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Abstract: This paper deals with some important questions of the binary CMAC neural networks. CMAC -

which belongs to the family of feed-forward networks with a single linear trainable layer - has some attractive

features. The most important ones are its extremely fast learning capability and the special architecture

that lets e�ective digital hardware implementation possible. Although the CMAC architecture was proposed

in the middle of the seventies quite a lot open questions have been left even for today. Among them the

most important ones are its modeling and generalization capabilities. While some essential questions of its

modeling capability were addressed in the literature no detailed analysis of its generalization properties can be

found. This paper shows that the CMAC may have signi�cant generalization error, even in one-dimensional

case, where the network can learn any training data set exactly. The paper shows that this generalization

error is caused mainly by the training rule of the network. It derives a general expression of the generalization

error and proposes a modi�ed training algorithm that helps to reduce this error signi�cantly.

1 Introduction and motivations

Cerebellar Model Articulation Controller (CMAC) networks play an important role in non-linear function
approximation and system modeling. The main advantages of CMAC against the MLP, RBF, etc. networks
are its extremely fast learning and the possibility of low-cost digital implementation. This latter property
originates from its multiplier less structure. The CMAC network can be considered as an associative memory,
which performs two subsequent mappings. The �rst one - which is a non-linear mapping - projects an input
space point (u) into a binary association vector (a). The association vectors always have C active elements,
which means that C bits of an association vector are ones and the others are zeros. C is an important
parameter of the CMAC network and it is much less than the length of the association vector. As the value
of C a�ects the generalization property of the CMAC it is often called generalization parameter. The CMAC
uses quantized input, so the number of the possible di�erent input data is �nite. There is a one-to-one
mapping between the discrete input data and the association vectors i.e. each possible input point has a
unique association vector representation. Every bit in the association vector corresponds to a binary basis
function with a �nite support of C quantization intervals. This means that a bit will be active if the input
value is within the support of the corresponding basis function.

The �rst mapping should have the following characteristics: It should map two neighboring input points
into such association vectors, where only a few elements - i.e. few bits - are di�erent. As the distance
between two input points grows, the number of the common active bits in the corresponding association
vectors decreases. The input points far enough from each other - further then the neighborhood determined
by the parameter C - should not have any common bits. This mapping is responsible for the non-linear
property of the whole system.

The second mapping calculates the output of the network as a scalar product of the association vector
(a) and a weight vector (w): y(u) = a(u)Tw. The two mappings are implemented in a two-layer network
architecture. The �rst mapping can be implemented by a �xed combinational network which contains no
adjustable elements; the trainable elements, the weight values which can be updated using the simple LMS
rule, are used in the second layer [1].

CMAC is often considered as a real alternative to the most popular feed-forward networks because its
capability is close to that of the more complex RBF and MLP networks. However, contrary to the MLP
and RBF networks, there are no rigorous analysis concerning the approximation capability of the CMAC. In
general, approximation capability can be regarded from two di�erent points of view. Firstly it is a question
if a network can learn the training points exactly, secondly it is the question of generalization, i.e. the
capability of the network to give reasonable outputs for inputs not encountered in the training process.
These two di�erent capabilities can be characterized by the modeling error and the generalization error,
respectively:
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� modeling error is the error of the net at the training points, that is the di�erence between the desired
values and the responses of the CMAC,

� generalization error is the error of the approximation for inputs not used during training. Generalization
error describes how much information the network managed to retrieve from the training set.

Some papers give general theoretical network-architecture-independent results regarding both questions of
the approximation capability [2], [3], [4], [5], [6] and there are a few papers dealing with the special question
of the modeling capability of the CMAC networks: [7], [8], [9]. However, according to the knowledge of the
authors, there are no general results concerning the generalization capability and generalization error of the
CMAC. The network-independent results generally provide too pessimistic upper bound for approximation,
so some network-speci�c results are highly required. The paper deals with this question, it shows that there
may be quite signi�cant generalization error even in the case where zero modeling error can be reached.
Further, it gives a general mathematical expression of the error and shows that the very reason of this poor
generalization capability mainly comes from the improper selection of the generalization parameter and the
training process. Modifying the learning rule the generalization error can be reduced signi�cantly.

The CMAC networks have some special features. An important one is that its modeling capability
depends on its input dimension. A 1D CMAC - which means that the inputs are formed from one-dimensional
data points - is a universal approximator in that respect, that it can learn all training points exactly. In higher
dimensional cases this is not true. CMAC can represent exactly only data points of additive functions [8].
Thus the generalization and the modeling error superpose, which means that the two types of error cannot
be separated easily in higher dimensional cases. Because our attention is focused on the generalization error,
hereafter we will mainly discuss the 1D CMAC network.

Actually it is very hard to de�ne the generalization error, while there is no information about the function
to be approximated elsewhere than just at the training points. This is why we will use the deviation from
a suitable chosen interpolating function. The simplest way is if we assume linear interpolation between
the training points. On the other hand, if we can give an error limit for the deviation from the linear
interpolating, piecewise linear function, than we can apply the results of the spline approximation theory
(see [10] and [11]) regarding the approximation error of the functions.

2 The generalization error of the CMAC

The problem of generalization can be shown most easily using a simple example. Let us choose a half period of
an y = sin(x) function to be approximated by CMAC. First we have to discretize the input: in this example
we will use 256 quantization levels. Using equidistant training points di�erent quality approximations can
be obtained depending on the ratio of C and dtrain as it is shown in Fig. 1. Let C = 64 and the distances of
the equidistant training points dtrain = 80 (Fig. 1 a) ). Hereafter we assume that all weights of the networks
are initialized to zero values.

C = 64 and dtrain = 80
a)

C = 32 and dtrain = 22
b) C

dtrain
= 1:45

C = 32 and dtrain = 14
c) C

dtrain
= 2:28

C = 16 and dtrain = 7
d) C

dtrain
= 2:28

Figure 1: CMAC output for di�erent C and dtrain parameter sets

As we expect the CMAC linearly interpolates between the training points when dtrain = C and can not
interpolate well if dtrain > C. It is obvious, because the neighboring points activate such association vectors
which will di�er from that of the nearest training point exactly by 1; 2; 3::: active bits, thus a training point
can inuence the output in its neighborhood of radius C. This means that the CMAC has local generalization
property. Fig. 2 shows this, where the similarly shadowed parts denote the basis functions selected by the
given training points.
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2C > dtrain > C

training points training points

dtrain � 2C

Figure 2: The weights inuenced by the training points

If dtrain > C there will be weights which remain unchanged during training. If dtrain � 2C the weights are
selected during training in such a way that for all possible input data at least one modi�ed weight will be
selected during recall. If dtrain � 2C and the weights are initialized to zero than there will be such input
data between the training points for which the trained network will produce zero output values. It is because
these input points will select weights all of which are unchanged (zero). A much more interesting example
can be seen in the last part of the �gure (Fig. 1 b). The distance of the training points are smaller than C,
that is all of the weights are modi�ed during learning. In spite of this, the generalization of the CMAC is
really bad (see Fig. 1 c) and d) too).

As we can observe, the generalization error of the LMS trained binary CMAC is quite large if C 6=
k�dtrain; k 2 Z (Z denotes positive integers here) even if a simple constant function should be approximated
by a 1D CMAC. We can also see a trend, that if the C

dtrain
quotient is closer to integer, the generalization

error is less dominant.

2.1 Mathematical analysis of the generalization error

It can be proved (see e.g. [9]) that during training the weight vector converges to the pseudo-inverse solution:

ŵ = Ayd (1) A =

2
6664

aT1
aT2
...
aTN

3
7775 (2)

where Ay is the Moore-Penrose pseudo-inverse of the matrix built up from the association vectors (Eq. 2),
corresponding to the training data (in the equation N denotes the number of training points). Similarly we
can form a matrix T from the association vectors used in the test phase. Let us practically assume, that T
contains all of the possible association vectors (which means that all possible input data are used in the test
phase). Thus the response of the optimally trained network is:

ytest = Tŵ = TAyd (3)

Further, we can de�ne a P matrix, which describes the linear interpolation between the training points:
yLIN = Pd. The general form of P is shown in Eq. 4

P(i; j) =

(
xtrain(i+1)�x(j)

xtrain(i+1)�xtrain(i)
if xtrain(i) � x(j) < xtrain(i+ 1)

0 otherwise
(4)

That is the deviation from the linear interpolation can be given as:

h = yLIN � y = (P�TAy)d =Hd (5)

Here the values of H depend on solely the placement of the training points and the length of the support of
the basis functions. Thus the error of the network (h) depends on the desired function values d and the H
matrix, that is the position of the training points and the network's generalization parameter C (the size of
the support of the basis functions). A trivial upper limit of this error can be written as:

k h k1 = k H k1k d k1 (6)

One can see that if the placement of the training points and the maxima of the function in the training points
are known, than we can give the error of the approximation (the deviation from the piecewise linear curve).
Let us see some numeric examples: dtrain was chosen to 22,10,16 and 8 which yield k H k1 = 0:7099; 1:1876,
3:56�10�14 and 7:85�10�14 respectively. These numeric examples show, that if C

dtrain
2 Z, than the deviation

from the linear approximation is zero (except for the precision of the matrix inversion).
It is important to see, that this upper bound is sharp. That is one can �nd a function for which the

maximum of the generalization error (the deviation from the piecewise linear approximation) reaches the
upper bound. This occurs if vector d is parallel with any row vector of H. One the other hand this upper
bound can be very pessimistic if the angle between d and the row vectors is small.

The main problem with the above derived mathematical expression is that Eq. 5 requires the inverse
association matrix (Ay). Although this matrix depends only on the placement of the training points and the
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value of C, the inverse must be computed in each case separately and the error or its maxima is not written
in a closed form. After some attempts to determine the closed form of this error through the explicit form of
the pseudo-inverse a promising solution seems to be found, however, its complexity in well beyond the limits
of this paper, thus the details will be presented in a forthcoming paper. Here a special case will be detailed.

2.2 A special case

The root of the generalization problem can be found in the weight update process. If we analyse the e�ect of
the positions of the training points it can be recognized that unless C = k � dtrain; k 2 Z there will be some
weights which are more frequently updated than the others. For a given case see Fig. 3. The numbers show
how many times the corresponding basis functions will be selected by the training points and how many
times the corresponding weights will be updated in a training epoch. We assume that a training point is
taken once in every epoch, however, the unequal update frequency remains true in all other cases too.

Consider the learning rule again. As the LMS learning rule is used during training the error, " = y�d at
the training of a given point xd is distributed evenly between the selected weight values. Thus the increment
of all selected weights are the same in an update cycle. This results in that the weights, which are more
frequently updated inuences much more the output than the others.
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C = 4; dtrain = 3

training points

Figure 3: Weight update frequency in a training epoch
Figure 4: Generalization error vs. C

dtrain

Obviously, this kind of generalization error is the result of the training strategy. This generalization
error depends on the ratio of C

dtrain
. Fig. 4 shows the results of a simulation series of 16 training processes,

where C = 32 and dtrain = 16:::32, so C
dtrain

varies from 1 to 2. Again a constant function was selected for
illustration. In Fig. 4 the absolute maxima of the generalization error is shown as a percent of the constant
level.

For this special case when the function to be approximated by CMAC is constant and the training
points are equally distributed with dtrain distance between them we can give a simple analitical form of this
generalization error. It can be proved that the weights of the network can be grouped into two sets. The
weights in the �rst set is activated BL = b C

dtrain
c times in every training epoch, while it is BH = b C

dtrain
c+1

for the other set. b:c stands for the oor function a largest integer l < (:) . We can prove also that the
number of the active weights from the two sets are NL(xd) and NH(xd) respectively, for all the xd training
points. It depends only on C and dtrain. ( NL(xd) and NH(xd) are not necessarily equal.) Obviously

NL(xd) + NH(xd) = C and one can derive that NL(xd) =
�
c� d+ b C

dtrain
cdtrain

�
b C
dtrain

c and NH(xd) =

C � b C
dtrain

cdtrain + b C
dtrain

cC � b C
dtrain

c2d. While we have assumed a constant function and so di = d for
all i we can compute the two sort of weight values -from the two sets- in the steady state:

wL = BL

di

NLBL +NHBH

(7) wH = BH

di

NLBL +NHBH

(8)

We also can determine NL(xm) and NH(xm) values for the middle point xm between two neighbouring train-
ing data: NH(xm) = NH(xd)�m andNL(xm) = NL(xd)+mwherem = min fCmod dtrain; (kdtrain)mod Cg
and k is the minimal integer that kdtrain > C.

That is, we have the CMAC response in every point and so we can give the generalization error. This
error takes its highest value in the midpoint between the training points. Thus,

hgen(C; dtrain) = m(wH � wL) (9)

We have managed to give the generalization error of the CMAC for this simple case. As one can see on
Fig. 1 and Fig. 5 the generalization error seems to be proportional with the function values in the neighboring
training points (except for some leakage e�ect which comes from the sharp changing of the function). This
allows us to conclude that the e�ect of a training point value is practically local while it is theoretically not
entirely true for all cases but when dtrain = C. The practical values of H matrix support this statement.
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Figure 5: C = 16, dtrain = 11 Figure 6: C = 8, dtrain = 3

This generalization error formula in Eq. 9 corresponds to the special case of Eq. 5 namely the case of
d = [1 1 1 ::: 1]T . Using the trick to determine the weight update frequency (by establishing the two weight
sets) we have managed to bypass the matrix inversion problem for the special case.

On the other hand we can see that the error estimation given by Eq. 9 is too optimistic if the function
varies quickly (see Fig. 6). The local increase of the generalization error is caused by the sudden changing of
the function. Correct error estimation for this case could be given by using the inverse association matrix.

3 Modi�ed CMAC learning algorithm

As we have seen, using the classical LMS training algorithm the generalization error could be intolerable
large. Here we propose a new training approach based on the previously detailed background, which has
far better generalization performance. The main problem of the LMS-like training was that the weights of
the set are evenly incremented which has an e�ect that the more frequently changed weights can grow much
faster than the others and they will dominate the reproduction of the values of the training points. Thus,
in the midpoints between the training points, where the less frequently updated -and so the less dominant-
weights form the output of the network the error can be large.

The idea is to forth the weights to be evenly dominant during training. An optimal case would be for
a given training point dj if the corresponding weights were wi =

dj
C

for all wi, which are selected by the dj
training point. However, this is not possible, while the neighboring training points also a�ects these weights,
because they always have common weights if dtrain � C. We can easily construct an algorithm, which helps
us to get more proper weight distribution:

wnew
i = wold

i + �(
dj

C
� wold

i ) (10)

One can realize that Eq. 10 is nothing else than a simple exponential averaging. Unfortunately this training
algorithm has a serious drawback. The last data in the exponential average have larger inuence than the
previous ones (the e�ect of a training point will be exponentially decreased by training further points). This
means that this kind of algorithm will be sensitive to the order (the sequence) of the training points. Usually
it is an unwanted e�ect. However, this e�ect can be reduced if the training points presented randomly and
the learning rate (�) is suÆciently small.

We have seen that building some averaging into the training rule the generalization property of the
CMAC network can be signi�cantly improved. However, this kind of training algorithm gives correct result
only if the function to be approximated is constant. Apart from this simple case the output of the network
will not be entirely error free. This will happen because the fast alterations in the function will be smoothed
by the averaging. Hereafter we modify the averaging type learning rule to avoid both the training point
sequence dependency and the smoothing e�ect.

The training point order dependency e�ect can be avoided by using other averaging methods like simple
recursive averaging, approximate recursive averaging or moving averaging. Conventional averaging method
can not be used here because it requires the storage all of the training points. This is why some recursive
form of the averaging should be used. The main disadvantage of the simple recursive averaging is that it
requires division with the current sample number in every step. This is why exponential averaging can be
used in adaptive hardware implementations where usually relatively slow adaptation (tracking) required and
the simple (hardware) implementation is a must. Theoretically both the approximate recursive- and the
moving averaging can be used.

Let us consider the smoothing property of the proposed algorithm again. This e�ect can be signi�cantly
reduced if a combined algorithm is used: the combination of the original LMS rule and the new one. This
results in a regularization type algorithm, where the ratio between the LMS and the averaging part of the
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learning rule can be determined according to the trade-o� between the smoothing e�ect and the generalization
error. Thus the learning rule for e.g. exponential averaging is

wnew
i = wold

i + �"j + �(
dj

C
� wold

i ) (11)

where � is the regularization coeÆcient. Fig. 7 shows some representative results using the modi�ed training
algorithm. This results should be compared to the ones on Fig. 1 d) and Fig. 6.

C = 8 and dtrain = 3
� = 0; � = 1

a)

C = 8 and dtrain = 3
� = 0:5; � = 0:5

b)

C = 32 and dtrain = 22
� = 0:5; � = 0:5

c)

Figure 7: CMAC trained with the modi�ed learning rule

Conclusion

The paper deals with the generalization error of the CMAC neural network. It shows that in spite of the
universal approximator capability of the 1D CMAC rather large generalization error can be found depend-
ing on the network generalization parameter and the positions of the training points, even in very simple
approximation problems. The paper gives a general mathematical expression of the generalization error and
detailed results for special cases. Based on the generalization error analysis it proposes a modi�ed training
algorithm that can be combined with the original LMS rule, and that helps to reduce the generalization
error signi�cantly. Further tasks to extend the results for more general cases, for multidimensional problems
and for higher order basis functions remain for future investigation.
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