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Agenda 

 Background 

 Attacking approaches 

 Defending approaches 

 Verification 

 Demo 
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Adversarial attack 

 Adversarial example: „a pair of inputs x; x’ is an 
adversarial example for a classifier, if a reasonable person 
would say they are of the same class but the classifier 
produces significantly different outputs.” 

 „they’re like optical illusions for machines” 
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BACKGROUND 
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Fast gradient sign method (FGSM) 

 Ian J. Goodfellow, Jonathon Shlens & Christian 
Szegedy: Explaining And Harnessing Adversarial 
Examples 

 

 

 Pixel-wide perturbation in the direction of 
gradient 

 Computed in one step  very efficient 
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Targeted-FGSM 

 Alexey Kurakin, Ian J. Goodfellow, Samy Bengio: 
Adversarial Examples In The Physical World 

 

 

 

 In the negative direction in respect to the target 
class 
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Iterative-FGSM 

 Alexey Kurakin, Ian J. Goodfellow, Samy Bengio: 
Adversarial Machine Learning At Scale 

 

 

 

 

 Smaller steps 

 Higher success rate in white box attacks 
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NIPS 2017 Competition 

 „Adversarial Attacks and Defences” Kaggle 
competition in 2017 by Google Brain 

 

 3 categories: 

o targeted adversarial attack,  

o non-targeted adversarial attack  

o and defense against adversarial attacks 
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Momentum Iterative-FGSM 

 Tsinghua University, Intel Labs China: Boosting 
Adversarial Attacks with Momentum 

 Good transferability 

 Performs well in  
black box attacks  
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Attack Ensemble Models 

 What if there are more than models? 
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Types of Adversarial Attack 

 White-box attack 

o Attacker has access to the model’s parameters 

 Black-box attack 

o No access to parameters, gradients 

o Uses a different model or no model 

o With hope that the examples will transfer to the target 
model 
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Examples of Adversarial Attack 

 One Pixel Attack 

 Physical Adversarial Examples 

 Adversarial Patch 

 Examples Fool Both Human and Computer 

 Unrecognizable examples 

 Adversarial Attack in Reinforcement Learning 

 Robust Adversarial Examples 
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One Pixel Attack for Fooling Deep Neural Networks 

 Limited scenario: only 
one pixel is modified 
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Adversarial Examples in the Physical World 

 Alexey Kurakin, Ian J. Goodfellow, Samy Bengio 

 Attacks also work in real life 

14 



Adversarial Examples in the Physical World 
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Adversarial Patch 
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Adversarial Examples that Fool Both Human and Computer 
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High Confidence Predictions for Unrecognizable Images 

 Unrecognizable for humans, but „easily 
recognized” by DNNs 

 Evolutionary algorithms are used 
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Adversarial Attack in Reinforcement Learning 

 Widely used deep reinforcement learning 
algorithms are vulnerable too 
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Are they robust? 
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Scale-Invariant Adversarial Examples 
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Transformation-Invariant Adversarial Examples 
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Examples of Defenses 

 Adversarial Training 

 Defensive Distillation 

 Gradient Masking 

 Denoiser 

23 



Adversarial Training 

 Algorithm: 

o Generate a lot of adversarial examples 

o Retrain the model not to be fooled by them 

o Do this iteratively 

 

 Danger of overfitting 

 Less effective against black-box attacks  
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Defensive Distillation 

 Train a new model with a pretrained model’s 
output probalities 

 Inspired by Geoffrey Hinton’s knowledge 
compressing paper 
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Gradient Masking – a failed defense 

 Deny the attacker’s access to a useful gradient 

 „Most likely class” output mode, a smooth change 
in input doesn’t change the output 

 However, the model is not more robust, just fewer 
clues to finding the holes 
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High-Level Representation Guided Denoiser 

 Feature guided denoiser 

o Denoising U-Net (denoising autoencoder with lateral 
connections) 

o Learning objective:  
adversarial noise 

 NIPS 1st place! 

 

 More robust to white-box and black-box attacks 

 Can be trained on small subset of the images 

 Can be transferred to defend other models 
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The problems with defending 

 It requires models to produce good outputs for 
every possible input 

 Techniques are not adaptive 

 

 

 But there are some tools… 
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Tools 

 Cleverhans 

o Ian J. Goodfellow and Nicolas Papernot 

o Tool for developing more robust models 

o Attacking and defending techniques implemented 

 Darkon 

o Helps understanding 
the decision of DNNs 

o Filters bad training 
examples 

o Grad-CAM 
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Tools 

 

 

 

 

 LIME 

 Helps  
interpretability 
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VERIFICATION 
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Verification 

 Formal verification analyzes if the formal model 
satisfies the specification (properties) 

 Problems, when applied to AI 
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Formal 
model 

Formalized 
property 

Verification 

Ok Counterexample 

Real-life 
system 

How to formalize 
properties? 

How to formalize 
the working of AI? 

What kind of 
algorithms to use? 



DeepXplore 

 Differential testing approach 

o Running more versions of the same program (in our 
case: DNN) 

 No difference found 

o Adversarial example generation 

o Image transformations on the input 

 Two objectives 

o Modify the output of the target model, while keeping 
the original output of the other models 

o Increase the neuron coverage of the neural network 
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Searching for misclassified images 
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Domain specific 
constraints 

Adversarial attack (DeepXplore workflow) 
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DNNs under test 
Gradients of outputs 

and neurons 



Evaluation 

 Retraining with the generated samples 

 Critical situation and counter-examples can be found 
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Future Work? 

 Active research area 

o Join us! 

 Demonstrator development 

oMoDeS3 intelligent control 

o Industrial partners 

 Project laboratory, Student scientific report (TDK) 

 International collaboration 
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THANK YOU 
FOR YOUR ATTENTION! 
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DEMO 
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