


are triggered by transactions of the system. Clients pay by
small amounts of the cryptocurrency as an execution fee for
invoking smart contract functions. Smart contracts can have
a state – immutably recorded on the ledger – and can also
receive and send amounts of the cryptocurrency.

This way, various crypto-financial contracts and mecha-
nisms can be implemented on top of the Ethereum network;
from simple family purses to Decentralized Autonomous Or-
ganizations (DAOs) [6]. Smart contracts are also widely used
to create ledgers and governing transaction logics for custom
tokens - as part of, or based on, the Ether (the cryptocurrency
of Ethereum) ledger. As a very wide range of concepts – from
ownership through utility usage rights to identity – can be
tokenized [7], the variety of such token contracts is becoming
truly astonishing.

More generally, the Ethereum network also has a world
computer interpretation. Programs can be deployed on a
global, globally accessible, resilient and trustworthy P2P sys-
tem; and methods of these programs can be invoked for a small
fee (paid in the cryptocurrency of the network). Invocations
and their effect on the program state are recorded immutably.

A. Application to Cyber-Physical Systems

Using this world computer is decidedly expensive, limiting
program complexity and invocation frequency; at the same
time, the above set of platform properties is a very powerful
combination. Under the general interpretation, when managing
the cryptocurrency or tokens does not have to be the focus
of smart contracts, a wide range of application possibilities
emerge in numerous application domains. For instance, for
IoT security, [8] highlights five core use cases:

1) Scalable IoT discovery – the (contract) ledger is a trusted
billboard for seed servers

2) Trusted communication – the (contract) ledger is a
trusted message board

3) Semi-Autonomous Machine-to-Machine Operations –
devices enter into temporary cooperation through smart
contracts, following the contract rules; the blockchain
also acts as a notary service (nonrepudiability of device
agreements)

4) IoT Configuration and Update Controls – the (contract)
ledger acts as a distributed system management service
(ZooKeeper [9] is a good analogy in the data center
management world)

5) Secure Firmware Image Distribution and Update – the
smart contract acts as an update service

IoT can be understood as part of a large, emerging system
class: Cyber-Physical Systems (CPS) [1]. CPS are Systems
of Systems (SoS); they are dynamically composed systems
of intelligent field devices and edge and cloud services, with
multiple interconnected and hierarchical control loops. CPS
are bringing an immense wave of innovation, from smart cities
through industry to transportation. However, they bring about
new risks, too, with the complex interconnection of systems
the dependability and security assurance of which classically
assumed a rather closed world.

As demonstrated by the above cited use cases, blockchain-
based DLTs with the appropriate smart contracts can serve
as various forms of middleware in such systems: importantly,
point-to-point communication, publish/subscribe, orchestra-
tion, logging and operational management (including member-
ship and directory services). A blockchain-based implemen-
tation of such middleware services has the same advantages
that apply for cryptocurrency accounting and smart contracts
in general.

• The service is resilient; truly effective denial of service
attacks and security compromises are very infrequent.

• Service access is resilient, too; the system can be used
through a large number of peers instead of a few service
access points.

• The ledger serves as a transparent and immutable trans-
action log for the service actions.

• Actions are nonrepudiable.

These properties can effectively mitigate many problems
that arise from the basic nature of CPS. For instance, if a
blockchain-deployed ledger can be used to exchange system
membership information (including cryptographic materials),
then the dynamic in-field system formation of devices can
be performed drastically simpler than using only classic in-
field communication channels. Here we implicitly assume that
the field devices only access a blockchain, but don’t ”run” it;
approaches for that case are only at an early stage.

B. The argument for using private/consortial, permissioned
blockchains

The downside of using open, permissionless blockchains
in this manner is that the price to achieve a given level of
transaction throughput and latency on public blockchains can
be too high for many use cases. Depending on the transaction
load of the blockchain, this price point is highly volatile. Even
when transactions are correctly priced, public blockchains
acknowledge new blocks of transactions rather slowly (the
average block time for Ethereum is 15 seconds). Additionally,
the globally shared nature of public DLTs may not be tolerable
for certain applications.

Private/consortial, permissioned [10] blockchains can ad-
dress most of these concerns, at the expense of some of the
system-level resilience. In this world, the Hyperledger project
[11] of the Linux Foundation collects the leading platform
technologies, as e.g. Hyperledger Fabric [12] and Hyperledger
Composer [13] (although the Ethereum software can be also
used to build private and/or permissioned blockchains). Hy-
perledger Fabric and Composer support building blockchain
systems with true identity and permission management (in-
cluding participation in transaction-consensus). As such, these
systems don’t need a native cryptocurrency to function.

Note that none of the CPS use cases discussed here require
the smart contract to have a cryptocurrency balance; the
blockchain is used as a distributed communication, com-
putation and storage ”fabric”, with special extra-functional
properties.



III. ”CORRECT” CPS SMART CONTRACTS WITH
MODEL-DRIVEN DEVELOPMENT?

Today, smart contract development is a rather challenging
task. The programming models of the various blockchain plat-
forms are new and not always straightforward to newcomers.
And the risk associated with programming faults is rather high:
smart contracts handle ”money” in the public blockchains and
the distributed ledger is immutable (no ”rollbacks”). The used
programming languages are not necessarily up to the task,
either; the insufficiencies of the Solidity language arguably
heavily contributed to the infamous ”DAO hack” [14] on the
Ethereum network.

As a consequence, testing, code analysis and formal ver-
ification tools are rapidly appearing [15]. Some research
has been done on automatic generation of smart contracts
from formal models [16] [17]. There also seems to be a
consensus that Domain Specific Languages are needed to
properly mitigate risks, particularly non-Turing complete and
functional languages, where formal verification is possible. In
some cases, even mechanized formal verification is feasible
[18]. In the Bitcoin world Ivy [19] is a good example, by
constraining the expressiveness of Bitcoin script as well as
at the same time introducing financial asset and transaction
notions as first-class concepts, it renders large classes of
potential smart contract vulnerabilities simply impossible by
design. Simplicity is another notable approach for designing
smart contract languages that are secure by design [20].

However, most of the focus seems to fall on preventing
the ”stealing” or otherwise unintended manipulation of crypto-
assets. From this point of view, CPS smart contracts form a
subset where the appropriate notion of ”correctness” is very
different. Informally, CPS smart contract correctness will have
to incorporate at least the following notions.

• Making possible only the intended sequences of transac-
tions.

• Not being able to reach a state where no further in-
tended transactions can be initiated (i.e. freedom from
deadlocks).

• Strict adherence to transaction initiation rights and roles.
• Robustness: reacting with specified behavior for erro-

neous input (and to some extent, internal – programming
– errors).

Similar requirements are regularly encountered in general-
purpose development, and particularly in the development of
embedded, safety-critical and business critical systems; and
addressed through Model-Driven Development [21] and model
analysis. Using appropriate models to design and reason about
complex systems highlights the important logic and hides the
details. This, and the potential of formally verifying the cor-
rectness of such models, can help prevent many programming
and design errors and enable the developer to build more
robust, resilient systems. The contributions of this paper fit this
pattern and can be interpreted as an initial foray into applying
MDD techniques for the design of systems that incorporate
blockchain-based components.

Here, we examine the application of a subset of UML
statecharts [22] for modeling CPS cooperations and auto-
matically generating smart contracts from the model. Using
state machine-like languages (and other high-level formalisms)
for simulation, formal analysis, and code generation has a
solid and mature literature in various domains. Such domains
include, but are not limited to: e-voting systems [23]–[25];
mission-critical embedded systems [26]; distributed control
systems [27]; and production control systems [28], [29].

However, existing approaches require careful consideration
when applying them to distributed ledger technologies (DLT)
as the target platform. The unique operational semantics of
DLTs must be taken into account when using high-level
modeling formalisms (e.g., UML statecharts) to describe the
behavior of deployed applications. An evaluation of the differ-
ences, similarities, and applicability of traditional approaches
is planned as part of our ongoing work.

Currently, to the best of our knowledge, our statechart-based
development in the context of DLTs is a novel approach.
A conceptually similar state machine-based approach is de-
scribed in [17], but there the emphasis is put on ”financial”
contracts. BPMN-based smart contract execution is an active
area of research [30], [31] in the context of applications
orchestrating business collaborations, but statecharts are more
suited to express the envisioned CPS scenarios.

IV. EXPRESSING LEDGER-BASED CPS INTERACTIONS
WITH STATECHARTS

The idea we are pursuing here is to design CPS interaction
patterns using standard, verifiable UML statecharts. Then, we
will proceed to generate a smart contract from the model,
which acts as a digital twin of the actual CPS devices. Our
approach is generic enough to be used with a number of dif-
ferent DLT targets, including Ethereum EVM and Hyperledger
Fabric or Composer. Our current implementation supports
Ethereum smart contracts; extensions for code generation to
multiple platforms – including Hyperledger ones – are being
developed.

Our core idea is that we express the state of a cyber-physical
system using UML statechart simple states and composite
states (including history states). Then, state transitions in this
model reflect either the observed or intended state transitions
of the reflected system. These transitions will map to distinct
transactions of the blockchain platform we generate code
for. We introduce a notion of access control via transaction
guard expressions. These special guards specify roles that are
allowed to initiate that transition either to reflect the observed
state changes of the reflected system or to initiate a state
transition in it by ”stepping” the model. Specific actors are
mapped to roles during smart contract instantiation and this
mapping can be changed dynamically.

Note that our approach in itself does not necessarily ensure
that the physical world and its smart contract based reflection
remain in synchrony; for instance, in terms of the example
that follows in the next section, whether the door of a secure
facility opens when the smart contract governing its states



statechart Solidity notes
state enum value
transition contract method this is the public interface of the contract
transition enum value this is the inner representation

different instances of the same transition
(e.g. different guards) might be separate enum values

composite state enum value modelled as a normal state
automatic transition to start state on entry
inner state names are encoded (e.g. mycomposite innerstate1)

actions (entry/exit/transition) method body
guards require or if/else expressions
history contract variable for composite states
timed transitions N/A smart contracts are passive,

so timed transitions do not make sense
access control user-defined code or
i.e. who can send what modelling language extensions

Table I: UML-Solidity mappings

Figure 1: UML statechart model (actions and guards omitted for clarity)

specifies it to do so depends on the correct functioning of
the door electronics. Also, when certain transactions are used
to ”step” the smart contract state space based on observations,
missing observations and different interleavings of observation
sequences may introduce challenges. Most of these issues
can be addressed by making the ”reflection” nature of the
smart contract explicit at the model level (e.g. modeling the
state of waiting for door open approval and proceeding with
further transactions only when the notification is received).
In the longer run, it seems to be unavoidable that we have
to work out a suitable operational semantics for statecharts
executed by smart contract platforms (for instance, instead
of introducing event queues, the proper approach seems to
be to allow only one single outstanding transition request at
any time). Support for parallel regions is under development,
however, timed transitions cannot be mapped to ledger based
execution.

The mapping between model elements and Solidity con-
structs is mostly straightforward. Possible states are repre-
sented as enumerations, and contracts keep track of the current
state using contract variables. Transitions are triggered by
transactions sent to the smart contract, i.e. each transition
type has an associated public method on the contract. Actions
are general Solidity code-segments, while guards are bool
expressions that can be evaluated using a series of conditional
statements.

The tool we chose to implement this system is YAKINDU
Statechart Tools [32]. We implemented a code generator mod-
ule for generating Solidity code directly from our YAKINDU
model. The output is a partially implemented smart contract
that keeps track of the actual state and receives and validates
state transitions as Ethereum transactions. The generated smart
contract can be manually extended to add functionality that we
cannot model in our statechart, e.g. registering addresses for



the actual roles, raising events, etc.
Table I shows the mapping from statechart elements to

the corresponding Solidity constructs. Our investigations have
shown that all statechart elements can be mapped to Solidity
smart contract elements in a fairly straightforward way. For
example, states are represented as enum values, separate
transition types each have a corresponding public method,
guards are logical tests, etc.

V. AN EXAMPLE: ACCESS OF A SECURE FACILITY

The example scenario is set in a high-security facility. The
task is to implement the control mechanism of the entrance to
one of the rooms in the facility. The doors open or close by
monitoring the state of their governing blockchain contract.

The administration of the facility has defined the following
security protocol for entering the room:

1) Request access
2) Approve access
3) Open door
4) Confirm entry
5) Close door
And the corresponding exit protocol:
1) Open door
2) Confirm exit
3) Close door
Note that the entry request must be approved before the

room can be accessed. In our scenario, we require the approval
of two designated administrators. Furthermore, we require that
the requestor confirm entry and exit before closing the door
(e.g. via using a secure identity card reader that is able to
initiate blockchain transactions on their behalf). Generally, all
actions of the access protocol have to go through the smart
contract which defines whether the participant is allowed to
request that give action in the current state of the whole
security system.

Moreover, we have two additional security measures. First,
the security team can block entry to and exit from the room
at any time. For example, once the security personnel noticed
an unauthorized entry to the room, they can lock the door,
preventing the intruders from escaping. Second, a designated
emergency team can open the door at any time. For example,
in case of an incidental fire, the fire brigade can enter the room
without going through the security protocol.

A. Model description

Figure 1 shows our UML statechart model for the scenario
discussed above, created using the YAKINDU statechart mod-
eling tool. For clarity, only states and transitions are included
in this figure.

The model has three main states: OPERATIONAL, LOCKED,
and EMERGENCY. OPERATIONAL is the normal state,
LOCKED is the state where normal entry to the room is blocked
by the security team, while EMERGENCY is a state triggered
by the designated emergency team where the door can always
be opened.

Inside OPERATIONAL, a typical execution of the entry
protocol would look like this:

1) The requestor requests access to the room. The state
changes from IDLE to WAITINGFORAPPROVALS.

2) Both administrators approve the requestor’s access
request. The state changes from WAITINGFORAP-
PROVALS to APPROVED.

3) The requestor pushes the open button on the door. The
door initiates an open transition on the smart contract
from its own address. If this transaction succeeds, the
state changes from APPROVED to OPEN and the door
opens.

4) The requestor confirms her entry and closes the door.
Again, the door first initiates a close transition and
only closes physically if it succeeded.

The exit protocol works in a similar way.
By only executing the action after its validity has been

established (by checking whether the corresponding transition
is valid or not), we ensure consistency between the door
and its digital twin. To have stronger guarantees about this
consistency, we could extend the model by implementing
multi-step open/close flows (e.g. first check validity, then
close, then confirm action).

Notice in the above description that in our model the
origin of state transitions plays an important role: only cer-
tain actors can initiate certain transitions. To model this,
we leveraged YAKINDU’s modelling DSL. We defined
variables representing the actual roles (e.g. requestor,
admin1) and role collections (security, emergency).
As YAKINDU’s DSL has limited support for user-defined
types, we defined these variables as strings and encoded
the actual types in their names (e.g. requestorActor,
securityActorCollection).

Once we have defined these roles, we use user-defined
operators and guards to specify who can initiate the given
state transition. Figure 2 shows a portion of the model with
all the actions and guards included. Note the use of the
special identifier sender. This denotes the sender of the
transaction associated with the corresponding state transition.
In Ethereum, for example, this corresponds to msg.sender.

Due to space constraints, we cannot show the output
of our Proof-of-Concept Ethereum code generator; an ex-
ample can be found at: https://gist.github.com/benjamingehl/
aa7ddea2690df45994e80c2537150305

VI. CONCLUSION AND FUTURE WORK

We have presented an approach to generate Ethereum smart
contracts from UML statecharts with the intention of control-
ling the usage and interactions of CPS elements. While our
approach is partial and the mapping does not yet follow the
common operational semantics based way, it already presents
a compelling argument for pursuing the application of classic
MDD methods at the very least in DLT applications that are
detached from cryptocurrencies and are intended to manage
nontrivial state spaces.



Figure 2: Modelling guards

Future work will first extend the scope of the approach and
map out the modeling styles and necessary model properties
that are required for provably correct functionality in various
cases. Also, we will explore the application of the large set
of existing statechart analysis tools. Support for multiple DLT
platforms is already under development.

REFERENCES

[1] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the 47th
design automation conference. ACM, 2010, pp. 731–736.

[2] S. Boschert and R. Rosen, “Digital twin the simulation aspect,” in
Mechatronic Futures. Springer, 2016, pp. 59–74.

[3] M. Gray et al., “Introducing Project Bletchley.” [Online]. Avail-
able: https://github.com/Azure/azure-blockchain-projects/blob/master/
bletchley/bletchley-whitepaper.md (accessed on 2018-04-10).

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum Project Yellow Paper, 2014. [Online]. Available:
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf

[6] U. Chohan, “The decentralized autonomous organization and governance
issues,” 2017.

[7] D. Siegel, “The Token Handbook.” [Online]. Available: https://
hackernoon.com/the-token-handbook-a80244a6aacb (accessed on 2018-
04-10).

[8] Cloud Security Alliance, Blockchain/Distributed Ledger
Technology Working Group, “Using Blockchain Technology
to Secure the Internet of Things,” 2008. [Online]. Available:
https://downloads.cloudsecurityalliance.org/assets/research/blockchain/
Using BlockChain Technology to Secure the Internet of Things.pdf
(accessed on 2018-04-10).

[9] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8, no. 9. Boston, MA, USA, 2010.

[10] D. Yaga, P. Mell, N. Roby, and K. Scarfone,
“Blockchain Technology Overview (NISTIR 8202).” [On-
line]. Available: https://csrc.nist.gov/CSRC/media/Publications/nistir/
8202/draft/documents/nistir8202-draft.pdf (accessed on 2018-04-10).

[11] “Hyperledger.” [Online]. Available: https://www.hyperledger.org
(accessed on 2018-04-10).

[12] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[13] “Hyperledger Composer.” [Online]. Available: https://hyperledger.
github.io/composer/unstable/reference/reference-index.html (accessed
on 2018-04-10).

[14] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International Conference on Principles of
Security and Trust. Springer, 2017, pp. 164–186.

[15] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy et al., “Formal verification of smart contracts: Short paper,”
in Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security. ACM, 2016, pp. 91–96.

[16] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards
automated generation of smart contracts,” in Foundations and Applica-
tions of Self* Systems, IEEE International Workshops on. IEEE, 2016,
pp. 210–215.

[17] A. Mavridou and A. Laszka, “Designing secure ethereum smart
contracts: A finite state machine based approach,” arXiv preprint
arXiv:1711.09327, 2017.

[18] A. K. Ilya Sergey and A. Hobor, “Scilla: a smart contract intermediate-
level language,” 2018.

[19] “Ivy: A high-level language and IDE for writing Bitcoin smart
contracts.” [Online]. Available: https://github.com/ivy-lang/ivy-bitcoin
(accessed on 2018-04-10).

[20] R. OConnor, “Simplicity: A new language for blockchains,” arXiv
preprint arXiv:1711.03028, 2017.

[21] B. Selic, “The pragmatics of model-driven development,” IEEE software,
vol. 20, no. 5, pp. 19–25, 2003.

[22] M. von der Beeck, “Formalization of UML-statecharts,” in International
Conference on the Unified Modeling Language. Springer, 2001, pp.
406–421.

[23] R. Tiella, A. Villafiorita, and S. Tomasi, “Specification of the control
logic of an eVoting system in UML: the ProVotE experience,” in
Proceedings of the 5th International Workshop on Critical Systems
Development Using Modeling Languages. Citeseer, 2006.

[24] ——, “FSMC+, a tool for the generation of Java code from statecharts,”
in Proceedings of the 5th international symposium on Principles and
practice of programming in Java. ACM, 2007, pp. 93–102.

[25] A. Villafiorita, K. Weldemariam, and R. Tiella, “Development, formal
verification, and evaluation of an e-voting system with VVPAT,” IEEE
Transactions on Information Forensics and Security, vol. 4, no. 4, pp.
651–661, 2009.

[26] K. Wagstaff, K. Peters, and L. Scharenbroich, “From protocol spec-
ification to statechart to implementation,” Jet Propulsion Laboratory
Technical Report CL08-4014, 2008.

[27] T. Tomura, K. Uchiro, S. Kanai, and S. Yamamoto, “Object-oriented
design pattern approach for modeling and simulating open distributed
control system,” in Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, vol. 1. IEEE, 2001, pp.
211–216.

[28] H. J. Köhler, U. Nickel, J. Niere, and A. Zündorf, “Integrating UML
diagrams for production control systems,” in Proceedings of the 22nd
international conference on Software engineering. ACM, 2000, pp.
241–251.

[29] H.-J. Köhler, U. Nickel, J. Niere, and A. Zündorf, “Using UML as a
visual programming language,” Technical Report tr-ri-99-205, University
of Paderborn, Paderborn, Germany, Tech. Rep., 1999.

[30] H. I. Projects. (2017) Contract-based business process execution.
[Online]. Available: https://www.hyperledger.org/blog/2017/09/07/
interning-with-hyperledger-5-interns-share-their-experiences-and-advice

[31] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber, “Opti-
mized execution of business processes on blockchain,” in International
Conference on Business Process Management. Springer, 2017, pp.
130–146.

[32] “YAKINDU Statechart Tools.” [Online]. Available: https://www.itemis.
com/en/yakindu/state-machine (accessed on 2018-04-10).


