
• Assumes that the gradient 

image is sparse 
• Preserves edges and fine 

details 

Square of L2 norm: 
• Kind of Thikhonov 

regularization 
• Similar to a low-pass post 

filtering 
• The fine details of the 

picture are lost 
 



The proposed method 

• The optimization is based on the Alternating 
Direction Method of Multipliers algorithm. 

• Is an improved Split Bregman method: 
– Non negativity constraint is introduced on the intensities 

of the deblurred image. 

– The applied optimization method is modified in order to 
increase the rate of the convergence. 

– Defined a more general cost function that enables using 
different kind of loss functions. 

– Weighted loss terms are introduced that enables 
modelling different amount of noise for every pixel. 



Formalization of the problem 

• The formula of the primal optimization 
problem after applying the variable splitting: 

 
 

 
–              : is the loss function – penalizing the inconsistency 

–     : is the weight term of the TV prior 

–         : is the domain constraint term – its value is infinite if 
the intensities of the deblurred picture are not nonnegative 
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Formalization of the problem 

• The operators replaced by its circular counterparts: 

– The computations of the iterations can be done effectively 

– Cost of every iteration ~ 4× 2D FFT 

– If the weight matrix of the image error defined adequately 
than this change not introduce Boundary artifacts: 

PSF Weight matrix 



Definition of the Loss term 

• Weighted sum of square errors (SSE): 
– Zero mean Gaussian additive observation noise model 

– Moderate quality if there are high frequency textures 

• Weighted sum of absolute errors (SAE): 
– Assumes that the additive noise is heavy-tailed 

– Theoretically corresponds to i.i.d Laplace noise 

– Better quantitative results, but high frequency artifacts 

• Weighted Huber loss function (HLF): 
– Practically the mixture of the SAE and SSE 



Definition of the Loss terms 

• SSE 

• SAE 

• Huber  
– Change point of the 

definition is 
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Quality as function of the loss term 

• Let see an example – Gaussian noise is applied: 

Sum of absolute errors 
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Quality as function of the loss term 

• Let see an example – Gaussian noise is applied: 

Sum of squared errors 
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Conclusions of the experiments 

• Quantitative comparison with benchmark images: 

– Babara, Goldhill, Cameraman and Lena images 

– Additive Gaussian noise with different variance 

– Distortion: uniform blur / linear motion blur 

– ISNR was applied for quantifying the results 

• General conclusions: 

– Better quality of images if the domain constraint used 

– SSE is only better than SAE in too noisy cases (BSNR<25 dB) 

– In every test cases there were a Huber function based 
solution which was the best 

• There exist change point value which  … 



Convergence properties of the 
optimization 

• Convergence properties of the ADMM: 

– If the objective function is proper, closed and convex it 
converges to the solution in finite number of iterations 

– The speed significantly depends on the value of the hyper- 
parameters (AL penalty weights) 

• How to calculate the optimal values: 

– Technically and theoretically it’s very difficult (impossible?) 

– Instead of this, these weights are adjusted automatically at 
the end of every iteration: 

• In order to equalize the norms of the primal and the 
dual residuals 



Automatic penalty weight modification 

• Strictly accelerates the convergence rate in the case 
of every examined loss term: 
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Thank you for your kind attention! 



Alternating Direction Method of 
Multipliers (ADMM) 

• An improved iterative dual ascent method: 

– Utilize the idea of dual decomposition 

– Improvement by introducing new tags to the cost 

• Penalizing the primal feasibility gap  

– Effective if the criteria function can be 
decomposed into easily optimizable parts 

• E.g. parts which minimum can be calculated analytically 

– Also the optimization method of the Split 
Bregman algorithm 

 



Alternating Direction Method of 
Multipliers (ADMM) 

• Let see an example: 
– First step –  introduce penalty of primal feasibility gap: 

 

 
 

– Then the dual problem optimized iteratively: 

 
1. Minimizing over the primal variables one by one 

2. Updating the dual variable by gradient ascend step 

3. Optional – adjustment of the AL penalty weight 
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