Fourier térbeli analízis, inverz probléma

Orvosi képdiagnosztika 5-7. ea. 2017 ősz

6. Előadás tartalma

- Spektrumszivárgás
- Képfeldolgozás frekvencia tartományban:
 - 2D Spektrum gépi ábrázolása
 - Szűrések frekvenciatartományban
 - Spektrumképek értelmezése

- DFT kapcsolata a DTFT-vel és a DFS-el:
 - Impliciten cirkuláris jelet feltételez (DFS)
 - Tegyük fel, hogy az eredeti jelünk (végtelen terjedelmű) véges részét tudtuk mintavételezni:

$$h[n] = rect_T[n], y[n] = y_{\infty}[n] \cdot h[n]$$

- Ideális esetben: $Y_{(k)} = Y_{\infty} (k \cdot \Delta \omega)$
- A valóságban: $Y_{(k)} = 1/2\pi \cdot (Y_{\infty} * H)(k \cdot \Delta \omega)$
- Cél lenne a DTFT spektrumot szivárgás nélkül mintavételezni: $Y_{(k)} \coloneqq Y_{\infty} (k \cdot \Delta \omega)$

- DFT kapcsolata a DTFT-vel és a DFS-el:
 - Impliciten cirkuláris jelet feltételez (DFS)

$$h[n] = rect_T[n], y[n] = y_{\infty}[n] \cdot h[n]$$

- Ideális esetben: $Y_{(k)} = Y_{\infty} \left(k \cdot \Delta \omega \right)$
- A valóságban: $Y_{(k)} = 1/2\pi \cdot (Y_{\infty} * H)(k \cdot \Delta \omega)$
- Cél lenne a DTFT spektrumot szivárgás nélkül mintavételezni: $Y_{(k)} \coloneqq Y_{\infty} (k \cdot \Delta \omega)$

- Tehát a megfigyelt jel DFT spektruma:

 $Y_k = 1/2\pi \cdot (Y * H)(k \cdot \Delta \omega)$

– h[n] az úgynevezett ablak függvény

• Ha expliciten nem ablakozunk, akkor: $h[n] = rect_T[n]$

Pl.: T = 50

Kék görbe: rect ablak DTFT spektrum amplitúdója

Piros pontsor: rect ablak DFT spektrum amplitúdója

Mikor nincs spektrumszivárgás?

- DFT előtti ablakozás:
 - Képtérben az általunk definiált h[n]-el szorzunk
 - Ablakfüggvények tulajdonságai:

Koherens mintavételezés

• <u>Periodikus</u> jelből <u>egész számú periódusnyit</u> mintavételezünk (y_N) : $N/f_s = k/f$, $k \in Z_+$

-f: periodikus jelünk frekvenciája, N: minták száma

- N pontos négyzetes ablak DTFT spektruma:
 - $H_{rect} = \sin(\omega/\Delta f)/(\omega/\Delta f)$
 - $H_{rect}\left(k\cdot\Delta f\right) = \delta_{k,0}$ ha $k \in \mathbb{Z}$
 - $Y_s(\omega) = 0$, ha $\omega \neq k \cdot \Delta f \Big|_{k \in \mathbb{Z}}$
- Tehát a DFT által mintavételezett frekvenciákon nem torzul az ablakozás miatt a DTFT spektruma
- Különben Spektrumszivárgás.

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

- Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$
 - Mintavételezzük ($y_{\infty}[\cdot]$): $f_s = 1 \text{kHz}$, $N = \infty$

Mivel a mintavételi törvényt nem sértjük meg:

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

– Mintavételezzük (y_{100}): $f_s = 1$ kHz, N = 100

– Megfigyelési ekvivalens: $(y_{\infty} \cdot \text{rect}_{100})[\cdot]$

Implicit ablak DTFT spektrumának részlete:

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

– Mintavételezzük (y_{100}): $f_s = 1 \text{kHz}$, N = 100

– Megfigyelési ekvivalens spektruma: $Y_{100} \propto Y_{\infty} * H_{rect}$

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

– Mintavételezzük (y_{100}): $f_s = 1 \text{kHz}$, N = 100

– Megfigyelési ekvivalens spektruma: $Y_{100} \propto Y_{\infty} * H_{rect}$

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

– Mintavételezzük (y_{100}): $f_s = 1$ kHz, N = 100

- DFT által "látott" jel: $y_{100}[n] = (y_{\infty} \cdot h_{Rect})[mod_{100}(n)]$

Spektrumszivárgás – nem koherens mintavételezés, Hamming ablak

- Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$
 - Mintavételezzük (y_{100}): $f_{\rm s}$ =1kHz, N =100
 - DFT által "látott" jel: $y_{100}[n] = (y_{\infty} \cdot h_{Ham})[mod_{100}(n)]$

Spektrumszivárgás – nem koherens mintavételezés, Hamming ablak

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

– Mintavételezzük (y_{100}): $f_s = 1 \text{kHz}$, N = 100

– Megfigyelési ekvivalens spektruma: $Y_{100} \propto Y_{\infty} * H_{Ham}$

Koherens mintavételezés

- Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$
 - Koherensen mintavételezzük (y_{200}): $f_s = 1 \text{kHz}$, N = 200
 - DFT által "látott" jel: $y_{200}[n] = y_{\infty}[mod_{200}(n)] = y_{\infty}[n]$

Spektrum koherens mintavételezés esetén

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

– Mintavételezzük (y_{200}): $f_s = 1 \text{kHz}$, N = 200

- Megfigyelési ekvivalens spektruma: $Y_{200} \propto Y_{\infty} * H_{rect}$ $Y_{200}(0) = \int Y_{\infty}(\tau) \cdot 1/2\pi H_{rect}(0-\tau) d\tau$ Piros: ablak normált spektruma

Kék: folytonos jel spektruma

Fekete: N=200 mintavétellel előálló jel spektrumának DC komponense (log(0))

Spektrum koherens mintavételezés esetén

• Adott folytonos jel: $y(t) = \sin(2\pi \cdot t \cdot 15)$

– Koherensen mintavételezzük (y_{200}): $f_s = 1$ kHz, N = 200

– Megfigyelési ekvivalens spektruma: $Y_{200} \propto Y_{\infty} * H_{rect}$

Koherensen mintavett / ablakozott, nem koherensen mintavett jelek spektruma

Zöld: koherensen mintavételezett jel spektruma, kék: Hamming ablakos, piros: téglalap ablakos spektrum

2D DFT

Többi transzformáció esetén is hasonló a többdimenziós eset

Analízis irány: —

$$F_{u,v} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] \exp\{-2\pi j \cdot (u \cdot m/M + v \cdot n/N)\} =$$

=
$$\sum_{m=0}^{M-1} \left(\sum_{n=0}^{N-1} f[m,n] \cdot \exp\{-2\pi j \cdot (v \cdot n/N)\}\right) \exp\{-2\pi j \cdot (u \cdot m/M)\}$$

- Tulajdonságok:
 - Periodikus: [M,N] szerint

– Valós jel esetén:
$$F_{u,v} = \overline{F_{-u,-v}} = \overline{F_{M-u,N-v}}$$

• Ha M, N páros:
$$F_{M/2+u,N/2+v} = F_{M/2-u,N/2-v}$$

Spektrum hullámfrontos interpretációja

2D DFT spektrum

• Spektrum blokkjai:

2D DFT spektrum gépi ábrázolása

• Konjugált szimmetria valós jelek esetén:

0	1	2	3	4	3	2	1
5	6	7	8	9	33	32	31
10	11	12	13	14	30	29	28
15	16	17	18	19	27	26	25
20	21	22	23	24	23	22	21
15	25	26	27	19	18	17	16
10	28	29	30	14	13	12	11
5	31	32	33	9	8	7	6

M=N=8

real x x Conjugate pairs

Nyquist frekvenciához tartozó komponens

0	1	2	3	4	4	3	2	1
5	6	7	8	9	40	39	38	37
10	11	12	13	14	36	35	34	33
15	16	17	18	19	32	31	30	29
20	21	22	23	24	28	27	26	25
20	25	26	27	28	24	23	22	21
15	29	30	31	32	19	18	17	16
10	33	34	35	36	14	13	12	11
5	37	38	39	40	9	8	7	6

M=N=9

2D DFT spektrum

- Általában a DC komponenst "csavarjuk" középre:
 - Ampl. moduláció: $g[m,n] = f[m,n] \cdot (-1)^{(m+n)}$

2D DFT Számolási tulajdonságok

- 1D DFT komplexitása:
 - Direkt módszer: O(N^2)
 - FFT: O(N×log(N)), hatékonyan számítható, ha N 2 hatvány (radix-2 Cooley-Tukey)
- 2D DFT komplexitása (N×N-es képre):
 - Direkt számítás: O(N^4)
 - Szeparálással: O(N^3)
 - Szeparálás + FFT: O(N^2×log(N))
- Half Complex ábrázolással helyben tárolható!

2D DFT Vizuális értelmezés

 Lényegében egy bázis transzformáció ortogonális bázisokra (szinuszos hullámok)

Spektrum amplitudója:

Képek spektrumának jellemzői

• Alacsony frekvenciákon nagy energia:

Spektrum amplitúdója logaritmikus skálán

2D DFT konvolúciós tétele:

• DFS- es analógia – cirkularitás:

 $- (f \otimes g)[n] = \sum_{m=0}^{N} f[m] \cdot g[\operatorname{mod}_{N}(n-m)] = (f'*g')[n]$ $- f'[n] = f[\operatorname{mod}_{N}(n)], \operatorname{mig} g'[m] = g[\operatorname{mod}_{N}(m)]$

- Mit tegyünk, ha *f* **g*-t akarjuk DFT-vel számolni?
 - Terjesszük ki f és g méretét [N+M] hosszúra:
 - Ezt időtartomány / síktartományban is meg kell tenni
 - Általános módszerek: 0-val paddelés, kép széleire tükrözés, alul-áteresztő szűréseknél súlyozás, kiterjesztés a kép szélső pixelének intenzitásával, stb.
 - 5×5-ös kernel esetén már gyorsabb

Konvolúció tétel fontossága

• Lineáris szűrések frekvenciatérben:

|F(u,v)|

|G(u,v)|

2D DFT Példa – periodikus textúra

ampl. moduláció

Periodikus mintázat ⇔ csúcsok a spektrumban:

2D DFT példa – rekonstrukció spektrum amplitúdóból és fázisból

2D DFT példa – spektrum amplitúdójából rekonstruált kép

2D DFT példa – spektrum fázisából rekonstruált kép

Polár koordinátás DFT

- Motiváció:
 - Radon transzformáció és annak invertálása
 - Regisztráció: elforgatás és eltolás könnyen számolhatóvá válik
- Számítása folytonos eset:
 - $F\{\theta,\rho\} = \iint f(x,y) \cdot \exp\left(-2\pi j \cdot \rho \cdot \left(x \cdot \cos\left(\theta\right) + y \cdot \sin\left(\theta\right)\right)\right) dy dx$
 - Nem szeparábilis
 - Fourier vetítősík tétel

 Majd a rekonstrukcióknál
 bizonyítjuk is!
 - Spektrum vonal profiljai ⇔ Radon transzformáció 1D Fourier transzformáltjai

Digitális képek átlagos energiaspektruma

Frekvenciatartomány és emberi látás

• Campbell-Robson kontraszt érzékenységi görbe:

8. Előadás tartalma

- Lineáris szűrők:
 - Klasszikus szűrők súly és átviteli függvénye
 - Gibbs jelenség
- Inverz probléma dekonvolúció:
 - Inverz probléma formális felírása
 - Dekonvolúció nehézsége
 - Közismert algoritmusok: Wiener inverz szűrés,
 RLA/ ML-EM, MAP becslés, és ezek kapcsolataik

Szűrők idő és frekvencia tartományban

Ideális szűrők

• Amplitúdó éles vágásánál Gibbs jelenség:

Gibbs gyűrű effektus

- Gibbs jelenség elkerülhető "sima" átmenetű szűrőkkel:
 - Butterworth szűrő: adott sávkorlát mellett a legsimább ampl. spektrumú lineáris szűrő
 - Gauss szűrő: alkalmazásával nincs Gibbs artefekt

Reconstruction of the periodic square waveform with 1, 3, 5, 7, 9 sinusoids

Gibbs gyűrű effektus

Inverz probléma

• Megfigyelési modell (zajos LTI): $g = h * f + \eta$

-h-t (avagy a PSF-t) mi befolyásolhatja?

- Páciens bemozdulása a felvételek készítése alatt
- Out-of-focus elrendezés
- Szóródó fotonok képek rögzítése során
- Jelen előadás során $f, g \in R^2_+$ és $\eta \in R^2$:

 $\bullet f$ a vizsgált 3D objektum projekciója

• Alapötlet – direkt módszer:

– Dekonvolúció frekvenciatérben: $F_{(u)} = (G/H)_{(u)}$

Inverz probléma statisztikai interpretációja

- Cél megbecsülni $P{f}$ -et:
 - Maximum likelihood módszer:
 - $f_{ML}^* = \arg \max_{f} \left\{ P\left\{ g \mid f \right\} \right\}$
 - Gyakorlatban majdnem mindig $P\{g|f\} = P_{\eta}\{g-h*f\}$ és az $f_{ML}^* = \arg\min\left\{-\log\left\{P\{g|f\}\right\}\right\}$ -t szoktuk keresni – Maximum a posterior (MAP) becslés:
 - $f_{ML}^* = \arg\max_{f} \left\{ P\left\{f \mid g\right\} \right\} = \arg\max_{f} \left\{ P\left\{g \mid f\right\} \cdot P\left\{f\right\} \right\}$
 - Gyakorlatban ezeket a szélsőérték keresési problémákat is negatív logaritmálás után oldjuk meg.

Direkt dekonvolúció zajérzékenysége

- Problémák a direkt módszerrel:
 - PSF-et nem ismerjük pontosan $\tilde{H} \neq H$
 - $\tilde{F} = G / \tilde{H} = F \circ (H / \tilde{H}) + N / \tilde{H} \neq F$
 - a PSF általában alul-átéresztő jellegű
 - magas frekvenciákon N_{\cdot}/\widetilde{H} dominál (~0-val osztás)

с

a: elmosott kép

b: direkt
dekonvolúció
eredménye, ha
nincs additív zaj

c: eredmény ha van additív zaj

Csonkolt dekonvolúció

 Azon frekvenciákon, melyeken az MTF alacsony 0 legyen az eredmény $- \tilde{F}_{(u)} = \begin{cases} G_{(u)} \cdot / H_{(u)} & |H_{(u)}| > \varepsilon \\ 0 & egyébként \end{cases}$

Direkt dekonvolúció eredménye

Wiener inverz-szűrés

• Várható értékben legpontosabb szűrő:

$$- F_{(u)}^{Wiener} = H_{(u)}^{Wiener} \cdot G_{(u)}$$
$$- f^{Wiener} = \arg \min \left\{ E \left\{ \left\| f^{Wiener} - f^{valodi} \right\|_{2}^{2} \right\} \right\}$$

– A matematikai levezetést hanyagolva:

$$H_{(u)}^{Winer} = \frac{H_{(u)}^{*}}{\left|H_{(u)}\right|^{2} + E\left\{\left|N_{(u)}\right|^{2}\right\} / E\left\{\left|F_{(u)}\right|^{2}\right\}}$$

– Interpretáció:

$$H_{(u)}^{Winer} \approx \begin{cases} 1/H_{(u)} & |SNR_{(u)} >> 1 \\ 0 & |SNR_{(u)} << 1 \end{cases} \qquad SNR_{(u)} = \sqrt{\frac{\left|H_{(u)}\right|^{2} E\left\{\left|F_{(u)}\right|^{2}\right\}}{E\left\{\left|N_{(u)}\right|^{2}\right\}}} \end{cases}$$

Wiener inverz szűrés

- Az eredmény (*f*^{Wiener}) gyakran nem realisztikus:
 - Negatív intenzitások is előfordulnak (negatív fluxus?)
 - Nagyfrekvencián a hirtelen romló SNR Gibbs artefektet generál
- SNR gyakran nem mérhető ki

Wiener szűrés eredménye: jobb részletgazdagság, de a gyűrűk egy része megmaradt

Eljárások illusztrálása -0-

Eljárások illusztrálása -1-

Csonkolt dekonvolúció

Wiener inverz szűrés

Kényszermentes ML becslés

• Additív Gauss zaj esete $(\eta \in \aleph(0, W^{-1}))$:

 $- f_{ML}^* = \arg \max_{f} \left\{ \mathbf{K} \cdot \exp\left(-\left(g - H' \cdot f\right)^T \cdot W/2 \cdot \left(g - H' \cdot f\right)\right) \right\}$

• H' a rendszer torzításának mátrixa, tehát: $h * f = H' \cdot f$

- Minimalizáljuk a negatív log likelihood függvényt:
 - $L(f) = (g H' \cdot f)^T \cdot W/2 \cdot (g H' \cdot f)$
 - Mivel $H'^{\mathrm{T}} \cdot W \cdot H$ pozitív szemidefinit, ezért $L(\cdot)$ konvex.
 - Tehát $\nabla L(f_{ML}^*) = 0$ kényszer definiálja az optimum helyet $f_{ML}^* = (H'^T \cdot W \cdot H')^{-1} \cdot H'^T \cdot W \cdot g$ ún. súlyozott LS becslés

Kényszermentes ML becslés példa

 Stacionárius, 0 várható értékű Gauss megfigyelési zaj esete :

-
$$Cov(g) = \sigma^2 \cdot I$$
, tehát $W = \sigma^{-2} \cdot I$
- $f_{ML}^* = (H'^T \cdot W \cdot H')^{-1} \cdot H'^T \cdot W \cdot g = (H'^T \cdot H')^{-1} \cdot H'^T \cdot g$

• Vizsgáljuk meg f_{ML}^* spektrumát:

$$-F_{ML(u)}^{*} = \frac{H_{(u)}^{*} \cdot G_{(u)}}{H_{(u)}^{*} \cdot H_{(u)}} = \frac{H_{(u)}^{*} \cdot G_{(u)}}{\left|H_{(u)}\right|^{2}} = \frac{G_{(u)}}{H_{(u)}} = (G/H)_{(u)}$$

 Konzekvencia: ML eljárással nem lehet a rosszul kondícionált inverz problémát megoldani.

ML becslés pozitivitási kényszerrel

- Nem negativitási kényszer: $f \in R_+$
- Jó esetben konvex optimalizálási probléma: max. $P\{g|f\}$ $\xrightarrow{-\log}$ min. $L_g(f)$ s.t. $f \ge 0$ s.t. $f \ge 0$
 - Konvex a probléma, ha $\Pr\{g|f\}$ log-konkáv.
 - Nem adható rá analitikus megoldás
- Milyen eloszlású lehet valójában az additív zaj:
 - Poisson: fotonok inherens zaja
 - Gauss: termikus zaj
 - Uniform: kvantálási zaj (A/D átalakítás)

Richardson Lucy algoritmus (+)

- Interpretáljuk a képpontok intenzitását fotonok becsapódási valószínűségeivel:
 - $P\{f_{(i)}\}$: P("egy fotonon a detektor i-edik érzékelőelemébe csapódik, ha nincs zaj és torzítás")
 - $P\{g_{(k)}\}$: P("egy fotonon a detektor k-adik érzékelőelemébe csapódott a megfigyelt kép rögzítése során")
 - $-P\left\{g_{(k)} | f_{(i)}\right\}$: P("ideális esetben az i-edik érzékelőelembe csapódó foton a k-adik érzékelőelembe csapódik bele
 - a képalkotó LTI rendszer torzítása miatt")

Richardson Lucy algoritmus

• Lényegében egy Bayes-i becslés:

- Bayes szabály:
$$P\left\{f_{(i)} \middle| g_{(k)}\right\} = \frac{P\left\{g_{(k)} \middle| f_{(i)}\right\} \cdot P\left\{f_{(i)}\right\}}{\sum_{j} P\left\{g_{(k)} \middle| f_{(j)}\right\} \cdot P\left\{f_{(j)}\right\}}$$

- Dekomponálás:
$$P\left\{f_{(i)}\right\} = \sum_{k} P\left\{f_{(i)} \middle| g_{(k)}\right\} \cdot P\left\{g_{(k)}\right\}$$

- Tehát:
$$P\left\{f_{(i)}\right\} = \sum_{k} \frac{P\left\{g_{(k)} \middle| f_{(i)}\right\} \cdot P\left\{f_{(i)}\right\} \cdot P\left\{g_{(k)}\right\}}{\sum_{j} P\left\{g_{(k)} \middle| f_{(j)}\right\} \cdot P\left\{f_{(j)}\right\}}$$

Richardson Lucy algoritmus

Bevett gyakorlat: iteráljunk a célváltozó felett:

$$\mathbf{P}_{(r+1)}\left\{f_{(i)}\right\} = \sum_{k} \frac{\mathbf{P}\left\{g_{(k)} \left|f_{(i)}\right\} \cdot \mathbf{P}\left\{g_{(k)}\right\}}{\sum_{j} \mathbf{P}\left\{g_{(k)} \left|f_{(j)}\right\} \cdot \mathbf{P}_{(r)}\left\{f_{(j)}\right\}} \cdot \mathbf{P}_{(r)}\left\{f_{(j)}\right\}}$$

Oldjuk fel a valószínűségi értelmezést:

•
$$P\left\{f_{(i)}\right\} = f_{(i)} / (f^T \cdot 1); P\left\{g_{(i)}\right\} = g_{(i)} / (g^T \cdot 1)$$

 $P\left\{f_{(i)}\right\} = f_{(i)} / (g^T \cdot 1); P\left\{g_{(i)}\right\} = g_{(i)} / (g^T \cdot 1)$

•
$$\mathbf{P}\left\{g_{(k)} | f_{(i)}\right\} = h_{(i-k)}$$

• T.f.h $h^T \cdot 1 = 1$; $h \ge 0$ ezekből következik: $g^T \cdot 1 \leftrightarrow f^T \cdot 1$

Richardson Lucy algoritmus (+)

- $P\{f_{(i)}\} = f_{(i)} / (f^T \cdot 1)$: dekonvolvált kép i-edik pixelének normált intenzitása
- $P\{g_{(i)}\} = g_{(i)}/(g^T \cdot 1)$: képalkotó rendszer (LTI + zaj) által torzított kép i-edik pixelének relatív intenzitása
- $P\left\{g_{(k)} | f_{(i)}\right\} = h_{(i-k)}$: csak az LTI rendszerrel leírható torzítást modellezzük
- *h*^T ·1 = 1: minden olyan foton, mely a torzítatlan rendszer esetén a detektorba csapódna be a torzított rendszer esetén is a detektorba csapódik be (maximum más érzékelőelembe)
- Végig monokróm spektrumú fotonokat feltételezve a detektált intenzitás (fluxus) egyenesen arányos a becsapódó fotonok számával

Richardson Lucy algoritmus

• Végezzük el a behelyettesítést:

$$- f_{(i)}^{(r+1)} = \sum_{k} \frac{h_{(i-k)} \cdot g_{(k)}}{\sum_{j} h_{(j-k)} \cdot f_{(j)}^{(r)}} \cdot f_{(i)}^{(r)} = \sum_{k} \frac{h_{(i-k)} \cdot g_{(k)}}{\left(h * f^{(r)}\right)_{(k)}} \cdot f_{(i)}^{(r)}$$

- Érdemes észrevenni, hogy ha $f^{(0)} \ge 0$, akkor minden iterációban $f^{(r)} \ge 0$, tehát teljesül a nemnegativitási kényszer
- Eljárás konvergenciája bizonyítható.
- Ekvivalens a pozitivitási kényszeres ML becsléssel, Poisson zaj modell esetén.

Eljárások illusztrálása -2-

ML becslések összegzése

- Jelentősen felerősítik a zajt:
 - A probléma rosszul kondícionált jellegét nem képesek megfelelően kezelni.
 - Kivétel az iteratív algoritmusok köre, ha $f^{(0)}$ elegendően sima, és <u>konvergencia előtt leállunk</u>!
- Explicit regularizáció szükséges:
 - Definiáljuk $f^{(0)}$ a-priori eloszlását, és azt rögzítsük a minimalizálandó célfüggvényünkben
 - Megj.: RLA-nál szerepelt prior, de annak más a szerepe, értelmezése...

MAP becslések

- Bayes becsléselmélet:
 - -max. $P\{f|g\} \propto (P\{g|f\} \cdot P\{f\})$
 - Másképpen : min. $-\log(P\{f|g\}) = \Phi_{ML}(f) + \Phi_{prior}(f) + K$
 - $\Phi_{_{ML}}(f) = -\log(P\{g|f\})$: bünteti a mérések és a zaj nélkül becsült, torzított kép eltérését: $||g \tilde{g}|| = ||g h * f||$
 - $\Phi_{prior}(f) = -\log(P\{f\})$: meghatározza, hogy milyen dekonvolvált képet preferálunk (pl. zajmentesség, pozitivitás, simaság, stb.).
 - Analitikai értelmezés: regularizált becslés

MAP becslés példa – stacionárius Gauss zaj, frekvenciatérbeli prior

- Prior frekvenciatartományban: $\Phi_{prior}(F) = \mu \cdot \sum W_{(u)} \cdot |F_{(u)}|^2$
- Gauss, stacionárius zaj: $\Phi_{ML}(f) = \frac{1}{2\sigma^2} \cdot \sum_{i} \left(g_{(i)} (H' \cdot f)_{(i)}\right)^2$

- Parseval tétel szerint:
$$\Phi_{ML}(F) = \frac{1}{2N \cdot \sigma^2} \sum_{u} \left| G_{(u)} - H_{(u)} \cdot F_{(u)} \right|^2$$

• Összegezve: $\Phi(F) = \frac{1/2}{N \cdot \sigma^2} \sum_{u} |G_{(u)} - H_{(u)} \cdot F_{(u)}|^2 + \mu \cdot \sum_{u} W_{(u)} \cdot |F_{(u)}|^2$

- Mivel $\Phi(\cdot)$ konvex, ezért $\nabla \Phi(F^{opt}) = 0$, tehát:

$$F_{(u)}^{opt} = \frac{H_{(u)}^* \cdot G_{(u)}}{\left|H_{(u)}\right|^2 + 2 \cdot \mu \cdot N \cdot \sigma^2 \cdot W_{(u)}}$$

MAP becslés példa – stacionárius Gauss zaj, simasági prior $-W_{(u)} = \left(E\left\{ \left| N_{(u)} \right|^{2} \right\} / E\left\{ \left| F_{(u)} \right|^{2} \right\} \right) / (2\mu \cdot N \cdot \sigma^{2}) \text{ esetén:}$ $\cdot F_{(u)}^{opt} = \frac{H_{(u)}^{*} \cdot G_{(u)}}{\left| H_{(u)} \right|^{2} + E\left\{ \left| N_{(u)} \right|^{2} \right\} / E\left\{ \left| F_{(u)} \right|^{2} \right\}}$

- Tehát a Wiener dekonvolúció is egy MAP becslés – $E\left\{\left|N_{(u)}\right|^{2}\right\}/E\left\{\left|F_{(u)}\right|^{2}\right\}$ gyakorlatban nem határozható meg – Gyakran fehér zaj, és $W_{(u)} = 1/E\left\{\left|F_{(u)}\right|^{2}\right\} \propto u^{\beta}$
 - μ értéke szabályozza, hogy mennyire domináljon a prior (magas frekvenciás komponensekért mennyire büntetünk).

Eljárások illusztrálása -3-

Ismertetett módszerek csoportosítása

ML becslés:

- Csak a megfigyelési zaj osztályát ismerjük
- Zajérzékenység jelentős probléma, csak a konzisztenciára figyel

<u>Példák:</u>

- Direkt dekonvolúció (additív Gauss zajos ML becslés)
- Richardson Lucy (additív Poisson zajos, pozitivitási kényszeres ML becslés)

MAP becslés:

- Explicit módon definiáljuk, hogy milyen jellegű képet akarunk
- Ha jól *regularizálunk*, akkor a zajérzékenység redukálódik, de az eredmény kevésbé konzisztens

<u>Példák:</u>

- Csonkolt dekonvolúció
- Wiener dekonvolúció (additív Gaussz zaj + frekvencia függő energia minimalizáció)
- Egyéb, regularizált dekonvolúciók

MAP és ML becslés összehasonlítása

- Stabilitás:
 - MAP-nál a regularizáció célja ennek kikényszerítése (pl. sima, kevésbé zajos, stb. dekonvolvált kép előállítása)
 - ML becslésnél ez legfeljebb impliciten kényszeríthető ki (pl. iteratív becsléseknél konvergencia előtti leállás).
- Becslés inkonzisztenciája (||g-h*f||):
 - Likelihood tag minimalizálásával redukálható
 - ML becsléseknél ennek az értéke kisebb ez viszont a zajos input képhez (8) a becsült torzítatlan kép túlilleszkedést vonja maga után (rosszabb képminőség)