
1

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows
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Abstract—Business process collaboration between independent
parties can be challenging, especially if the participants do not
have complete trust in each other. Tracking actions and enforcing
the activity authorizations of participants via blockchain-hosted
smart contracts is an emerging solution to this lack of trust, with
most state-of-the-art approaches generating the orchestrating
smart contract logic from BPMN models. However, as a signif-
icant drawback in comparison to centralized business process
orchestration, smart contract state typically leaks potentially
sensitive information about the state of the collaboration.

We describe a novel approach where the process manager
smart contract only stores cryptographic commitments to the
state and checks zero-knowledge proofs on update proposals.
We cover a representative subset of BPMN, support message
passing commitments between participants and provide an open-
source end-to-end implementation. Under our approach, no party
external to the collaboration can gain trustable knowledge of
the current state of a process instance (barring collusion with a
participant), even if it has full access to the blockchain history.

Index Terms—blockchain, BPMN, zero-knowledge proof, col-
laboration

I. INTRODUCTION

In modern business science, Business Process Management
(BPM) as a discipline [1] advocates process-focused thinking
about internal activities and external collaborations and proved
to be a very important tool for controlling and improving key
performance indicators. Automating the execution of business
processes is a key proposition of BPM and has been supported
for a long time by a range of Workflow Engines, and Work-
flow Enactment Services [2]. Today most of these, typically
centralized, tools use the leading business process modelling
standard, BPMN 2.0 [3], as a process definition language [4].

Distributed ledger technology, generally implemented on
a blockchain basis, is widely recognized as a compelling
platform to support the cross-organisational execution of busi-
ness processes – even when the organisations can not agree
on a trusted (third) party as a middleman [5]. Importantly,
smart contracts can be used to enforce and track the se-
quences of activities performed by organizations participating
in collaborations; store sent and received messages; and either
host shared data objects directly or anchor their changes
in the blockchain via cryptographic commitments. However,
blockchain-assisted BPM is still a relatively new discipline –
among other challenges, the privacy and confidentiality aspects
have not yet been sufficiently addressed.

In our paper, we present a novel approach1 for orchestrating
cross-organizational workflows – collaborations – with smart
contracts in a confidentiality preserving way. The process logic
is defined by BPMN models, and parties not participating in
a process instance can not determine the state of the instance,
even if they have full access to the transaction sequence of the
underlying blockchain and complete knowledge of the process
model.

Specifically, we encode the state updates of BPMN process
instances as programs of the ZoKrates [6] toolkit, from which
zero-knowledge proofs and state commitment update verifier
smart contracts are generated. We also define an accompanying
state commitment update protocol. We describe our open-
source end-to-end framework implementation prototype2 and
provide an empirical demonstration of the practical viability
of the presented approach.

To the best of our knowledge, our work is the first to offer
robust confidentiality protection for blockchain-orchestrated,
BPMN-specified collaborations.

II. BLOCKCHAIN-BASED PROCESS ORCHESTRATION

On most public and permissionless blockchains that allow
smart contract deployment, as a rule, the developer cannot
update the contract after it is deployed. Accompanied by the
risks associated with data integrity errors in a blockchain-
based distributed ledger which we wish to treat as a ”single
source of truth”, minimizing the probability of smart contract
faults is a major concern in the whole industry. Consequently,
in addition to domain-specific languages, Model-Driven En-
gineering (MDE) techniques are steadily gaining ground in
smart contract development [7]. In our context, this means
that the dominant approach is a model – usually formulated
in BPMN – to serve as a specification, and smart contract
logic is generated automatically from the model.

Caterpillar [8] was the first open-source BPMN-to-Solidity
compiler (Solidity is the primary smart contract development
language for the Ethereum platform). Since its initial release,
several forks have emerged. Some of these also come with an

1This paper is based on the Scientific Student Association report submitted
by Balázs Ádám Toldi to the 2022 competition at the Budapest University of
Technology and Economics, advised by Imre Kocsis: https://tdk.bme.hu/VIK/
sw8/Kollaborativ-munkafolyamatok-titkossagmegorzo

2Available at https://github.com/ftsrg/zkWF

https://tdk.bme.hu/VIK/sw8/Kollaborativ-munkafolyamatok-titkossagmegorzo
https://tdk.bme.hu/VIK/sw8/Kollaborativ-munkafolyamatok-titkossagmegorzo
https://github.com/ftsrg/zkWF
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extended feature set, like Blockchain Studio [9], which adds
role management, or [10], which adds time constraints.

Lorikeet [11] is a model-driven engineering approach that
integrates assets into business processes. Lorikeet extends the
BPMN 2.0 specification with support for asset registries and
also transforms models into Solidity smart contracts. The smart
contracts handle the orchestration of the process as well as
interactions with the tokens.

Chorchain [12] is a tool that takes a BPMN choreography
and generates an Ethereum smart contract that can be used
to execute the model. ChorChain also includes a dedicated
modelling tool. The same authors also released two additional
but related tools: Multi-Chain [13] and FlexChain [14]. Multi-
chain is similar to Chorchain, but it is also capable of gener-
ating smart contracts for Hyperledger Fabric [15]. FlexChain
can only produce Solidity smart contracts, but the user can
also define a ruleset for each choreography. If a condition in
the ruleset is met, then an off-chain processor will perform its
underlying action.

Our analysis showed that the process state, as well as the
process trace, are easily recoverable from the process manager
smart contracts for all the tools above.

The Baseline protocol3 is a developing open standard that
allows enterprises to synchronize complex, multi-party busi-
ness processes on distributed ledger technologies. Business
process workflows in Baseline are formed as state machines.
The standard includes some essential and optional privacy-
related requirements. The protocol has two reference imple-
mentations; however, at the time of this writing, neither of
these actually supports privacy/confidentiality measures.

III. A CONFIDENTIALITY-PRESERVING APPROACH

In this paper, we present an approach for tracking and
orchestrating business processes through smart contracts, con-
ceptually in a very similar way to [8],[12],[13],[14],[11],[9],
and [10], but instead of storing the process state on-chain, we
apply cryptographic state commitments and accept new com-
mitments carrying state commitment update proposals on the
presentation of proper Zero-Knowledge Proofs (ZKPs). Our
approach aims at rendering process state and data information
undiscoverable from the smart contract state – to parties not
involved in the execution of the process instance.

ZKPs are cryptographic methods to prove that various state-
ments are true – without revealing any additional information
about the statement. Quoting the ZKProof Community Refer-
ence ([16], p1), ”A zero-knowledge proof makes it possible to
prove a statement is true while preserving the confidentiality
of secret information. This makes sense when the veracity
of the statement is not obvious on its own, but the prover
knows relevant secret information (or has a skill, like super
computation ability) that enables producing proofs. The notion
of secrecy is used here in the sense of prohibited leakage, but
a ZKP makes sense even if the ’secret’ (or any portion of it)
is known apriori by the verifier(s)”.

In this work, we rely on zk-SNARKs, a family of noninter-
active (”single-shot” message passing from prover to verifier),

3https://docs.baseline-protocol.org/
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Fig. 1. Overview of the zkWF protocol

and succinct (small and cheaply verifiable proofs) ZKPs.
We use the ZoKrates toolkit as a ZKP front-end [6], which
currently supports the Groth16 [17] and GM17 [18] schemes.

A. The zero-knowledge WorkFlow (zkWF) protocol

Our approach relies on two key conceptual components:
our zkWF (”zero knowledge WorkFlow”) protocol and what
we call ”zkWF programs”.

The zkWF protocol is a hash commitment style protocol
that allows the participants of a business process to follow
and step the execution of a business process, governed by a
smart contract. Meanwhile, the state and trace of the process
execution remain hidden from external parties.

Figure 1 presents a high-level overview of the protocol.
The protocol requires to have a smart contract deployed on
a blockchain for each process instance. This smart contract
contains a hash commitment of the current state and an
encrypted version of the state.

During process execution, the collaborating parties can send
messages to each other by off-chain means. These are cap-
tured in the underlying process specification as intermediate
message throw and capture events; the commitment scheme
includes commitments to the message hashes.

https://docs.baseline-protocol.org/
https://docs.baseline-protocol.org/
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When a participant wishes to update the state stored in the
smart contract (hash commitment and state ciphertext) – that
is, to ”step the process” –, it has to create a ZKP that the
state transition they propose is valid. This new state includes
the hash of the message they sent beforehand if the step
involves message sending. When the execution arrives at a
point where a participant receives a message in the next stage
of the execution, the receiving party checks the hash and only
accepts if the hashes match.

Participant authorization is tied to proving EdDSA private
key ownership in the ZKPs; the public keys of the participants
are defined over the underlying process model as a parame-
terization. Additionally, we require the participants to have
a common means for encrypting and decrypting stored state
ciphertexts (this aspect is not constrained by the protocol).

This scheme enables adapting the protocol to different
distributed ledgers in a straightforward way (we provide an
implementation for Ethereum and Hyperledger Fabric); as
well as masking updater identity on pseudonymizing plat-
forms (such as Ethereum) by facilitating the use of single-use
transaction source addresses. While the updates themselves
and the contract state are unintelligible to parties outside the
collaboration, statistical and model trace analyses of the update
sequences may still be a threat; our mitigation is the inclusion
of a ”fake” update transaction variant (no actual state update),
which all participants are authorized to use freely.

B. zkWF programs

zkWF programs serve as a bridge between process speci-
fication and proof computation/verification. These programs
are generated from a representative subset of the BPMN
specification, with extensions for cryptographic checks, as
detailed later.

A zkWF program is a ZoKrates program that, for a given
BPMN model instance (parameterized model), can decide
whether a given actor is authorized to execute a state
transition in a given execution state. The ZoKrates program
can be used to generate the zero-knowledge proofs and
the proof verification code used by the zkWF protocol
participants and zkWF smart contracts.

C. Toolchain overview

We have created a prototype of an end-to-end toolchain to
support the proposed approach, as depicted in figure 2, from
modelling through code synthesis to deployment and opera-
tion. The figure also delineates the newly created software
components (and those with novel generators).

In the modelling phase, a BPMN model is annotated with
metadata for process instantiation, and our Kotlin-based inter-
preter and translator creates the corresponding zkWF program.

In the synthesis phase, the ZoKrates toolkit is used to set
up the prover key and verifier key (note that ZoKrates sup-
ports multi-party ceremonies) and generates the verifier smart
contract in Solidity. We created novel support for generating
verifier code for Hyperledger Fabric [15]. We also created the
(necessarily application-specific) code generation facilities for
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Fig. 2. Toolchain overview

the state commitment management part of the smart contracts
for both platforms.

For the deployment phase, we created automation facilities
for deployment to Ethereum (and other blockchains using a
compatible RPC API); and an SDK and GUI application for
the client side. Here we integrate the ZoKrates toolkit as a
proof generator.

D. Adversarial model and security goals

A participant of a business process instance is a party who
has a private EdDSA key necessary to enact certain state
changes in the process instance, as encoded in the underlying
BPMN model instance with public key annotations on model
elements. All other parties are deemed process external.

We assume that the underlying process model is public
knowledge, but the set of public keys serving as parame-
terization for a process instance is shared only between the
participants. We also assume no private key compromises.

We assume full integrity for the blockchain (no successful
attack on the consensus) but also the full observability of
transactions targeting the process manager smart contract and
the smart contract state sequence by process external parties.
For the sake of simplicity, we assume deterministic transaction
finality for the blockchain (largely equivalent to ”waiting for
a few blocks” for treating transactions as blockchain-included
under probabilistic finality models). We treat the blockchain as
fair – any transaction submitted by a participant is included
in a block in a reasonable time, irrespective of concurrent
transaction proposal load.

Our integrity goals are the following.
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• Process external parties should not be able to influence
the smart contract state commitment and stored encrypted
state.

• Participants should be able to influence the smart contract
state commitment and stored encrypted state only when
they are authorized by their private key(s). Accepted
state commitment updates should always conform to the
execution semantics of the underlying process model.

• Should a participant successfully submit an encrypted
state not conforming to the accompanying commitment,
it has to be evident to all participants in a non-repudiable
way.

The first two integrity goals largely carry over from the ear-
lier cited state of the art; the third is a reasonable relaxation in
view of a currently still missing ZKP capability, as explained
later.

Our availability goal is that no process external party should
be able to influence the update capability of the authorized
participants.

Lastly, our confidentiality goal is that no external party
should be able to determine the process state either fully or
partially (beyond the fact that it exists and that it has been
started) without collusion with at least one participant.

IV. BPMN SUBSET AND EXECUTION SEMANTICS

In this paper, our main focus is on BPMN collaboration
models. According to the specification, they can contain
processes or choreographies; we work with collaborative
processes.

Currently, we support a limited but representative set of
elements from the BPMN specification, as summarized by
table I. Notably, in addition to the Basic Modeling Ele-
ments of BPMN 2.0 (see [3], p28), we also support message
throw and catch events, which are of particular importance
in collaborative settings. The table denotes those elements as
”stateful” which have non-instantaneous execution semantics
(as declared by the BPMN specification), and these will
determine the structure of our execution state vector. In the
context of this paper, we will refer to these elements as the
”executable” ones in the BPMN subset we address.

A. BPMN extensions and structural constraints

In order to capture properties that are necessary for our
zero-knowledge approach, we added two types of extended
attributes on top of the existing BPMN specification. On the
one hand, a zkp:publicKey attribute is used to separate the
tasks of different participants by attaching an EdDSA public
key to a pool, a lane, or an executable element. Applying
this attribute to an element directly or indirectly (e.g. through
inclusion in a pool) is mandatory; however, there are no
facilities for key overriding in the model hierarchy yet. The
intended usage is to equip either pools or lanes with public
keys.
zkp:variables extended attributes can be applied to

activities. These declare process instance global variables and
that the variable may be written by that activity (reads are
allowed for all activities). These variables can be used in

TABLE I
SUPPORTED BPMN MODELLING ELEMENTS

Element name Notation Stateful?

Start event no

End Event no

Activity Task yes

Sequence flow no
Message flow no

Parallel gateway +
no

Exclusive gateway ×
no

Message # no

Message Intermediate
Catch event (executable) # yes

Message Intermediate
Throw event (executable) # yes

Pool

Pa
rt

y1 no

Lane

A
BPa

rt
y1 no

expressions for exclusive gateways. The gateways support
boolean expressions over these global variables.

Some constraints apply to the structure of the BPMN models
currently admissible in our scheme.

• We support binary gateways (at most two incom-
ing/outgoing edges).

• Activities are atomic; i.e., subprocesses are not supported.
• The model cannot contain loops; sequence and message

flows must form a directed acyclic graph.
We plan to eliminate these constraints in the future; the

required modifications of the state representation and the
zkWF program construction are largely incremental.

B. State representation

Our notion of process instance execution state encompasses
the following aspects (for the specific encoding in zkWF
programs, please refer to the implementation).

• A vector v of the current state of executable elements
• The current values of global variables
• Hashes of the messages already sent in the process
Let us represent a business process M as a tuple (V,E, T ),

where V is the set of non-flow model elements, E is the set
of model edges (flows), and T ⊂ V is the set of all executable
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elements in the business process. Then, v is a vector of |T |
size and ∀vi ∈ v can have one of the following three values:

• 0 (Inactive) – The element has not been reached yet
• 1 (Active) – The element is ready to be executed or is

being executed by a party
• 2 (Completed) – The execution of the element has been

completed

Note that this state space model is a simplification, espe-
cially in terms of the full BPMN activity lifecycle; however, it
is a reasonable simplification in the sense that it is of sufficient
expressive power for important applications in our context (as
we show later). Further research will investigate incorporating
the full lifecycle model.

C. Capturing token passing semantics

As described by the standard, BPMN 2.0 models have
token flow-based execution semantics. For the purposes of
supporting a different ZKP use case, Aivo et al. [19] introduce
a technique for representing valid BPMN execution state
changes through enumerating the possible composite token
marking deltas of the elements upon stepping the process.

Specifically, [19] introduces an array P , where each element
of P is a list of token change and element identifier pairs –
essentially, P enumerates the token changes for each allowed
stepping of the BPMN model (not unlike Petri net incidence
matrices do).

We construct a very similar P array and embed it into the
zkWF program to enable checking whether a proposed state
update is valid from the BPMN execution logic point of view.

Our token passing-based operational semantics is the fol-
lowing. Initially, we create a token for every start event and
pass it to the first executable element connected to it. Each
executable element has one incoming and one outgoing edge.
When an executable event has a token, it is marked as ”active”.
After completing the execution of the element, the element is
marked as ”completed”, and we pass its token to the next
executable element – based on the token holder element’s
outgoing edge. This approach can be modelled as adding a
token (+1) when we mark an executable event as ”active”,
and we subtract this token (−1) when we mark the event as
”done”.

Gateways change the token flow differently. Parallel gate-
ways can split a token on one end and merge them back
together on the other end. Exclusive gateways can have many
outgoing edges, but only one can be taken based on its
assigned expression. A default outgoing edge can also be set,
as described in the BPMN specification. End events can have
multiple incoming edges but no outgoing edges. They mark
the end of a token flow.

To limit the size of our version of array P (necessary to
ensure reasonable proof computation times), in our approach,
a single step of a model can induce only three token changes
at most. (Hence the structural restriction on parallel gateways.)
Thus, the array P describing one-step token marking changes
for a model M consists of 3-tuples with elements from the set
N :

N = (+1,−1} × T ) ∪ {(0,−1)} (1)

For T , we apply a simple integer encoding; the −1 in the
”no-token-change” pair is a don’t care placeholder.

V. ZKWF PROGRAMS AND THEIR CONSTRUCTION

Informally, a zkWF program is the vehicle with which
process participants prove that no ”illegal” moves – in terms
of the agreed-upon rules and current state of the process –
are being proposed as a business process step. It is a program
shared by the participants for a given process instance and
used for creating ZKPs about the state updates they submit to
the process manager smart contract.

As a ZoKrates program, a zkWF program has public as
well as private inputs, and an output. Private inputs are only
visible to the prover. Public inputs are visible to the prover as
well as the verifier, and they are necessary to verify proofs (in
our context, the process manager smart contract performs the
proof verification).

In general terms, the computation happens against a current
public process state commitment, stored by the managing
smart contract, which is the hash of the current process state,
salted by some randomness. This ensures that parties outside
the collaboration can’t easily guess states from their hash
commitments. The computation also relies on the knowledge
of the current state and the randomness used for salting the
commitment of the current state – these are shared between the
collaborating parties in an encrypted form through the smart
contract.

However, due to computational limitations, the congruence
of this cipertext to the public state commitment is not a part of
the ZKP scheme. For this reason, part of the public input (also
tracked by the smart contract) is a signature commitment: the
current hash commitment and the previous hash commitment
signed by the last acting party (using their application-level
EdDSA identity).

Should a participant erroneously or maliciously commit a
ciphertext which does not hash to the stated, proven and
accepted commitment, this signature ensures that the offending
participant can be irrepudiably identified by the other collab-
orating parties. The zkWF program contains the public keys
of the participants for the purposes of the collaboration, thus,
proofs are able to imply that a signature commitment was done
with the same public key that authorized a party to make an
authorized state update. The identity of the party who made the
update can be recovered from the participant-tied public keys
(known to the collaborators) and the signature commitment.
A number of mitigative and corrective schemes are possible
for such cases, but these fall outside the scope of the current
paper. Further details on the state commitment management
protocol are given in section VI.

A. zkWF computation model

Figure 3 illustrates the basic computational approach. Hash-
ing is used heavily; from the selection of hashing algorithms in
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Fig. 3. The basic computation model of zkWF programs

the standard library of ZoKrates, we currently use SHA-256.
The private inputs of zkWF programs are as follows.

• scurrent - the current state of the process
• rcurrent - randomness for hashing scurrent (32 bits)
• snew - the updated (”stepped”) process state
• rnew - new randomness, for hashing snew
• pk - public EdDSA key of the participant
• sk - private EdDSA key of the participant

In turn, the public inputs of the program are as follows. The
symbol ∥ denotes concatenation.

• hcurrent = hash(scurrent||rcurrent)
• Snew = sig(hcurrent||hnew)

hash denotes hashing, sig denotes signing by the party who
is proposing the new hash commitment in the concatenation.
Based on these inputs, with reference to Figure 3, the compu-
tation can be broken down into the following major phases.

1) ”Checking the hash”. Checking the group-shared secret
current state and randomness against the public hash
commitment to ensure ongoing integrity.

2) ”Checking vector update validity”. Checking that no
illegal state transition is being proposed through snew at
the application logic level (as specified by the BPMN
model).

3) ”Authorization”. Checking the new signature commit-
ment given as a public input (based on pk and sk)
and checking the authorization of the participant for the
business process step.

4) The program outputs the hash of the new state hnew =
hash(snew||rnew).

Most aspects of the computational model are straightfor-
ward; for further details, the reader is kindly referred to the
full report and the implementation. We only expand on some
important aspects of the BPMN model encoding and the logic
for checking BPMN state change validity.

B. BPMN model encoding
The BPMN logic is fundamentally carried over into the

zkWF program through a precomputed P array. Additionally,

to check whether the right paths are proposed for exclusive
gateways, the expressions on the sequence flows after the
gateways are also encoded in the program as assertions.
Message passing and variable write permission checks are
addressed similarly.

C. BPMN state change validity check

The zkWF program compares vcurrent and vnew from
scurrent and snew. If the two are the same, the ”change” is
accepted (as a ”step” under the fake update mechanism). Four
or more differences (pairwise comparisons at the same indices)
in the vectors are considered invalid. Otherwise, we construct
a 3× 3 matrix A with the initial value

A =

0 −1
0 −1
0 −1

 (2)

Then, for the j-th difference (j ∈ 0 . . . 2) at position i ∈
[0, |T |[ in the vectors, we apply the following updates to A:

• vcurrent[i] = 1 & vnew[i] = 2⇒ A[j]← [−1, i]
• vcurrent[i] = 0 & vnew[i] = 1⇒ A[j]← [1, i]
• vcurrent[i] = 0 & vnew[i] = 2⇒ A[j]← [1, i]

Any other combination of vcurrent and vnew values is
immediately considered invalid. After matrix A is constructed,
we compare each element in the array P to matrix A. If we
find an element in P that contains every row in matrix A (in
any order), the vector change is considered valid.

Parallel gateway ends induce an additional check. Before
a parallel gateway end, two active tasks can exist with two
different participants. Because of this, one task can be marked
as ”completed” without marking the task after the parallel
gateway as ”active”. After both tasks before the parallel
gateway are marked as ”completed”, the executable event on
the other end of the gateway must be marked as ”active” to
continue the token flow.

The state change validity check also includes checking write
permissions for global variables and contrasts the evaluation
of arithmetic expressions with the proposed path for exclusive
gateways.

Finally, the message-handling validation logic involves two
major checking aspects. On the one hand, each time a partic-
ipant wants to mark a Message Throw event as ”completed”,
a message hash has to be uploaded. We assume the actual
message to be passed off-chain. On the other hand, each
time a participant wants to mark a Message Catch event as
”completed”, we need to make sure that the corresponding
Message Throw event is also marked as completed (likely by
another participant). Contrasting the received message with
the hash value has to be done by the receiver; if this fails, we
assume that the corresponding steps are codified in the process
logic.

VI. ZKWF PROTOCOL DESIGN

The zkWF protocol largely follows the general ”proofs
over commitments and proposed commitment updates” pattern
customary in blockchain applications of ZKPs (as depicted in
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Figure 1). The process manager smart contract component is
fairly simple: on the one hand, it stores and updates commit-
ments, and on the other hand, it checks ZKPs over the new
commitments proposed in incoming blockchain transactions.
Specifically, the process manager smart contract stores the
following data (using the notations introduced earlier):

• hcurrent = hash(scurrent||rcurrent)
• Cenc

curr = enc(scurrent)
• Scurrent = sig(hprev||hcurrent)

where enc denotes encryption with the group encryption key
and method (see Section III). Update request transactions of
the smart contract carry the following arguments:

• hnew = hash(snew||rnew)
• Cenc

new = enc(snew)
• Snew = sig(hcurrent||hnew)
• p(hcurrent, Snew, hnew)

The last argument is a ZKP of the correspondence of hcurrent,
Snew and hnew, under the pre-agreed zkWF program. The
process manager smart contract checks the validity of this
proof, before accepting the smart contract state change carried
by the other arguments.

VII. IMPLEMENTATION AND TESTING

The ZoKrates toolkit is a central component in our frame-
work; the current implementation uses version 0.7.134. Al-
though the state of the art is changing very rapidly, ZoKrates
is the noninteractive ZKP toolkit which has the richest pro-
gramming language from the point of view of our purposes
and is mature enough at the same time.

A. Code generation
Our code generator, implementing the transformation logic

denoted on Figure 2, is a custom development in Kotlin. This
component generates a zkWF program from a BPMN model
(serialized in XML the standard way), relying on a set of
ZoKrates template files. First, the model is encoded, as we
outlined earlier; then, it generates the code for calculating the
state hashes, checking the variable write permissions, ensuring
exclusive gateway paths, and verifying message sending. Dis-
tribution and validation of the resulting zkWF program among
the process participants are not covered by the framework.

As mentioned earlier, in addition to generating zkWF pro-
grams, we also support the generation of process manager
smart contracts for EVM-based blockchains (via Solidity code
generation with a language version 0.8.0 target) as well as
for Hyperledger Fabric. Solidity smart contracts are derived
from the verifier smart contracts ZoKrates generates for zkWF
programs.

In Fabric, smart contracts – ”chaincodes” – run in containers
and can be developed is classic programming languages, as
Java, JavaScript and Go. Consequently, we opted to create
a custom chaincode container, where a Java-based chaincode
receives smart contract invocations and uses a container-
resident copy of the ZoKrates toolkit for proof verification.
The structure of the solution and its support of the zkWF
protocol are the same as in the case of Solidity.

4See https://github.com/Zokrates/ZoKrates/releases

B. Client side

We created a simple participant-side SDK, which wraps
ZoKrates (for proof generation) and incorporates the Web3J
wallet library. For testing and demonstration purposes, we
also created a TornadoFX-based desktop GUI application
(WFGUI, standing for ”WorkFlow GUI”). The GUI supports
all key participant-side actions: monitoring a process manager
smart contract for changes, retrieving state, creating process
step proposals, computing their witnesses and proofs, and
submitting update proposals according to the zkWF protocol.

WFGUI also incorporates a process modeller for our BPMN
subset with our extensions through an embedding of bpmn-
js5; supports testing through preassembled smart contract call
sequences, which use different keys for different participants;
and supports process manager smart contract deployment to
Ethereum-based blockchains.

C. Testing

We assembled a suite of simple test cases and known im-
portant ”corner cases”, based on the test suites accompanying
the tools we referred to in section II. These can be found in
the code repository.

BPMN model size and complexity influence zkWF program
size and complexity, which, in turn, determine proof compu-
tation times and on-chain verification costs. Consequently, to
demonstrate the practical feasibility of our approach, as a rep-
resentative test case, we used an anonymized version of a car
leasing process model we created in the ”Digitisation, artificial
intelligence and data age workgroup” of the ongoing BME-
MNB cooperation project. (MNB is the Hungarian National
Bank.) The process involves four participants – client, dealer,
leasing company, and commercial bank – and the model has
68 vertices and 69 edges. The representative process model is
included in the repository, where a demonstrational video is
also available.

Not only is this process model representative, we argue that
real-life use cases will not necessarily involve much larger
models. Significantly larger models are usually transformed
into hierarchical process models in the practice – and, while
in this paper we have not addressed this question yet, there is
a clear path from the current solution towards a set of process
manager smart contracts, which collectively manage the state
commitments of a process hierarchy and remain efficient from
the point of view of proof generation and verification costs.

The test cases are executed by a custom test scenario runner
framework, which has a CLI interface (for CI/CD pipeline
integration) in addition to its integration into WFGUI.

VIII. PERFORMANCE

In addition to functional testing (compliance with model
semantics, proper enforcement of authorization aspects and
proper handling of compliant/noncompliant proofs), we used
our test suite to evaluate key performance metrics of the
approach. Performance tests were performed on a desktop
PC (AMD Ryzen 7 2700, 16 GB of DDR4 memory); for

5See https://bpmn.io/toolkit/bpmn-js/

https://github.com/Zokrates/ZoKrates/releases
https://bpmn.io/toolkit/bpmn-js/
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gas measurements, we used a private Ethereum test network
with geth version 1.10.25. Note that blockchain-side efficiency
measurements are largely irrelevant for Hyperledger Fabric
(which has no ”gas” notion and where the smart contract
execution layer is very highly resource-scalable). Table II
summarizes the relevant size metrics of our test cases. The
size of P is understood in the number of 3-tuples in the array.

TABLE II
SIZE CHARACTERISTICS OF THE TEST CASES AND SCENARIO COUNTS

Case Vertices Edges Executable Size of P Scenarios
Test 1 5 4 3 3 3
Test 2 9 10 5 7 9
Test 3 8 8 4 4 4
Test 4 6 5 2 3 2
Test 5 14 12 10 10 10
Repr. 68 69 50 54 52

Table III summarizes the runtimes of the off-chain compu-
tations. The compilation and zk-SNARK setup phases were
executed once; proving time is the sum of computing the
witness and generating the proof, and we give an average over
the scenarios.

In summary, the results indicate that deploying a smart
contract and stepping the execution can be done in just a
few minutes. We can also see that, although the representative
model is 5-6 times larger than the larger ones, proofs only
took about 2.3 times more time to generate. We interpret this
as a strong indication that our approach is practically feasible
for real-life models.

TABLE III
OFF-CHAIN COMPUTATION RUNTIMES

Case Compilation time Setup time Proving time avg.
Test 1 27.22 s 129.58 s 55.0 s
Test 2 48.32 s 182.80 s 88.67 s
Test 3 28.55 s 129.69 s 53.40 s
Test 4 27.14 s 128.82 s 53.21 s
Test 5 30.74 s 133.44 s 54.10 s
Repr. 81.02 s 187.33 s 122.47s

Table IV summarizes smart contract deployment cost to
Ethereum and the average gas cost of (updating) smart contract
calls in the zkWF protocol. Note that although the representa-
tive model is 5-6 times larger than the simple ones, the smart
contract call gas cost is only moderately higher. As the hashes,
signatures, and proofs have a fixed length, gas usage variability
is essentially driven by the size of the encrypted version of the
current state.

TABLE IV
GAS USAGE ON ETHEREUM

Case Deployment gas usage Update gas usage avg.
Test 1 2,098,786 gas 490,507 gas
Test 2 2,098,990 gas 497,780 gas
Test 3 2,098,498 gas 493,705 gas
Test 4 2,078,071 gas 503,817 gas
Test 5 2,161,039 gas 491,783 gas
Repr. 2,408,635 gas 548, 898 gas

Performance-wise, it is hard to compare our approach to
others, since, to our knowledge, we are the first to use zero-
knowledge proofs to hide the current state of BPMN execution
on-chain. Despite some common points, even [19] remains
incommensurable due to differences in goals, basic approach
and tools.

That said, the Ethereum smart contracts’ gas usage can be
certainly compared to existing techniques. The deployment
cost is on par with or is less than the existing solutions.
In our case, the cost of updating the state is significantly
higher compared to previous approaches like Chorchain [12]
or Caterpillar [8]. Chorchain [12] uses about 92,905 gas
on average for each message, while Caterpillar [8] requires
similar amounts of gas on average.

This ”confidentiality premium”, while it may not be cur-
rently acceptable on the mainnet (at the time of this writing,
the block target size is 15 million gas), can be fully acceptable
on permissioned EVM blockchains and sidechains. Addition-
ally, support for the efficient checking of ZKP commitments is
being developed very intensively for the Ethereum platform.

IX. THREATS TO VALIDITY AND FUTURE WORK

Earlier, we addressed our current constraints with respect
to BPMN models which are admissible under our current
approach; future work will target lifting these limitations.
We dealt with the inability of ZoKrates not being able to
verify that a given ciphertext is the encrypted form of a given
message with a given key by constructing the protocol so that
parties submitting a noncompliant ciphertext can always be
identified irrepudiably. We accept smart contract gas costs
as an outstanding issue; however, it is one which does not
truly limit the applicability of our approach on permissioned-
consensus platforms and one which we can reasonably expect
to become a non-issue for the Ethereum mainnet, too. We
will also investigate whether we can sidestep this issue by
transforming our approach into a Layer 2 ZKP rollup scheme,
where we can, at the very least, amortize gas costs across
batches of process manager smart contract updates.

A major remaining threat to validity is compliance with
BPMN operational semantics, especially after the planned
future extension of the supported BPMN subset. For the
approach presented in this paper, we only tested compliance
and not formally proved it. Here we note that as long as all
participants are aware of the way BPMN models are trans-
lated to admissible and nonadmissible state changes in zkWF
programs, even divergences from the standard-prescribed and
commonly accepted operational semantics may be acceptable,
but this is clearly not a fully satisfactory answer to the issue.

Formally proving the operational semantics-preserving na-
ture of our transformation logic would be a possible approach,
but that would first need migrating the implementation to a
transformation model where the translation rules themselves
are first-class objects (such as in the model transformation
platform VIATRA [20]), and even then, it would be a highly
complicated endeavour.

Instead, future work will first investigate proving be-
havioural equivalence between reference BPMN behaviour
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and zkWF programs on a model-by-model basis, as a pre-
requisite check integrated into the toolchain. Recent work
has formalized BPMN collaboration semantics in a way
amenable for state space model checking [21]; this opens
up the possibility to perform bisimulation analyses between
the state transitions of models under ”authoritative” semantics
and under zkWF program encoded semantics. This approach
will have the added benefit that it facilitates the introduction
of property checking (soundness, safeness and application-
specific requirements) on the BPMN models themselves.

Last but not least, meeting our confidentiality goal partially
relies on the participants blending their actual updates into a
stream of ”fake” updates. Currently, we are developing three
cooperative fake update regimens: a by-participant random,
a participant-cyclic and a participant-periodic one; however,
these still require formal analysis of their state confidentiality
preserving properties (in terms of the vector v).

X. CONCLUSION

In this paper, we presented a confidentiality-preserving
approach for the smart contract-based orchestration of business
collaborations, captured as BPMN 2.0 models. Our protocol
is a novel, and to our knowledge, one of its kind solution,
which we validated semantically as well as evaluated from the
resource usage and gas cost points of view. We also described
a full toolchain prototype which we made available as open-
source software.
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