Adversarial attacks in practice

Gábor Rabatin

Budapest University of Technology and Economics Fault Tolerant Systems Research Group

Agenda

- Background
- Attacking approaches
- Defending approaches
- Verification
- Demo

Adversarial attack

Adversarial example: "a pair of inputs x; x' is an adversarial example for a classifier, if a reasonable person would say they are of the same class but the classifier produces significantly different outputs."

"they're like optical illusions for machines"

Fast gradient sign method (FGSM)

 Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy: Explaining And Harnessing Adversarial Examples

$$x^{adv} = x + \varepsilon \cdot \operatorname{sign}(\nabla_x J(x, y_{true})),$$

- Pixel-wide perturbation in the direction of gradient
- Computed in one step \rightarrow very efficient

Targeted-FGSM

 Alexey Kurakin, Ian J. Goodfellow, Samy Bengio: Adversarial Examples In The Physical World

$$x^{adv} = x - \varepsilon \cdot \operatorname{sign}(\nabla_x J(x, y_{target})),$$

 In the negative direction in respect to the target class

Iterative-FGSM

 Alexey Kurakin, Ian J. Goodfellow, Samy Bengio: Adversarial Machine Learning At Scale

$$x_0^{adv} = x, \quad x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot \operatorname{sign}(\nabla_x J(x_t^{adv}, y)).$$

- Smaller steps
- Higher success rate in white box attacks

NIPS 2017 Competition

 "Adversarial Attacks and Defences" Kaggle competition in 2017 by Google Brain

- 3 categories:
 - o targeted adversarial attack,
 - non-targeted adversarial attack
 - and defense against adversarial attacks

Momentum Iterative-FGSM

- Tsinghua University, Intel Labs China: Boosting Adversarial Attacks with Momentum
- Good transferability
- Performs well in black box attacks

Algorithm 1 MI-FGSM

Input: A classifier f with loss function J; a real example x and ground-truth label y;

Input: The size of perturbation ϵ ; iterations T and decay factor μ . Output: An adversarial example x^* with $||x^* - x||_{\infty} \le \epsilon$.

1:
$$\alpha = \epsilon/T$$
;

2:
$$g_0 = 0; x_0^* = x;$$

- 3: for t = 0 to T 1 do
- 4: Input x_t^* to f and obtain the gradient $\nabla_x J(x_t^*, y)$;
- 5: Update g_{t+1} by accumulating the velocity vector in the gradient direction as

$$g_{t+1} = \mu \cdot g_t + \frac{\nabla_x J(x_t^*, y)}{\|\nabla_x J(x_t^*, y)\|_1};$$
 (6)

6: Update x_{t+1}^* by applying the sign gradient as

$$\boldsymbol{x}_{t+1}^* = \boldsymbol{x}_t^* + \alpha \cdot \operatorname{sign}(\boldsymbol{g}_{t+1}); \tag{7}$$

7: end for

8: return $x^* = x_T^*$.

Attack Ensemble Models

What if there are more than models?

Algorithm 2 MI-FGSM for an ensemble of models

Input: The logits of K classifiers $l_1, l_2, ..., l_K$; ensemble weights w_1, w_2, \dots, w_K ; a real example x and ground-truth label y; **Input:** The size of perturbation ϵ ; iterations T and decay factor μ . **Output:** An adversarial example x^* with $||x^* - x||_{\infty} \le \epsilon$. 1: $\alpha = \epsilon/T$; 2: $g_0 = 0; x_0^* = x;$ 3: for t = 0 to T - 1 do Input x_t^* and output $l_k(x_t^*)$ for k = 1, 2, ..., K; 4: Fuse the logits as $l(x_t^*) = \sum_{k=1}^{K} w_k l_k(x_t^*)$; 5: Get softmax cross-entropy loss $J(x_t^*, y)$ based on $l(x_t^*)$ 6: and Eq. (9); Obtain the gradient $\nabla_{\boldsymbol{x}} J(\boldsymbol{x}_t^*, y)$; 7:

- 8: Update g_{t+1} by Eq. (6);
- 9: Update x_{t+1}^* by Eq. (7);
- 10: end for
- 11: return $x^* = x_T^*$.

$$J(x,y) = -\mathbf{1}_y \cdot \log(\operatorname{softmax}(l(x))),$$

(9)

Types of Adversarial Attack

- White-box attack
 - Attacker has access to the model's parameters
- Black-box attack
 - No access to parameters, gradients
 - Uses a different model or no model
 - With hope that the examples will transfer to the target model

Examples of Adversarial Attack

- One Pixel Attack
- Physical Adversarial Examples
- Adversarial Patch
- Examples Fool Both Human and Computer
- Unrecognizable examples
- Adversarial Attack in Reinforcement Learning
- Robust Adversarial Examples

One Pixel Attack for Fooling Deep Neural Networks

 Limited scenario: only one pixel is modified

HORSE DOG(88.0%)

SHIP AIRPLANE(62.7%)

CAT DOG(78.2%)

Planetarium Mosque(7.81%)

Adversarial Examples in the Physical World

- Alexey Kurakin, Ian J. Goodfellow, Samy Bengio
- Attacks also work in real life

Adversarial Examples in the Physical World

Adversarial Patch

YETEM

Adversarial Examples that Fool Both Human and Computer

High Confidence Predictions for Unrecognizable Images

- Unrecognizable for humans, but "easily recognized" by DNNs
- Evolutionary algorithms are used

Adversarial Attack in Reinforcement Learning

 Widely used deep reinforcement learning algorithms are vulnerable too

Are they robust?

YETEM

Scale-Invariant Adversarial Examples

Transformation-Invariant Adversarial Examples

Examples of Defenses

- Adversarial Training
- Defensive Distillation
- Gradient Masking
- Denoiser

Adversarial Training

Algorithm:

- Generate a lot of adversarial examples
- Retrain the model not to be fooled by them
- Do this iteratively

- Danger of overfitting
- Less effective against black-box attacks

Defensive Distillation

- Train a new model with a pretrained model's output probalities
- Inspired by Geoffrey Hinton's knowledge compressing paper

Gradient Masking – a failed defense

- Deny the attacker's access to a useful gradient
- "Most likely class" output mode, a smooth change in input doesn't change the output
- However, the model is not more robust, just fewer clues to finding the holes

(a) Defended model

(b) Substitute model

High-Level Representation Guided Denoiser

- Feature guided denoiser
 - Denoising U-Net (denoising autoencoder with lateral connections)
 - Learning objective: adversarial noise
- NIPS 1st place!

- More robust to white-box and black-box attacks
- Can be trained on small subset of the images
- Can be transferred to defend other models

The problems with defending

- It requires models to produce good outputs for every possible input
- Techniques are not adaptive

But there are some tools...

Tools

Cleverhans

- Ian J. Goodfellow and Nicolas Papernot
- Tool for developing more robust models
- Attacking and defending techniques implemented

Darkon

- Helps understanding the decision of DNNs
- Filters bad training examples
- Grad-CAM

Tools

LIME

 Helps interpretability

VERIFICATION

Verification

 Formal verification analyzes if the formal model satisfies the specification (properties)

DeepXplore

- Differential testing approach
 - Running more versions of the same program (in our case: DNN)
- No difference found
 - Adversarial example generation
 - Image transformations on the input
- Two objectives
 - Modify the output of the target model, while keeping the original output of the other models
 - Increase the neuron coverage of the neural network

Searching for misclassified images

Adversarial attack (DeepXplore workflow)

Evaluation

- Retraining with the generated samples
- Critical situation and counter-examples can be found

Future Work?

- Active research area
 o Join us!
- Demonstrator development

 MoDeS3 intelligent control
 Industrial partners
- Project laboratory, Student scientific report (TDK)
- International collaboration

THANK YOU FOR YOUR ATTENTION!

ETEM