Jobbágy Á, Schultheisz J, Horváth M, Bacsó P, Csuhaj P, Réfy Vraskó H Objective Assessment of Children with Birth Injuries In: Efthyvoulos Kyriacou, Stelios Christofides, Constantinos S Pattichis (szerk.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016 MEDICON 2016. Konferencia helye, ideje: Paphos, Ciprus, 2016.03.31-2016.04.02. (IFMBE International Federation for Medical and Biological Engineering) Cham (Svájc): Springer International Publishing, 2016. pp. 565-569. (IFMBE Proceedings; 57.) (ISBN:<u>978-3-319-32701-3; 978-3-319-32703-7</u>)

Objective assessment of children with birth injuries

Á. Jobbágy¹, J. Schultheisz², M. Horváth¹, P. Bacsó², P. Csuhaj¹, H. Réfy Vraskó²

(1) Budapest University of Technology and Economics (2) Gézengúz Foundation

Huple

Virtual reality in therapy

Object moving in 1D

Object moving in 2D

Approximation of human evaluation using sensors

- selecting a sensor and attaching it to Huple,
- definition of an appropriate movement,
- selection of the variable characterizing the movement,
- definition of parameters as well as algorithms that calculate the parameter values,

Approximation of human evaluation using sensors

- calibration of algorithms based on measurement results taken from children whose movement coordination has been qualified and quantified by therapists,
- verification of the assessment method by applying it to another group of children.

Orientation sensor: x-IMU

- accelerometer (±8 g, 12-bit), magnetometer (±8.1 G, 12-bit) and gyroscope (±2000 °/s, 16-bit),
- > programmable full scale range,
- sampling frequency was set to 64 Hz (maximum 512 Hz),
- size: 57 × 38 × 21 mm and it weighs
 49 grams,
- bluetooth communication.

x-IMU vs. simple 3D accelerometer

Tested movement: active tilting

Tested children: group (a)

Patient	Gender	Age	Diagnosis	Rating by
				therapists
C1	female	5	central hypotonia	7/10
C2	female	3	benign congenital hypotonia	6/10
С3	female	3	benign congenital hypotonia	5/10
C4	male	4	minimal cerebral dysfunction	4/10
C5	female	3	myotonia congenital	3/10

Tested children: group (b)

Patient	Gender	Age	Diagnosis	Rating by therapists
C8	male	8	motor and mental retardation, coordination problems	best
C 9	male	5	pes planus, calcaneovalgus	middle
C10	male	6	congenital hypotonia, coordination problems	middle
C11	female	5	congenital hypotonia	worst
C12	male	6	minimal cerebral dysfunction	middle

Sitting still

Best performing child

Quantification of movement control

- time to complete the test, also broken down to phases P2, P3 and P4,
- maximum speed in phases P2 and P4,
- average speed in phases P2 and P4,
- area A_{cover},
- dominant frequency in phases P1 and P3,
- ratio t_c/t_{all} in phases P2 and P4.

Ratio t_c/t_{all}

Quantification of group (a)

Quantification of group (b)

Ratio of d_c/d_{all} , %

Conclusion

The medical device Huple is applicable to assess the actual movement coordination of children with sensorimotoric problems.

The evaluation method based on x-IMU as an orientation sensor can easily be used by the therapists.

Thank you for your attention!

