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Abstract

is thesis presents a solution for reliable and cost-effective implementation of a high
accuracy time synchronization system in Local Area Networks via the IEEE  proto-
col. Nowadays the necessity of sub-microsecond time synchronization is increasing in
the fields of distributed systems and multimedia systems. By the usage of the general
purpose communication protocols such as Ethernet for synchronization, the cost and
complexity can be lower compared to ordinary systems (e.g. via GPS and IRIG synced
nodes).

ere are several current applications of high accuracy in–band clock synchronization
such as power substation automation, high frequency trader financial systems, telecommu-

nications, etc. is thesis shows a reliable solution for Linux based systems to aain
this goal. e Ethernet based multimedia systems provide a less complex and cost effec-
tive alternative to the multimedia specific connections based systems by eliminating the
proprietary and single-function connections (VGA, DVI, HDMI) with the help of packet
based clock synchronization.

e document systematizes the earlierworks in this field, and presents an IEEE –hard-
ware time stamping based solution for the high accuracy i.e. sub-microsecond synchro-
nization. A high accuracy clock output (PPS) is designed and presented in this work.
is output can be used for the distribution of the correct time to other devices, which
can’t use the PTP protocol stack, and it’s also used for the validation of the measure-
ments.

Every clock sync system requires a high precision time source for the most accurate syn-
chronization process. In the measurements, the demo system contains a high precision
GPS based PTP master clock hardware. e thesis also shows the design and implemen-
tation issues of a substituting equipment.

e performance of the network routing/switching equipment is critical for the decent
accuracy. e tests of the system are performed with PTP & non PTP compliant switch-
ing devices with variable loads to cover the largest real world application cases.
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Kivonat

Napjaink egy nagy kihívása, hogy akár az asztali számítógépek, akár a szórakoztató-
elektronikai berendezések esetén a meglevő általános célú kommunikációs protokollok
felhasználásával olyan óraszinkronizációs megoldásokat működtessünk, melyek segítsé-
gével az ado végpont eloszto feldolgozási feladatot, vizualizációt, méréseket végez-
het el. Az előbbi területet példázzák a különböző banki rendszerek, ahol a beérkező
tranzakciók számának növekedésével egyre nagyobb szerepet kap az, hogy a tranzak-
ciókat sorba tudjuk rendezni, azok keletkezési idejének nagy pontosságú ismeretének
alapján. Ugyancsak nagy pontosság szükséges a szórakoztató–elektronikai berendezé-
sekben, amennyiben az dedikáltan multimédia adatok átvitelére szolgáló hagyományos
(VGA, DVI, HDMI) csatlakozókat próbáljuk meg lecserélni általános célú kommunikáci-
óra szolgáló — és ezért rugalmasabb — Ethernet alapú megoldásokra.

A dolgozatban a korábbi munkák rendszereze összefoglalása után egy olyan IEEE 
és Linux alapú hardveres időbélyegzéssel rendelkező megoldás kerül bemutatásra, mely-
ben biztosítható a rendszerek óráinak μs-nél kisebb hibával történő együjárása. Az
órák együjárásának validációja, valamint a belőlük származtatható szinkronizációt se-
gítő jelek előállítása szintén kardinális kérdés, a dolgozat nagypontosságú  Hz frekven-
ciájú PPS jelek segítségével mutatja be a szover és hardverréteg alkalmasságát az efféle
nagyobb pontosságot megkövetelő méréstechnikai feladatokban történő alkalmazható-
ságra.

A nagy pontosságú szinkronizáció előfeltétele egy jó minőségű mesteróra alkalmazása a
szinkronizációs hálózatban. Ezt egyrészt egy célhardver segítségével biztosítjuk, mely a
GPS segítségével állítja elő a saját pontos idejét, a dolgozat készítése során azonban cél
egy Linux alapú mesteróra létrehozása, mely egy külső illeszte GPS vevővel kommuni-
kálva terjeszti a pontos időt a végpontok felé.

Ahhoz, hogy a megoldás a való életben alkalmazható legyen, szükséges egy kisebb há-
lózat összeállítása, ahol az ideális körülményeken felül különböző terheléses próbákkal
bizonyosodunk meg a rendszer alkalmazhatóságáról. A terheléses tesztek PTP kompa-
tibilis és nem kompatibilis eszközök segítségével valósulnak meg, ezzel is biztosítva a
lehető legtöbb előforduló konfigurációt.
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List of terminology

accuracy e maximal difference between an arbitrary node & the reference time

BC Boundary Clock

COTS Commercial off the shelf

DAC Digital–analog converter

discipline Steering the phase/frequency of a clock to a reference

DUT device under test

FOSS Free and open-source soware

GPS Global Positioning System

ioctl A Linux kernel command/interface to program any kind of hardware

ISR Interrupt Service Routine

OCXO Oven Controlled Crystal Oscillator

PHC PTP hardware clock

PLL Phase locked loop

ppb Particle per billion

ppm Particle per million (onehundredth of a percent)

PPS Pulse per second

precision e smallest quantum of time representable in the system

PTP Precision Time Protocol, name alternative to IEEE 

SDP Soware Definable Pin
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SHM Shared Memory

TAI International Atomic Time

TC Transparent Clock

UTC Coordinated Universal Time

VM virtual machine

wrt. with respect to







1 | Introduction

“A man with a watch knows what time it is. A man with two watches is never

sure.”

— Segal’s Law

1.1 Motivation

e emerging importance of maintaining a stable, accurate timebase in distributed sys-
tems requires a supporting infrastructure to distribute the commonwall clock time to the
nodes. e usage of the existing communication network makes these systems cheaper
and less complex, therefore the expected reliability is higher and the administration over-
head can be smaller.

Several solutions appeared in the past to satisfy the required functionality — the ven-
erable NTP provides a widespread, reliable solution of the synchronization over In-
ternet, but it doesn’t meet the most rigorous accuracy requirements. Distribution of
sub–microsecond accuracy timing informationwith out–of–band communication is avail-
able long since; the U.S. originated GPS is among the most widespread solution to pro-
vide reference time, but its indoor usage is limited. Vendors are selling proprietary solu-
tions for solving the in–band time synchronization needs, but currently the open-source
alternatives are covering only parts of the needed functionality.

e main goal of this thesis to introduce the main concepts behind the high accuracy
clock synchronization in non-realtime systems, and to document the development & in-
tegration of the necessary open-source components to build a high precision time source
based on PC architecture. e presented solution is based on GPS and the IEEE  pro-
tocol standard; it runs on Linux operating system.

I was introduced to concept of packet based time synchronization in  when I chose
my first project laboratory topic. Back then there were several commercial solutions
to assemble PTP based synchronization networks. ere was an open–source applica-
tion called PTPd [] which implemented the first IEEE  standard’s master and slave
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clock roles. My first task was to get comfortable with the basics of the PTP and get the
PTPd daemon working with hardware time stamping capabilities — the main goal was
to discipline the kernel clock as good as possible.

In the following years a common API for controlling the NIC’s onboard clocks (PHC API

[]) were introduced along with a new linuxptp [] project. From that on a maintained
IEEE : compliant FOSS daemon were also available to use. e implementation
effort of high–quality and cheap computer based clocks becomes easier and easier, and I
was involved in implementation and measurement of PTP based clock synchronization
systems. is thesis is a natural evolution all of my previous findings about this subject.

1.2 Analysis of problem statement

e proposition of the thesis was to examine the current solutions of the PTP based
clock synchronization networks, and to propose a solution to aain sub-µs accuracy
time synchronization with the usage of freely available soware tools and Intel network
interface cards. In order to properly document the proposed tasks, I will organize the
this document in the following manner:

. e technologies behind the topic (IEEE , Linux time handling, GPS) will be
introduced to the reader.

. e general system hierarchy will be discussed with the identification of the roles
of the major building blocks — with the comparison of possible advantages/draw-
backs.

. e implementation details of my work will be presented.

. e measurement results will be discussed before the conclusion.

. In the conclusion part I will introduce application scenarios of the product and
summarize most important findings in this document and the future ways of re-
search.

I’ve focused on the maximum aainable accuracy with the usage of COTS components
in PTP networks, the analysis of security problems are outside of the scope of this paper.
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1.3 Standards and technologies involved

1.3.1 Brief summary about the time metrics

e meausurement of the flow of time dates back to the ancient civilizations who tried
to formalize cyclic events of the days and years. e most apparent way of the time mea-
surement was the counting of the sunrises and sunsets, but even the human perception
spots the varying length of time between these events, and that is the most important
drawback of empiric/astronomical definition of the unit of time. As science and technol-
ogy advanced, beer and beer models and theories emerged about our world, which
implied more precise definition of the time itself. e days derived from the observation
of the sky were replaced by an exact physical phenomenon as the fundamental metric;
nowadays the basic unit of time is the second, which is defined as ,,, cycles
of radiation corresponding to the transition between two hyperfine levels of the ground
state of cesium  [].

e International Atomic Time (TAI) is a statistically derived unit based on the counting
of the previously defined seconds with a large number of atomic clocks. e Universal
Time (UT, UT) is counted from  hours at midnight, with unit of duration the mean
solar day, defined to be as uniform as possible despite variations in the rotation of the
Earth. e UT is the observed rotational time of an extraterrestrial point viewed from
a fixed location on Earth and the UT is the corrected measurement of the former with
the irregularities of the Earth’s motion. Coordinated Universal Time (UTC) differs from
TAI by an integral number of seconds. UTC is kept within . seconds of UT by the
introduction of one-second steps to UTC, the “leap second”. To date these steps have al-
ways been positive. UTC has replaced Greenwich Mean Time (GMT) as an international
standard [].

1.3.2 Overview of IEEE 1588

e IEEE  standard describes a protocol which synchronizes computer clocks via
Multicast capable networks []. e protocol became standard in  but it was revised
in ; the resulting update is not backwards compatiblewith the original version. With
proper hardware support the sub-microsecond synchronization accuracy is aainable in
the scope of local area networks. e recommended timescale of PTP is the same as TAI,
which simplifies the implementation of the measurement systems. is timescale may
be changed to an arbitrary one (such as UTC), but several subprofiles forbid the usage of
other ones. e standard offers an automatic way for the configuration of the synchro-





nization network, based on the nodes preprogrammed capabilities. A synchronization
network consists one or more of the following entities:

• Master clock

• Slave clock

• Boundary clock (optional)

• Transparent clock (optional)

Every clock synchronization network has at least one master, and one slave clock. A
synchronization network can be divided into several smaller separate domains where
the synchronizing slaves obtain their wall time from discrete masters. Primary master
of the whole synchronization network is called grandmaster, the slaves and masters are
also called ordinary clocks. e synchronization algorithm supports two main modes of
function, the one step and two step synchronization. e masters of the network send
only sync messages when they operate in one step synchronization mode, but they send
a follow-up messages when not.

With the usage of the follow-upmessages, themaster can send the precise sending time of
the sync packets to the slaves if it’s unable to inject this information in the sync packets
on the fly. By sending follow-up messages the accuracy is improved with a negligible
increase of the network traffic (Fig. ..). e slave nodes of the network capture the
ingress times of the sync packets. Now the offset from the master can be expressed as:

Δ𝑡 = 𝑇𝑠1 − 𝑇𝑚1 = 49 𝑠 (.)
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Figure 1.1: The offset correction algorithm

e applied offset corrections have constant error because the signalling delay is cur-
rently disregarded. Estimation of the path delay is requested by the slaves via delay
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request messages, the slave records the sending time of the packet, and the receive time
of the master’s delay response (Fig. ..). e master sends back the reception time of the
delay request package to the slave. It is assumed that the link delay is symmetrical, and
it’s variance is low — this assumption is generally acceptable in local area networks, but
in high accuracy systems the asymmetries of the system should be eliminated or compen-
sated. e estimator of the delay is the mean of the master-to-slave and slave-to-master
propagation times. In real world applications both the offset and delay calculations in-
clude delicate filtering algorithms to cancel out the noise caused by the jier of time
stamping, or the network delay.
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Figure 1.2: The delay estimation algorithm

e autoconfiguration of the system is done with the Best Master Clock (BMC) algorithm.
Every PTP port maintains a dataset about its capabilites, the most important fields are
(in relative order of precedence):

• clockClass,

• clockAccuracy,

• offsetScaledLogVariance

• clockID.

e ClockID is the tie–breaker in the selection, its generated from the (presumably)
unique MAC address of the adapter in most cases. If we measure the Allan deviation
of the clock we can provide the offsetScaledLogVariance field, which describes the
quantitative performance of the clock ([] pp. ). e clockAccuracy represents an
interval of maximum error compared to the reference time when the PTP port works as
a grandmaster. e clockClass field represents the traceability of the time provided the
PTP clock when it works as a grandmaster.
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Clock synchronization regions could be linked together by boundary clocks. ese de-
vices act as PTP slave on maximum one of their PTP logical ports, and as masters on
every other (Fig. ..). In some cases the ports are in passive — non-functional — state
to prevent unwanted synchronization loops in the network. eir local time — which
is shared among the logical ports — was corrected by the slave port of the device, and
it serves as timesource for the master ports. PTP messages of the different regions han-
dled separately, the logical ports of the domains do not know about the syncing nodes
in other regions (it’s different for PTP management messages which are relayed through
the ports of the boundaries). e segmentation helps to lower the traffic caused jier in
individual segments compared to a larger network, and also helps to integrate different
communication media into a single synchronization entity.

Boundary clock

PTP stack

Grandmaster clock

PTP slave port

PTP master port

PTP master port

Shared clock

Disciplined system

Disciplined system

Figure 1.3: Block diagram of a boundary clock

e revised standard (IEEE :) introduced the concept of Transparent Clock (TC)
(see Figure ..); it’s used to mitigate the packet jier caused by the non–determinstic
residence time in the active elements. ese devices canmeasure of the time of residence
between their ingress and egress ports (T₁ - T₂ and T₁ - T₃), and update the follow-up
packets with this information. Also the transparent clocks can maintain the correct
order of the transmied sync messages and the corresponding follow-up messages [].
To ensure the correct measurement of the residence time, the local clock of the TCs
should be synthonized (frequency corrected) to the master of their respective segment.
ere are two main types of Transparent Clocks, the End to End devices update the
CorrectionField value of the necessary packets (sync, delay_req, follow_up) with
the residence time, and each slave computes the path delay individually with respect to
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the grandmaster. With the usage of Peer to Peer Transparent Clocks, the slave ordinary
clocks can measure their direct path delays to their nearest TC. It means that every
active node in the system computes the link delay to the nearest upstream port only,
and the slave system doesn’t compute the link delay from the grandmaster, but uses the
cumulated CorrectionField to estimate the link delay on the path.

Transparent clock

PTP stack

Grandmaster clock

PTP ingress port

PTP egress port

PTP egress port

Synthonized clock

Disciplined system

Disciplined system

T1

T2

T3

Figure 1.4: Block diagram of a transparent clock

1.3.3 Overview of the timekeeping in Linux

Like every operating system, Linux also has some sort of abstraction of time [][]. e
operating system is based on event–based principles, but the abstraction of the real time

is also present.

e Linux kernel time is represented by the jiffies counter on every architecture. Based
on the kernel seings the frequency of a jiffy — in terms of the real time — varies in
the range of milliseconds, therefore it cannot be used alone to measure events with high
precision. e incrementing jiffies represent the number of the timer interrupts of the
system since the last boot. For example on x architecture, an integrated timestamp
counter of the CPU used as a source of a more granular event scale. e jiffies counter
measure the elapsed cycles from the last boot, therefore the problem of the epoch han-
dling should be also handled. It’s used to measure the distance between discrete events
in the kernel, or provide time base for various system calls (e.g. select()) but it’s un-
suitable to directly derive a precise representation of the real–world time from it.
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e kernel specifies interfaces to estimate and query the real time of the call. In the Unix
world, time is measured on the UTC scale with the epoch of ˢᵗ of January , this is
the so called Unix time. e UTC time scale means that the problem of leap seconds
should be handled — there are  Unix time seconds per day no maer how the
timescale varies. ere are several solutions to represent this kind of discontinuity in
the flow of time, one can add seconds to the time scale (aer minute’s ᵗʰ second the ˢᵗ
is inserted), repeat a second (like NTP does) or just increase the length of the seconds
(time–smearing used by e.g. Google []). It is also problematic that the jiffies counter
granularity if not enough to represent sub-millisecond time duration, but since Linux
.. the introduction of high resolution timers (HRTs) solves the problem of such small
quantities with a common API.

Message based time synchronization needs an interface to query the transmit and receive
time of the synchronization data in a real-world timescale. e Linux kernel socket
interface supports the receive timestamping since the . kernel series (SO_TIMESTAMP
or SO_TIMESTAMPNS – µs vs. ns timescale). e transmit timestamping is supported
through looping the sent packet back to the receive queue. In  the SO_TIMESTAMPING
interface were introduced to the Linux kernel, to enable the support of the hardware
timestamping. In this case the send timestamps are looped back via the error queue of the
socket. e comparison of methods of the timestamping alternatives will be discussed
later.

1.3.4 GPS in high precision clock synchronization

e development of the Global Positioning System was driven by the military needs of
the United States during the Cold War. e measurement of position originates in the
high precision measurement of the radio signal propagation times from the satellites to
the receivers. To understand the connection between the time and position measure-
ment, I will present the main ideas behind the system []. e layout of the system
consists of three main parts — the Space Segment, the Control Segment and the User
Segment.

e Space Segment contains all of the GPS satellites, which are orbiting around the Earth
in medium Earth orbit (approx. . km away, see Fig. ..). Each satellite has atomic
clocks onboard to produce their own . MHz fundamental frequency. e satellites
transmit their data at two distinct microwave frequencies (L band at . MHz, L
band at . MHz). Both frequencies are created by multiplying the fundamental
frequency with integer ratios (L – , L – ). By the usage of the two distinct fre-
quencies, the ground equipment can measure the deviation of the propagation times,
thus they reject the measurement noise caused by the propagation in the ionosphere
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(it’s available only for selected (military) users). ree types of code transmied at these
frequencies — the NavigationMessage, the Course Aquisition (C/A) data, and the P (“pre-
cise”) code. e generated data were not only transposed to those carriers, but multiplied
with pseudorandom sequences (Gold code), whose statistical properties simplifies the re-
construction of the signal on the ground.

Figure 1.5: The Space Segment of the GPS [11]

e cyclic C/A data is transmied at . Mbps (cca. every  ms), which contains the
time when the signal was transmied, encoded into a pseudo-random code on the L
carrier frequency. e P code is similar to the C/A code, but its resolution is ten times
higher, and the carried data is encrypted, therefore its usage is restricted to selected
(military) users as of yet. e P code is delivered on both frequencies. e encryption
guarantees, that the GPS aided systems — such as guided weapon systems — are pro-
tected against spoofing aacks. Unfortunately, there exist effective tools against the
integrity of the GPS network based on an irreversible decalibration of the clocks [].
e Navigation Message contains the current position of the satellite, the crude orbital
data of all satellites (almanac), and the clock correction informations of the satellite. It
is transmied on the L channel at low speeds ( bps) — the main reason behind the
slow cold–boot (tens of minutes) of a GPS receiver, which has outdated almanac ([]
pp. ).

e Control Segment plays a crucial role in the maintaining the high accuracy position
data. e segment periodically calculates the current position of the satellites and sends
the updated data back to them. e Earth–satellite communication uses a third carrier
frequency and it is not used directly in the time measurement. With the periodically up-
dated position data, the satellites can estimate their current position with good precision.
e segment also issues commands to the satellites, such as changing orbital parameters
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or selecting another onboard clock in case of failure.

e User Segment contains the soware and hardware systems of the observers. Ob-
servers of the navigation messages can reconstruct their position bymeasuring the clock
difference of their equipment from the satellites’. At reception the reciever correlates the
incoming signals to the locally generated reference signal. When the correct time dis-
placement is found, the output of the correlator is near + and  otherwise. e receiver
can calculate the distance (pseudorange) from the satellites by using the clock differ-
ences; its position is in the intersection of the calculated spheres. In simple models, the
clock difference is encumbered by the errors of the satellite’s clock, and the deficiencies
of the local clocks. Generally a clock reading can be split into two components:

. the actual state of the clock at time of reading,

. the clock bias, eg. the readout incertainities, propagation delay.

If we disregard the clock biases, the position could be approximated within reasonable
bounds, but in precision clock synchronization systems those informations are invalu-
able to reconstruct the satellites’ correct clock phase and frequency information. e
pseudorange calculation is sensitive to the error of the reconstructed clocks, thus deli-
cate algorithms were developed to cancel the incertainities in the time synchronization.
e GPS system uses the Composite Clock (CC) as its timescale, which is steered to the
UTC time globally []. e CC is calculated from the average of the ground monitor-
ing stations and the satellites onboard clock’s. e representation of time in the GPS is
counted in weeks and seconds within the week.
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2 | Proposed system hierarchy

In this section the main components of the synchronization system will be discussed in
depth (Fig. ..). e design of the network should suit the following requirements:

• At least  µs accuracy (maximum difference between an arbitrary node and the
grandmaster)

• Configuration free design at run-time

• Compliance with the IEEE : standard

e system consists of three major components: the frequency reference, the PTP master

clock and the PTP slave clock(s). e detailed explanation of disciplined system is not in
the scope of this document but in the applications section some examples will be briefly
introduced.

2.1 Reference time/frequency source

e primary goal of a clock synchronization system is to transfer the emied time and
frequency of the reference source to the synchronizing nodes. ese kinds of devices
are not deployable at every site in practice because of their high price (cesium atomic
clocks), or their special placement requirements (GPS receivers need free view to the
sky). Generally in larger clock distribution networks the direct distribution of the clock
signals into every node is impossible, thus a clock hierarchy was made to simplify the
needed cabling needs.

e most widespread high–quality reference clock source is the GPS, therefore, I chose
it to provide the reference time to the masters of the synchronization system. e inter-
face of the receivers are two–fold, the absolute timing information is available on some
sort of serial/parallel signal, mostly transmied in the form of NMEA sentences and the
phase/frequency information is transmied in a PPS signal. e placement of the re-
ceiver is crucial; therefore, for indoor applications an extension of these signals should
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Figure 2.1: The proposed design of the synchronization system

be made in order to connect the PTP master to the remotely placed GPS receiver. To
ensure the maximal accuracy, the characteristics of the extension network should be ex-
amined too. I chose to feed the PPS signal into the Ethernet adapter to ensure the most
accurate reproduction of the incoming clock signal. e clone frequency and the abso-
lute timing informations are combined in a user space utility, which also implements
the control loop. e usage of the PHC–API helps to avoid the monolithic design of the
control algorithm (hard-wiring it into the driver).

I was given a Garmin x–LVC GPS receiver to implement the GPS time/frequency refer-
ence services. e receiver outputs the absolute time is on a RS– link (encoded into
NMEA sentences) and it emits the reference frequency is via PPS TTL signal.
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2.2 Network interface card

e selection of the NIC decides the aainable accuracy in the synchronization network.
ere are two major requirements for a sub–µs accuracy: the card should contain a
configurable on–board clock, and hardware time stamping capability should be also in-
tegrated into it. Of course it should have a working Linux driver, but nowadays it is not
a problem for Ethernet adapters. In the proposed design the hardware capabilities are
accessed through the kernels SIOCSHWTSTAMP ioctl and the PHC–API framework.

2.2.1 Time stamping requirements

e available accuracy depends on the short term accuracy of the local oscillators, the
implementation of the filtering in the control loop of the soware stack, but the most
important part is the resolution and jier of the message timestamps (Fig. ..).

emessages of the PTP protocol can be timestamped in different layers of the operating
system. emost widespread solution is to copy the value of kernel’s soware timer into
every message. It is the most obvious, and widely available solution, but the jier of the
timestamps varies between - µs, therefore, this method is unacceptable for our
needs. e cause of the jier lies in the representation of the kernel maintained time —
it’s just an entry in the memory, therefore, it’s access is done in non-deterministic time,
without upper bound.
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Requesting of interrupts at every PTP message has lower jier than the previously men-
tionedmethod, but it performswell only inmicrocontroller systemswhere fixed schedul-
ing tables are available, but not in preemptively scheduled environments. e large
number of the concurrent tasks & interrupts cause non–deterministic interrupt service
periods (tens of microseconds even on a Core  Duo configuration).

e autonomous time stamping of packets is the only way to achieve the desired  µs
accuracy in desktop applications. e independent time stamping cancels out most of
the jiers and uncertainties of the measurements. e hardware time stamping can be
done in the adapter’s MAC and PHY layer, depending on the implementation. e usage
of the local onboard clock is common in both methods. e MII, GMII, SGMII, etc. inter-
connection between them can cause jier in the time stamps but it’s magnitudes smaller
than in the previously introduced methods. In my design, the selected Ethernet adapters
(Intel i) has the message filtering and time stamping algorithms implemented in hard-
ware and in its drivers too to decrease the load on the CPU. e hardware timestamps
the transmied messages when the global TX time stamping is enabled, and the packet
descriptor has the necessary flags active. e receive logic parses the packets in a con-
figurable way, the hardware supports the IEEE–, and the IEEE–: standards
(the laer is supported over UDP and Ethernet too). e message time stamping point
is defined at the last bit of the start–of–frame delimiter of the packet, the local clock is
latched at every time stamping point.

2.2.2 Role of the NIC in master clocks

e local clock of network adapter should be disciplined to an external reference source.
In my design, the network adapters have the necessary inputs to accurately clone the
emied frequency of the reference, the time information is collected in RS– link and
also cloned into the on–board clock. To do so the driver and a user–space application
should be developed to incorporate the necessary discipline algorithms.

2.2.3 Role of the NIC in slave clocks

In most cases the synchronized local slave clocks should distributed to other devices,
therefore, a local clock output should be implemented. With the usage of the network
adapter’s hardware output capabilities, the frequency information could be accurately
reconstructed. e necessary timing information can be supplied in other ways (e.g.
RS– link).
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2.3 PHC API

is application programming interface serves as a simplified tool to access and program
the on–board clocks on the network adapters (Fig. ..). It was published to the developer
community in  and it was merged into the mainline kernel in  (Linux ..). e
existing programs can use the PHC as a time source with small modifications.

e user-space application see the functionality of the clocks via a character device. ese
character devices can be controlled with the previously used POSIX clock handling rou-
tines, and the ordinary file manipulation functions. For example, the current time of
the clock can be read with the clock_gettime() system call, and the read(), open(),
poll() and ioctl() routines are also usable. e ioctl calls are used for requesting the
ancillary clock features which are not covered by the ordinary POSIX clock functions.

e character device is enumerated by the class driver which provides interfaces to the
kernel driver developers to aach their implementation to the user–space. ere are
two types of interface functions — the mandatory ones are the:

• query,

• set to arbitrary time,

• adjust with offset,

• and adjust the frequency of the clock.
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ere’s a possibility to implement ancillary features of the clock served through this
interface such as:

• program periodic output channels,

• provide a PPS hook for disciplining the local clocks,

• and time stamp external events.

e API supports an interface for implementing programmable periodic timers based
on the NIC clock, but currently nobody provided driver for it. With the usage of the
ancillary features a high quality master clock can be made with a clean, well–maintained
programming interface.

2.4 PTP daemon

e protocol stack implements the specified rules of the synchronization by the IEEE
: standard, and implements the necessary unspecified functions too (e.g. disci-
plines the clocks). In the past I used the PTPd soware to provide the needed function-
ality. In  the linuxptp daemon was published, and since the start of the writing of
my thesis it evolved into a mature soware product.

e PTPd daemon was the first open–source implementation of the IEEE  standard,
and the base of the first open–source hardware assisted time stamping solutions. e
original code supported the soware time stamping only, but in  the Intel released
a proof of concept hardware time stamping capable fork of the daemon. My previous
work was based on the original code base, but some parts included some extra fixes and
advancements. Among the main features, the full implementation of ordinary clocks,
and the portability & low resource usage are the most important. e lack of boundary
clock implementation means that this soware can only function in the endpoints of
the synchronization network. e low resource usage means fixed point arithmetic in
its filters and control loops, thus carefully designed and implemented algorithms are
needed to aain the accuracy requirements. e source code was wrien in C, so it
runs on systems where the timestamping in the network stack is implemented. e
PTP–API fork of the daemon breaks some of the original features (such as portability),
but the clock discipline wouldwork on any adapter with refied drivers; therefore, it was
considered to include in this design. e fork was made by Richard Cochran, the main
developer of the linuxptp project; as the linuxptp evolved, the fork rendered obsolete and
it’s removed from the internet. e usage of an unmaintained soware is not preferable
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in any project, therefore, I chose a different daemon to include against the one stated in
the thesis proposal.

e linuxptp has a more active development community, and it’s goals fit in more in my
application; therefore, I chose it as a replacement. It has the following features []:

• Supports hardware and soware time stamping via the Linux SO_TIMESTAMPING

socket option.

• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the
clock_gettime family of calls, including the new clock_adjtimex system call.

• Transport over UDP/IPv, UDP/IPv, and raw Ethernet (Layer ).

• Modular design allowing painless addition of new transports and clock servos.

• Implements Boundary Clock (BC) and Ordinary Clock (OC).

• Supports IEEE .AS– in the role of end station.

e soware’s target platform is Linux only, and relies on floating point operations;
therefore, its portability is worse than PTPd’s. Compared to the vanilla PTPd, having
the first four features are mandatory to enable the design of a high quality PTP master
clock. e daemon also implements Boundary Clock functions as opposed to PTPd. It’s
also wrien in C language and its structure is well–suited for easy integration of alter-
native transport layers or clock servos. e support of legacy time stamping and other
architectures are not the prime development factors.

2.5 PPS subsystem

e two–way communication between the on–board hardware clock and the kernel is
maintained by the PPS subsystem. It is used in two configurations, in the master an
externally generated event (the PPS signal of the GPS) is sampled and a PPS event is
triggered to discipline the PHC and the kernel clocks. With the soware clock discipline,
the base frequency of the soware control loop is also modified to ensure a more precise
correction. It’s important that the on–board clock of the NIC should have PTP timescale
(most likely), but the Unix time (and the kernel time also) based on UTC timescale, this
difference should be known and corrected by the PPS daemon.

In slave systems the PPS events are used to correct the kernel time. In the earlier designs,
the kernel clock was synchronized, but in case of hardware time stamping, the local time
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base of network adapters should have transformed into the time base of the kernel, but
the tunable local clocks make this element unnecessary. e kernel clock discipline can
be donewith alternativemethods, for example the phc2sys utility bundled in the linuxptp
package offers an viable implementation with the usage of the kernel PPS subsystem.
e separate tuning of the PTP device (network adapter) and the kernel clock is called
two layer synchronization. Generally the separate PTP clocks have beer stability, and
accuracy than the kernel clock, therefore, their usage is highly recommended.

2.6 Local network

e local network consists of active and passive elements working together with the
synchronization network. To aain the desired accuracy, the network should have a
proper segmentation and hierarchy to ensure the lowest possible jier on the non–de-
terministic Ethernet carrier. In real world configurations, the usage of Transparent and
Boundary clocks are inevitable.
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3 | Implementation andusagedetails

In this chapter, the actual implementation and setup details are discussed in depth. e
chosen parts will be examined in every reasonable aspect regarding the system’s accu-
racy.

3.1 Cloning the reference time

e chosen Garmin receiver is suitable for testing the concept of the synchronization sys-
tem, but it should be noted that its datasheet states that only  µs accuracy is guaranteed
under a valid position fix (see [] pp. ). is upper bound of the error is guaranteed in
non–stationary receivers too. It means that an arbitrary node in the PTP network may
have more than  µs error compared to the ideal GPS reference signal, therefore, the  µs
accuracy can be guaranteed only within the bounds of synchronization system. ere
are other commercially available GPS receivers which have beer specifications under
stationary usage, however the measurements described in the Section .. shows that
at good reception the desired goal is aainable.

3.1.1 Physical connection of the GPS receiver

In section . the drawbacks of the GPS was summarized briefly: “its indoor usage is lim-

ited”. During the construction of the system I have encountered with this problem, thus
I needed a solution to connect the test computer in the server room with the remotely
placed GPS receiver. In order to achieve the required accuracy, the interconnection has
to carry the asynchronous serial and PPS signals from the GPS module for  meters. In
the laboratory the power outlets are switched of for safety reasons every day, therefore,
a remote power supply was also implemented.

e design and implementation of the circuit is made with the help of my advisor to
successfully overcome the suboptimal orientation of the server room.
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Figure 3.1: Schematic of the GPS extender circuit

e Figure .. depicts the block diagram of the extender circuit. On the GPS side, the
receiver is connected to the device through a Transient Voltage Suppressor to ensure
the insulation from the lightning hazards. e encoder and the on–line signal delay
measurement part is currently unimplemented, their role is to measure the round–trip
delay of the PPS signal and transmit it through the RS– linkwith CAT-e cabling. is
measurement cancels out the effect of the cabling delay between the two stations and the
delay of the active elements, but it cannot measure the delay between the GPS receiver
and the signal converter of that side. e system has active elements in the signal path
which degrades the accuracy of the PPS signal and introduces phase and frequency noise.
In the final system, a custom NMEA–like sentence will be used to carry the information.
To ensure the necessary room to transmit the correction, the speed of the link and the
utilization should be properly configured. Right now only offline measurements can be
made which are not as accurate as the on–line ones because of the time dependence
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of temperature and other factors. e equipment is powered by a Power over Ethernet
adapter on the GPS side.

On the master clock side, the connection is galvanically isolated from the rest of the
system to ensure the lightning protection and electromagnetic compatibility. e PPS
signal can be looped back to enable the measurement of the signal delay. e serial link
is converted to USB to ensure the easy aachment to modern computers. e equipment
also gains its power supply from the USB port. In the operating system the whole system
appears as a virtual serial device, which emits the NMEA sentences periodically.

3.1.2 Seing up the serial connection & the gpsd daemon

On the connected serial and PPS lines all of the necessary timing information is available
to accurately discipline the clock of the PTP master node. e serial line is connected to
the serial–USB converter; therefore, the Garmin receiver shows up as a generic USB tele-
type device (/dev/ttyUSBx). Initially its serial port emits the messages with  baud,
so the receiving port should be configured to the same speed, otherwise only garbage
will appear on the screen! e properties of the receiver ($PGRMC) can be acquired by
issuing the NMEA commands seen on the listing .).

Listing 3.1: erying the properties of the GPS module in console

onlab@mitpc37:~$ echo -en ’$PRGMCE\r\n’ > /dev/ttyUSB0

onlab@mitpc37:~$ cat /dev/ttyUSB0

$GPRMC,220553,A,4728.3435,N,01903.6016,E,000.0,000.0,040513,004.0,E*70

$GPGGA,220553,4728.3435,N,01903.6016,E,2,08,1.2,117.0,M,42.0,M,,*4A

$PGRMC,A,00117.0,100,0000000.000,000.000000000,0000,0000,0000,A,5,1,2,24,30.0*7E

^C

e section .. in the Garmin manual [] describes the available PPS/serial output
seings. Sometimes the receiver seems to be unresponsible to the commands issued
from Linux. e only circumvention of this problem was to aach it to a Windows
equipped PC and run the Garmin setup program on it (see Appendix A.). Aerwards
the GPS module seems to be working as advertised. I have configured the receiver to
emit % duty cycle PPS and  bps serial output. To finish the setup, one should
enable only the most important sentences on the receiver. is task can be done by
issuing the $PGRMO command to the system (listing .). By default five sentences are
enabled on the GPS x models, but the application needs only two, the $GPRMC and the
$GPGGA sentences.
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Listing 3.2: Enable the necessary NMEA sentences only

#!/bin/sh

# Disable all sentences

echo -en ’$PGRMO,,2\r\n’ > /dev/ttyUSB0

sleep 1

# Enable GPRMC and GPGGA

echo -en ’$PGRMO,GPRMC,1\r\n’ > /dev/ttyUSB0

sleep 1

echo -en ’$PGRMO,GPGGA,1\r\n’ > /dev/ttyUSB0

If the current seings were read out again from the device successfully, the initial set-
tings are done. To extract the timing messages in a more friendly form, the gpsd was
used in this setup. e main advantage of this method is that the GPS device can be
shared between different applications, and the clock discipline code is free from NMEA
message parsing code, because the processing occurs in the gpsd. e client applica-
tion can connect to the daemon via UNIX sockets and through a shared memory driver
too. It should be noted that the SHM driver permits read only access only to the ex-
tracted data. It is assumed that the daemon itself is installed somehow in the system —
built from the source–code or downloaded with the package manager. If the soware
is already installed as a system daemon, refer to the documentation about its temporary
shutdown.

For the first time it’s practical to invoke the daemon with the -N switch to hold it in the
foreground for debugging purposes, see listing ..

Listing 3.3: A sample run of the gpsd in debug mode

onlab@mitpc37:~$ sudo gpsd -b -n -N -D 3 /dev/ttyUSB0

gpsd:INFO: launching (Version 3.4)

gpsd:INFO: listening on port gpsd

gpsd:INFO: NTPD ntpd_link_activate: 1

gpsd:INFO: stashing device /dev/ttyUSB0 at slot 0

gpsd:INFO: opening read-only GPS data source type 3 and at ’/dev/ttyUSB0’

gpsd:INFO: speed 19200, 8N1

gpsd:INFO: attempting USB device enumeration.

gpsd:INFO: 0403:6001 (bus 3, device 2)

gpsd:INFO: 1d6b:0002 (bus 1, device 1)

gpsd:INFO: 1d6b:0002 (bus 2, device 1)

gpsd:INFO: 1d6b:0001 (bus 3, device 1)

gpsd:INFO: 1d6b:0001 (bus 4, device 1)

gpsd:INFO: 1d6b:0001 (bus 5, device 1)

gpsd:INFO: 1d6b:0001 (bus 6, device 1)

gpsd:INFO: 1d6b:0001 (bus 7, device 1)

gpsd:INFO: 1d6b:0001 (bus 8, device 1)

gpsd:SHOUT: vendor/product match with 091e:0003 not found

gpsd:INFO: speed 9600, 8O1

gpsd:INFO: speed 19200, 8N1

gpsd:INFO: gpsd_activate(): activated GPS (fd 6)

gpsd:INFO: device /dev/ttyUSB0 activated

gpsd:INFO: running with effective group ID 20
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gpsd:INFO: running with effective user ID 65534

gpsd:INFO: startup at 2013-05-04T23:40:17.000Z (1367710817)

gpsd:INFO: /dev/ttyUSB0 identified as type Generic NMEA (0.543912 sec @ 19200bps)

gpsd:DATA: merge_ddmmyy(040513) sets year 2013

gpsd:DATA: GPRMC: registers fractional time 234018.00

gpsd:DATA: RMC: ddmmyy=040513 hhmmss=234018 lat=47.47 lon=19.06 speed=0.00 track=0.00 mode=2 status=1

gpsd:DATA: GPRMC time is 1367710818.000000 = 2013-05-04T23:40:18.00Z

gpsd:DATA: packet from /dev/ttyUSB0 with {ONLINE|TIME|LATLON|SPEED|TRACK|STATUS|MODE|PACKET|DRIVER|CLEAR}

gpsd:DATA: GPGGA: registers fractional time 234018.00

gpsd:DATA: GGA: hhmmss=234018 lat=47.47 lon=19.06 alt=119.40 mode=3 status=2

gpsd:DATA: GPGGA time is 1367710818.000000 = 2013-05-04T23:40:18.00Z

gpsd:DATA: packet from /dev/ttyUSB0 with {ONLINE|TIME|LATLON|ALTITUDE|STATUS|MODE|PACKET}

gpsd:DATA: merge_ddmmyy(040513) sets year 2013

^C

Aer the successful enumeration of the device (matching the type and speed of the de-
vice), the daemon starts to collect the information from the receiver. e CC of the GPS
is steered to the UTC, so the transmied timestrings are in UTC scale, thus the time
difference from the PTP timescale should be corrected.

If the proper configuration is found, it’s safe to start the gpsd in the background as a
daemon, simply omit the -D and -N switches. To con Figure the daemon as a system
service please refer to the documentation of your distribution. Aer the procedure, the
gpsd is ready to transmit the collected information to the time sync utilities to discipline
the clock of the network adapter.

3.1.3 Disciplining the time and frequency on network adapters

I chose to implement the final system with an Intel i Ethernet Server Adapter in the
role of the network adapter [] (Fig. ..). e i brought innovations into its clock
subsystem, the most important was the widened length clock registers (compared to the
i series of adapters).

First of all the comparison of the underlying clock architecture will be discussed (see Fig.
..). e cards feature a controllable local clock, stored in the SYSTIM register group.
e effective length of the clock register set is  +  bits which means that the i’s
clock wraps around every  years or in the  years if we store the Unix timestamp
in it. I chose to store the modified Unix time (with the correction of the UTC–TAI) in
the registers directly, because it simplifies the access and manipulation of the onboard
time both in speed, efficiency andmaintainability. e adapter supports Gigabit Ethernet
over copper media standard (BASE–T) thus the fundamental cycle time is  ns on the
adapter derived from its  MHz clock. At every base clock tick, the clock registers are
refreshed, with the addition of the period time, and the value of the TIMINCA register (see
Eq. .). e TIMINCA register is used for frequency adjustment purposes, the controller
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Figure 3.2: The Intel i210-T1 Ethernet Adapter

can slew the clock with the stored fraction of time (⁻³² ns) at every period.

𝑆𝑌𝑆𝑇𝐼𝑀[𝑘 + 1] = 𝑆𝑌𝑆𝑇𝐼𝑀[𝑘] + 8 𝑛𝑠 ± 𝑇𝐼𝑀𝐼𝑁𝐶𝐴 (.)

e card has  Soware Definable Pins (SDP), which may be mapped to the clock func-
tions. To discipline the on–board clock, it’s possible to map one of them to the Auxiliary
Time Stamping registers (AUXSTMP0 and AUXSTMP1) and sample an external signal (PPS
in my case). e card is programmed and controlled by the igb driver; therefore, I have
extended the functionality of it. e initialization of the sampling is on Figure ...

e timestamping of an external PPS signal directly gives the deviation from the start of
the reference second. is error signal is used to feed a PI servo to control the frequency
of the clock. e PTP timescale is monotonically increasing without any inserted leap
seconds, thuswe need to initialize the clock on every startup, and aer that the frequency
control is enough to keep the accuracy within specifications.

e enabled time syncing functions in the recent drivers need enabled PHC–API in the
Linux kernel. In most distributions it’s not included by default, and custom compiled
kernel needed to work (for Ubuntu see []).

I have successfully extended the igb driver to sample the external events. e time stamp-
ing mechanism is triggered by rising and falling edges of the incoming signal. e only
way to distinguish between them is to read back the value of the sampled pin in the ISR.
To lower the interrupt servicing delay, the ISR itself schedules another task to do the
work. e delay between the edges is in the magnitude of ten to hundred milliseconds,
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and the whole process should not take more than few milliseconds. Both hardware can
hold only one time stamp, but in most cases, the samples are processed fast enough that
it won’t be a problem. e processing of the time stamps is depicted byFigure .. e
readout of the timestaps is done through the raw read of the AUXSTMP registers. e sam-
ple of the SDP pin is necessary to decide the direction of the sampled edge (rising/falling).
e readout of the time stamps are necessary in every cases, because the AUXSTMP reg-
isters are latched and won’t receive any new event stamp until they are read out. At the
end the routine fires an event which can be polled by the user–space programs through
the PHC–API.

e driver modifications are also applicable to the multi–port i family of network
adapters []. ere are few minor differences between the clock architecture of the
adapters, such as the onboard clock of the i is just  bits long. is limitation is
circumvented with the usage of the clock infrastructure in the kernel which supports
arbitrary long time handling with finite width counters. e time handling in the driver
routines in this case always includes a time conversion call may lower the accuracy
by negligible amount. e multi–port i silicon contains  or  independent onboard
clocks, which should be synchronized by the user in some applications (TC, BC).

I have developed an user–space utility called ts2phc, which is a modified version of the
phc2sys utility included with the linuxptp. e soware feeds the absolute time into
the PHC’s clock at startup and the included servo controls the frequency of the clock.
e absolute time is queried through the gpsd’s SHM driver. e driver of the adapter
doesn’t arm the interrupts of the card unless it has an active IP address; therefore, the
utility needs an active, configured adapter, otherwise the soware does not function.
e console output of the soware is shown in listing ..
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Figure 3.5: Clock internals of the i210 adapter

Listing 3.4: A sample run of the ts2phc

onlab@mitpc37:~$ sudo ./ts2phc -d /dev/ptp0 -g -t 35

fix.time: 1367763813 extts 199993376 s1 1367763794.199993376 drift 0.00

fix.time: 1367763813 extts 238925608 s2 1367763849.238925608 drift 0.00

fix.time: 1367763814 extts 238902968 s3 1367763850.238902968 drift 0.00

fix.time: 1367763815 extts 238880320 s4 1367763851.238880320 drift 19443472.00

fix.time: 1367763816 extts -19467954 s4 1367763851.980532046 drift 13603085.80

fix.time: 1367763817 extts -19467308 s4 1367763852.980532692 drift 13603085.80

fix.time: 1367763818 extts -18977997 s4 1367763853.981022003 drift 13603085.80

fix.time: 1367763819 extts -18488649 s4 1367763854.981511351 drift 13603085.80

fix.time: 1367763820 extts -17999308 s4 1367763855.982000692 drift 13603085.80

fix.time: 1367763821 extts -17509960 s4 1367763856.982490040 drift 13603085.80

fix.time: 1367763822 extts -17020620 s4 1367763857.982979380 drift 13603085.80

^C

onlab@mitpc37:~$

e output shows the time queried from the GPS (column fix.time), the error from the
start of the second (column exs), the state of the servo (column s[N]), the timestamp
read out from the network adapter, and finally the dri. e program can work without
the gpsd (omit -g) but in that case the user should supply the clock’s starting value in
some other way. e -t <number> switch supplies the offset of UTC–TAI timescales
at the startup. e program supports the delay compensation of the sampled signal,
supports multiple event sources (on the i I implemented both channels). Aer the
first batch of initialization it starts the servo loop. In the loop the external event source
is opened, then it is read out peridically, the clock is disciplined in an infinite loop. e
soware supports accurate synchronization to a stable external reference, see Figure ...
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3.2 Distribution of time

In the previous section we discussed the implementation details of the PTP master clock
as a slave to the reference source. In this section I will cover the functionality needed to
provide the reference time to other nodes.

3.2.1 PTP services using linuxptp

e linuxptp daemon is used to realize the PTP services in the master clock. In the
measurement network only it’s Ordinary Clock functions were used, the message inter-
change was done over IPv/UDP. is decision was made because the interconnecting
equipment only supports Transparent Clock services over UDP, so it was the only vi-
able option for the direct comparison for the measurement of complex topologies. e
linuxptp soware is mostly distributed in source code form (see Appendix A.), but in
Fedora distributions precompiled packages are also available. If the soware compiled
successfully it is ready to use.

Four executables are supplied with the package: the hwstamp_ctl is a utility to change
the applied message time stamp filter on the network adapter. It’s useful only for debug-
ging purposes as the daemon sets the necessary adapter capabilities independently.
e phc2sys is a tool to discipline an arbitrary POSIX compatible clock (such as the local
kernel clock) with respect to the PHC’s own clock or to any PPS source. It is possible to
choose between the event source, one can directly read out the PHC, or rely on the PPS
signals. e direct readout of the onboard clock may cause undesired race conditions,
which aren’t handled in the API or the igb driver as yet, therefore, it’s recommended
to implement and use the PPS functionality. e PI constants of the included controller
can also be changed in the command–line.
e ptp4l implements the PTP daemon itself, it supports the ordinary and boundary
clock roles. It needs the used interface as an input argument to start successfully, but
the majority of the configuration options are read from a text file. If it is started with
the -m switch (see listing .., it logs to the stdout, otherwise it writes its debugging
messages only to the system log. e verbosity of the messages are configurable, in a
production setup only the most important events/errors are logged, but one can write
out the content of every message.
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Listing 3.5: A sample run of the ptp4l (slave state)

onlab@mitpc37:~$ sudo ./ptp4l -f default.cfg -i eth7 -p /dev/ptp0 -m

ptp4l[162683.928]: selected /dev/ptp0 as PTP clock

ptp4l[162683.929]: failed to read out the clock frequency adjustment: Operation

not supported

ptp4l[162683.929]: port 1: get_ts_info not supported

ptp4l[162683.930]: driver changed our HWTSTAMP options

ptp4l[162683.931]: tx_type 1 not 1

ptp4l[162683.931]: rx_filter 1 not 12

ptp4l[162683.931]: port 1: INITIALIZING to LISTENING on INITIALIZE

ptp4l[162683.931]: port 0: INITIALIZING to LISTENING on INITIALIZE

ptp4l[162684.748]: port 1: new foreign master 0050c2.fffe.d28dfc-1

ptp4l[162688.898]: selected best master clock 0050c2.fffe.d28dfc

ptp4l[162688.898]: port 1: LISTENING to UNCALIBRATED on RS_SLAVE

ptp4l[162689.988]: port 1: minimum delay request interval 2^3

ptp4l[162691.037]: master offset -636 s0 adj +0 path delay 1686

ptp4l[162692.038]: master offset -679 s1 adj -43 path delay 1686

ptp4l[162693.188]: master offset -30508 s2 adj -30551 path delay 1686

ptp4l[162693.188]: port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED

ptp4l[162694.198]: master offset -22593 s2 adj -31788 path delay 1686

ptp4l[162695.198]: master offset -13494 s2 adj -29467 path delay 1686

ptp4l[162696.339]: master offset -5718 s2 adj -25739 path delay 1686

ptp4l[162697.348]: master offset -2611 s2 adj -24348 path delay 1686

ptp4l[162698.348]: master offset -990 s2 adj -23510 path delay 1686

ptp4l[162699.439]: master offset -62 s2 adj -22879 path delay 1686

ptp4l[162700.458]: master offset 95 s2 adj -22741 path delay 1686

ptp4l[162701.458]: master offset 164 s2 adj -22643 path delay 1686

ptp4l[162702.548]: master offset 163 s2 adj -22595 path delay 1686

ptp4l[162703.569]: master offset 93 s2 adj -22616 path delay 1686

ptp4l[162704.568]: master offset -18 s2 adj -22699 path delay 1686

ptp4l[162705.719]: master offset 20 s2 adj -22667 path delay 1686

ptp4l[162706.738]: master offset 47 s2 adj -22634 path delay 1686

ptp4l[162707.739]: master offset 10 s2 adj -22657 path delay 1686

ptp4l[162708.889]: master offset -46 s2 adj -22710 path delay 1686

ptp4l[162709.899]: master offset -47 s2 adj -22724 path delay 1686

ptp4l[162710.899]: master offset 45 s2 adj -22646 path delay 1686

ptp4l[162712.049]: master offset 7 s2 adj -22671 path delay 1686

ptp4l[162713.069]: master offset -27 s2 adj -22703 path delay 1686

ptp4l[162714.069]: master offset -12 s2 adj -22696 path delay 1686

ptp4l[162715.219]: master offset 22 s2 adj -22666 path delay 1686

ptp4l[162716.229]: master offset 60 s2 adj -22621 path delay 1686

ptp4l[162717.229]: master offset -32 s2 adj -22695 path delay 1686

^Cptp4l[162717.953]: caught signal 2

ptp4l[162717.953]: caught signal 2

onlab@mitpc37:~$

e user can con Figure the BMC fields in the configuration file has the most impor-
tant fields, such as clockClass, clockAccuracy. When the internal clock is adjusted
to the external GPS, the clock class is set to  which denotes frequency traceable time
source. If the GPS reception is unavailable it should be set to  but the automatic seing
is currently unimplemented. e clock’s accuracy is set the , which means that the
clock provides the time with  µs accuracy (worst case estimate). I haven’t measured
the Allan deviation of the clock so I le the default offsetScaledLogVariance value in
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Figure 3.6: The initialization of the 1PPS output

the seings. e field free_running in a configuration file is used in certain measure-
ments for example to measue the asymmetries in the network. emeasured asymmetry
aerwards can be mitigated in the servo with the usage of the delayAsymmetry field.

e linuxptp daemon is configurable run–time to some extent, and we can control the
daemon’s operation and it’s datasets with the provided pmc tool. I have not looked into
the depths of the tool, but it’s usage is inevitable to make the failover (e.g. end of GPS
reception) automatic.

3.2.2 Supporting legacy equipment

e support of non–PTP capable equipment is inevitable to make the system usable in
practice. e clock information is should be distributed in at least two different ways:

. e absolute clock information over a parallel/serial protocol,

. the phase and frequency information via one–wire connection.

e absolute timing may implemented in an absolutely soware defined solution, for
example a program can read the PHC repeatedly and copy the value of it to the serial port.
e phase information shall be generated by the network adapter to ensure maximal
accuracy of the system. e i adapter supports the generation of PPS signals in a
completely autonomous way (only for % duty cycle).

I have developed the necessary routines to enable the PPS and high frequency output
of the network adapter in the igb driver. On the i both functionality is provided by
the FREQOUT registers (on two independent channels) []. e i boards support the
range  ns –  ms and ,  and  ms period length on the clock output. I
have also made a small utility to program the outputs of the card instead of the already
provided sysfs file hook, it’s called perpps. e initialization the output in the user space
is requested via the ioctl call to the clock. In the driver the igb_enable() captures the
request and does the work depicted on Figure .. e selection and seing the output
pins is the similar to as described in section ...

e i hardware supports a periodic interrupt with the SYSWARP interrupt source, it
always activated when the SYSTIML register overflows. e SYSTIML overflow period
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Figure 3.7: The accuracy of the output wrt. external signal

time corresponds to one second measured on the local clock. I’ve bound the soware
PPS event generation to this interrupt. e first edge of the output is adjusted to the
start of the next full second of the onboard clock with the usage of the TRGTTIM registers.
In my implementation it is done by seing the timer to half second earlier (than the
next full second), because the hardware always initializes the output to zero when the
starting condition reached.

e signal generation also works on the i adapters; however, the algorithm is a differ-
ent []. e PPS output is generated with the periodic reprogramming of the TRGTTIM
registers, which are programmed to invert the output when the onboard clock reaches
the register value. It is the way to generate PPS signal also on the i’s, if the default
% duty cycle is not appropriate for the user’s needs. It’s advised to use the TRGTTIM

registers to generate at most  Hz signals, because the periodic ISR procedure’s execu-
tion time has no known upper bound in non–realtime environment. To generate high
frequency outputs on the i the I have developed the programming interface of the
FREQOUT registers to generate two independent phase–right output signals. e i
board supports period times between  ns –  ns.
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4 | Measurements and validation

e accuracy of the synchronization system can only specified aer series of measure-
ments. Aer the introduction of the test equipment and the initial calibration steps, the
test methods will be introduced. is chapter concludes in a detailed explanation of the
measurement records.

4.1 Testing equipment & configuration

4.1.1 Reference clock for calibration & validation

In my test setup a Meinberg LANTIMEM GPS PTPv reference clock (Fig. ..) were
used to validate the master clock’s accuracy. It can synchronize itself to GPS, PTP or
NTP time sources and it can propagate the timing informations over NTP and PTP pro-
tocols (see []) or via legacy outputs. e equipment has serial, PPS, Pulse Per Minute,
 MHz, Time Code and an arbitrary frequency synthesizer output which covers almost
every functionality needed by legacy equipments. In the following measurements the in-
tegrated OCXO based clock was disciplined by the GPS receiver. e crystal’s insulation
from the ambient temperature (hence the name oven controlled) improves the internal
clock’s holdover capabilities, when the GPS reception is unavailable. e GPS receiver
of the equipment uses downmixing in its antenna; therefore, the downmixed GPS signal
can be transmied over cheap (RG–) coaxial cabling. e reference clock can be man-
aged through a dedicated network interface and its PTP functions are served through a
separate Ethernet port and has a user–friendly web interface for configuration.

Figure 4.1: Meinberg M600 GPS/PTP reference clock
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4.1.2 Nodes for testing and remote development

e majority of the development and measurements were done through remote connec-
tion because the server room—where the synchronization test setup is located— is an in-
adequate place to work for longer time. e development of the system involved changes
in the igb driver so the risk of an unintentional kernel panic was high. To circumvent
these obstacles the development system ran on top of a VMware ESXi hypervisor which
was protected from the hangups of the running virtual machine used for testing. e
tested network adapter was assigned to the VM with I/O virtualization, therefore, the
programming of the device was completely equivalent to a non–virtualized one. e
development network can be seen on Figure ...
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Figure 4.2: Development/measurement network

e Figure consists of the concrete elements in the previous chapters (see Figure .. for
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comparison). e packet load generator was a VM on the development system, the packet
generator was the iperf tool. It’s a client/server soware which generates dummy pack-
ets on the client and discards them on the server. I used the artifically generated network
traffic to demonstrate of the effects of the high network load on the system’s accuracy.
e tests were conducted on Ubuntu Linux . with kernel version ..-ptp. is ker-
nel is not part of the default distribution nor the common package repositories, therefore,
a small walkthrough is included in Appendix⁇ to help the reader to reproduce the same
measurement system.

4.1.3 Other active elements

For the multi–slave measurements the nodes were connected via a Cisco IE Indus-
trial Ethernet switch. e switch supports the BASE–TX standard communication
on  ports and BASE–T on  ports and it can act as a PTP Transparent Clock or a
PTP Boundary Clock over UDP. I did measurements with enabled and disabled transpar-
ent clock modes to show the change of accuracy under heavy load. e basics of the
transparent clocks are described on page .

Figure 4.3: Cisco IE3000 (4 port version)

Initially, the output signals of the synchronization system were measured with a Pico-
scope. e control and visualization soware of the device ran on the weasel virtual-
ization host in a separate virtual machine. e scope’s digital phosphore mode were
used as an independent tool to visualize long–term effects. e instrument used in the
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measurements has  gigasample/s sampling speed on one channel or  megasample/s
on two, and the bandwidth on of the inputs ( MHz) is high enough to correctly sam-
ple the square wave signals. erefore, the instrument is suitable for the measurements
presented in this paper.

4.2 Measurement methodologies & results

4.2.1 Measurement methods

In the initial measurements I checked the synchronization quality of the signals with
an oscilloscope to make sure that the soware reported offset values are valid. is
method is useful because the visualization of the signals is made by an autonomous
equipment. I also wanted to show the histograms of the measurements which is not
supported by the oscilloscope, so the absolute reference or the Garmin receiver’s signal
was fed into the i adapter. When the synchronization of the cards were done by
the linuxptp daemon, the adapter generated timestamps from the incoming signal with
usage of the ts2phc utility. In this case the timestamps show the error with respect
to the start every GPS second and they show the accuracy of the system compared to a
reference quality PPS signal. When the card was synchronized to the absolute reference
PPS/serial time information, I was able to use it as a timestamp unit to measure another
signal too (presented in section ..). With this measurement method I converted the
device under test into a measurement device.

4.2.2 Calibration process

Calibration for the Tx/Rx asymmetry

e PTP algorithm assumes that the link delay is symmetrical in the physical network.
Unfortunately, in real–world scenarios the majority of the network adapters have differ-
ent signal propagation times on their transmit and receive paths. ese kinds of asymme-
tries are near to the magnitude of our desired accuracy goal; therefore, the measurement
and compensation of them are inevitable.

eTx/Rx asymmetrymeasurement test setup is pictured on Figure .., the deviceswere
connected directly. e combination of the serial and PPS timing information was fed
into the ts2phc tool which disciplined the clock of the PTPmaster node and the linuxptp
daemon ran in simulation mode (without any clock correction applied). e output of
the linuxptp was processed and presented on Figure .. For the measurements the Tx
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Figure 4.4: The TX/RX asymmetry measurement setup

and Rx signal path of the Meinberg reference clock is assumed to be balanced within
±  ns. e datasheet of the i adapter states that the difference between the two
signal routes is in the magnitude of microseconds, therefore, one can safely abandon the
reference clock’s asymmetry in the calculations.

With this information the absolute asymmetry of the i adapter is measured on 
MBit/s Ethernet link, but it is only valid on BASE–TX Ethernet connections for this
adapter! e computed Tx/Rx difference in the next measurements is compensated
within the PTP daemon with the mean of the measurements. For more complex topolo-
gies every active element of the network should be calibrated to aain the  µs accuracy
requirement.

Aer the initial calculations, I tested the calculated asymmetry value of the card with
back–to –back measurements. I used a similar setup like on Figure .. but the clock
was disciplined over PTP by the Meinberg as master and I used the PPS output of the
master clock to measure the offset between them.
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Figure 4.5: The TX/RX asymmetry (extracted from ptp4l output)

Figure 4.6: The offset from the absolute reference with 1PPS disci-
pline on the i210 master measured with Picoscope with ap-
plied correction





0 1 2 3 4 5 6 7
-80

-60

-40

-20

0

20

40

60

80

Time of measurement [h]

O
ff

se
t 

fr
o

m
 m

a
st

e
r 

[n
s]

-80 -60 -40 -20 0 20 40 60 80
0

200

400

600

800

1000

1200

Offset from master [ns]

N
u

m
b

er
 o

f 
o

cc
u

re
n

ce

Σ: ~25000 samples

Figure 4.7: The offset of the slave from the master aer applying the
correction (time series & histogram)
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Figure 4.8: The measurement setup of the Garmin receiver’s delay

e GPS delay measurement test setup is depicted on Figure .. e Figure .. shows
the delay of the PPS signal routed through the GPS extender compared to PPS output
signal of the reference clock. is signal delay consists of two components:

. e uncertanity of the PPS sigal from the GPS receiver,

. and the delay of the signal converter electronics.

In this measurement setup only the cumulated error of these two components is mea-
sureable.

On the time diagram (Figure ..) one can discover that it doesn’t show white–noise
properties. e Garmin receiver is only guaranteed to be accurate within  us and the
initial measurements showed that the GPS extender circuit introduces – ns delay
into the system. In more precise application it is mandatory to examine the causes of
the wander of the signal, but now I approximate the signal with its mean value. In the
following measurements I compensated with the former value, it is adjustable with the
ts2phc utility.





0 5 10 15 20 24
200

250

300

350

400

450

500

Time of measurement [h]

O
ff

se
t 

fr
o

m
 r

ef
er

en
ce

 P
P

S
 [

n
s]

µ = 336.4 ns, σ = 32.17 ns

 

 

Offset

Midnight marker

Figure 4.9: The delay of the Garmin receiver and the signal adapter

Results of the calibration & the initialization

First of all I present the initial conditions of the system. Aer a cold–boot the system
with a properly configured network adapter is capable to work as a PTP master or slave.
On e Figure .. one can see that the clock of the network adapter runs on the fre-
quency of the onboard oscillator. e Ethernet standard requires quartz oscillator with
the accuracy of ±  ppm over the entire operating temperature range, we can see that
this particular board meets the required specification. I didn’t represent it on the figure,
but there is a  second difference between the first  timestamps and the rest, because
the igb driver initializes the adapter to the UTC timescale, but the ptp4l daemon sets
the clock to the PTP timescale on the nodes which differed  seconds at the time of the
measurement.

To test the accuracy of the GPS receiver and asymmetry calculations, the setup of the sys-
tem was the same as depicted on Figure .., but the timing information was pulled from
the Garmin receiver also. e Meinberg reference clock and the DUT was connected
back–to-back with each other to eliminate the asymmetry of any kind of active network
element. I used the ptpl daemon as an observer, the ts2phc tool disciplined the i’s
onboard clock. e measurement records made with Picoscope are depicted on Figure
.. and the time stamped values on Figure .., with the corresponding histogram.
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Figure 4.10: The initial dri of the system

Figure 4.11: The offset from the absolute reference with direct con-
nection to the i210 master measured with Picoscope
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Figure 4.12: The offset from the absolute reference with direct con-
nection to the i210 master (time series & histogram)
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If the reception of the GPS signal is jammed by some atmospheric disturbance, or any
other unforeseeable event, the system may stop the disciplining of the clock and try to
work without any external reference. It is a currently unimplemented feature, but it
would be a fine error handling scheme. e Figure .. depicts a situation where the
last applied clock frequency modifier regulates the flow of the time on the adapter. e
initial - ppm error is reduced three magnitudes ( ppb) in this case, but it may have
beer or worse performance based on the last applied clock modifier. e examination
of these kind of nomad synchronization algorithms on Ethernet adapters is outside of
the scope of this document.
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Figure 4.13: An example holdover dri of the system

4.2.3 Measurements with an active network element

is section presents the measurements from the most common scenarios of PTP sys-
tems. e usage of transparent clocks is widespread in industrial applications, especially
in freshly deployed systems. However, there are millions of already installed systems
where the network infrastructure does not have the transparent clock functions. e
following figures demonstrate the quality difference between the various equipment set-
tings and show the accuracy of the i based clock in a lightly more complex topology.
All of the measurements use my implementation of the master clock (with the Garmin
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GPS discipline) as themaster of the synchronization system, but on the slaves I measured
the offset with respect to the Meinberg’s reference PPS signal.

e Figure .. shows the measurement records of a system where the switch does not
support any kind of PTP functions but both of the nodes have hardware timestamping
functionality. As one can see, the parameters of the offset are within the desired speci-
fications stated in the thesis proposal. e maximal peak on the histogram with respect
to the reference PPS signal implies that the clock of the slave system gains time. ere
may be two causes of it, first the switch may introduce error in the delay computation,
second the GPS signal of the custom receiver design is overcompensated. In some sys-
tems this kind of acausality is forbidden, but it can be circumvented with a different GPS
delay value (e.g. the smallest value on Figure ..) When we replace the switch with a
transparent clock (in reality I switched the TC mode on the switch), the measurement
results (Figure ..) show that the acausality is reduced, and the standard deviation de-
creased, which was the expected behavior. In both cases I generated no traffic on the
switch to collect some baseline information about the synchronization system.

In the next two cases I used the traffic generator of the measurement system. I used
the iperf utility to generate artifical traffic on the equipment. In previous papers [] I
presented the effect of the client/server roles on the synchronization accuracy, therefore,
I used the setup where the most obvious performance hit occurs. On the PTP slave clock
I ran the iperf in the master role (traffic discarder – heavy load on the Rx traffic), and the
traffic generator was always the client (traffic generator). e master clock did not take
part of the traffic generation. I used TCP traffic in the tests because it automatically uses
all of the safely available bandwith. e heavy load on receive side traffic (observed from
the slave) means that in the switch the sync and delay response packets of the master
are queued stochastically.

e uneven reception of the sync and delay response packets highly degrades the traffic
as we can observe on Figure .. e PI servo of the ptpl cannot lock onto the intervals
calculated from the message transmission/reception, because the path delay estimation
is periodically fluctuates. If the residence time of the packets in the switch is measured
(and wrien out into the packets of course), the non–deterministic jier of the sync
& delay response packet is dropped from the equation, therefore it provides a higher
quality estimator of the offsets and delays. e Figure .. depicts the effects of the
residence time correction on the accuracy. e mean and standard deviance of the error
signal equals to the scenarios without any generated traffic. e wander of the signal
is the effect of the daily wander of the Garmin receiver’s PPS output, compared to the
chosen absolute reference (Fig. ..).
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Figure 4.14: The offset from the absolute reference with a switch
without load (time series & histogram)
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Figure 4.15: The offset from the absolute reference with a transpar-
ent clock without load (time series & histogram)
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Figure 4.16: The offset from the absolute referencewith a switchwith
load (time series & histogram)
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Figure 4.17: The offset from the absolute reference with a transpar-
ent clock with load (time series & histogram)
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5 | Industrial applications and future
directions

Sub–microsecond level of accuracy in timing is required inmany fields of distributed sys-
tems. I’ve collected some interesting areas where the good quality time–base is manda-
tory for the system’s proper functionality. In the descriptions of them I also emphasise
the related research ways of the presented system.

5.1 Common applications of packet based time syn-
chronization

5.1.1 Usage in distributed measurement systems

To ensure the reconstruction of the order of the measurements in a distributed system,
the local clock of the measurement nodes have to closely follow the flow of an arbitrary
reference time. In non–wireless applications the distribution of the local clock mostly
done on the shared communication media. Most of the distributed measurement stan-
dards require the implementation of a subset of the IEEE : protocol to aain the
required accuracy.

One example of the high–accuracy distributed measurements is the synchrophasor re-
construction in power substation automation applications []. e measured current
– voltage pairs are time stamped in the sensors and sent to the data processing nodes.
e IEEE C..- Standard for Synchrophasor Measurements for Power Systems states
the following: “A phase error of . degrees (. radian) will by itself cause % Total
Vector Error (TVE) … is corresponds to a time error of ± μs for a  Hz system
and ± μs for a  Hz system”. It also states that “A time source that reliably provides
time, frequency, and frequency stability at least  times beer than these values corre-
sponding to % TVE is highly recommended.”. e required accuracy of the timestamps
are . μs in  Hz and . μs in  Hz systems. Without proper synchronization, the
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measured data will be reconstructed in a false order, which makes the evaluation of the
events impossible. e sub–μs accuracy helps the operators to make faster and beer
decisions, compared to the older methods; the possibility to collect tens to thousaunds
of sampling points per second provides superior feedback to the controlling personnel.

ere are commercially available products, which provide the time–base in these appli-
cations, but the system presented in this paper is also capable act as grandmaster in these
systems. ere are few issues unimplemented right now (such as SNMP capabilites), and
there are several requirements which are untested in the current configuration (Peer to
Peer TC, VLAN tagging). Some of the unresolved issues are in the scope of further work.

5.1.2 Audio-video bridging

Nowadays the majority of the home entertainment systems use digital interconnections
(DVI, S/PDIF, HDMI) to connect the sources (CD, DVD, BluRay players) to the endpoints
(TV, Amplifier). By the usage of these interconnections, the integration capability of the
devices into home automation systems are poor. In professional A/V systems the usage
of the master clock or genlock signals is common, but maintaining the synchronized
state of the system is an enormous effort in the ever–changing connection standards. e
usage of the ubiquitous Ethernet as the communication medium helps the integration,
but poses problems to maintain the quality of service (lack of A/V sync, dropouts). e
industry proposed the . AVB standard family to resolve these problems. e IEEE

.AS Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area

Networks standard defines a subprofile of the PTP standard covered in this document.
e standard set also proposes methods to solve the traffic shaping, stream integrity and
bandwidth reservation problems, but it’s not in the scope of this document [].

e main goal in the converged audio–visual systems to provide several streams simul-
teanously, coexisting with the other traffic on the communication medium. With the
usage of time synchronization the participating nodes can recover the reference clock
from an arbitrary stream. Every node in the AVB domain synchronizes its clock to the
elected grandmaster, and the stream source time stamps the data with respect its in-
ternal clock. e playing end–nodes regenerates the media clock with the help of the
aached time stamps and its synchronized onboard clock. e accuracy requirements
of an AV stream is in the order of milliseconds (lip–syncing); however, maintaining the
media clock requires sub–μs accuracy synchronization to implement a good quality dis-
tributed PLL.

e presented system introduces some solutions to adapt AVB services, for example dis-
ciplining a DAC clock, but it’s not a fully–fledged solution. e AVB soware stack is
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not covered in this thesis, but there is at least one freely usable AVB framework under
development []. e implementation of distributed PLL is also available with the pre-
sented system, the slave PTP nodes can emit arbitrary frequency output signals derived
from the master’s PPS input.

5.1.3 Financial systems

In the financial sector the precise and accurate the timing of events is invaluable both
for the trading parties and the controlling bodies of the market. e accurately time
stamped data of transactions serves as proof of legibility and as an input for data–mining
algorithms to determine the optimal trading strategy. e trading soware gain their
notion of time inmost likely from the Linux kernel; therefore a low–latency access to the
accurate time is a must–have. e accurate time base also needed for the measurement
of network delays, which is a tool to optimize and reduce the time required to access the
financial information.

e majority of these system are running on a virtualization platform. e distribution
of the accurate time into the VMs is a challenging problem, which requires further inves-
tigation. e technologies like I/O virtualization (IOMMU) or sharing a single resource
between multiple VM instances (SR–IOV ) — like the timing resources of an adapter — is
an interesting problem to discover.

In the presented system, the phc2sys tool is capable to discipline the kernel clock to the
PHC, but currently independent measurement methods are unavailable in my environ-
ment (e.g. a CPU tracer); therefore the sub–μs accuracy is not proved with respect to
the kernel timer. e modern Ethernet adapters support some sort of DMAmapped into
the CPU cache address space (DCA), which may be the core of serving accurate time to
the legacy applications. ere are commercial solutions which are capable to achieve
sub–μs accuracy in kernel–time synchronization [].

5.2 Further directions & conclusion

e current system has the a few unsolved issues, which are required for the adoption
in production environment. e automatic distribution of the change in the external ref-
erence is unavailable, the interoperation between various vendors is currently untested.
e serial output of the system is unimplemented yet, and the I/O ports to external equip-
ment should be upgraded to make it usable in production systems. With the usage of
coaxial terminals, the EMC of the final product will be greatly improved.
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e initial measurements showed that this concept can be used in the majority of mea-
surement, financial and entertainment systems, as it’s cheap, reliable and accurate so-
lution for the distribution of timing information. e underlying soware architecture
has an active development community, and most of the additional components are ver-
satile enough to use it in a alternatively configured system. e accuracy of the syn-
chronization in the hardware is proved with independent reference equipment, but the
measurement of the soware side is in the scope of further analysis.
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Appendix

A.1 Obtaining the soware and source code

In this section I provide the availability all of the soware and source codes, which are

used in this paper.

A.1.1 igb–pps & utilites

The modified igb driver and the corresponding utilites are maintained by the author

(Bálint Ferencz, <ferencz.balint@sch.bme.hu>). It’s hosted on the Atlassian Bitbucket

version control system. One can download it by issuing the following command:

git clone https://bitbucket.org/fernya/igb-pps.git igb-pps

The project is currently in embryonic state so I haven’t provided any tagged tarball for

distribution.

A.1.2 Linuxptp

The linuxptp soware is maintained by Richard Cochran, and it is hosted as a Source-

forge project [3]. Since the introduction of the version 1.0, the soware gets released in

tarball format. For those who are interested in the nightly commits, the (read–only) git

repository may be cloned with issuing the following command:

git clone git://git.code.sf.net/p/linuxptp/code linuxptp

A.1.3 Garmin setup utility

To configure the GPS receiver I have used the Windows based configuration tool. The

usage of the utility is straightforward, aer a successful connection, the properties of the

VI



receiver are editable in a dialog box. Aer saving, the new seings can be applied to the

receiver with serial uploading. Themajority of the seings are effective aer upload, but

for the measurement output one needs to repower the receiver. The program is available

from the following place:

http://www8.garmin.com/support/agree.jsp?id=4071

VII


	Front page
	Contents
	Abstract
	Kivonat
	List of terminology
	Introduction
	Motivation
	Analysis of problem statement
	Standards and technologies involved
	Brief summary about the time metrics
	Overview of IEEE 1588
	Overview of the timekeeping in Linux
	GPS in high precision clock synchronization


	Proposed system hierarchy
	Reference time/frequency source
	Network interface card
	Time stamping requirements
	Role of the NIC in master clocks
	Role of the NIC in slave clocks

	PHC API
	PTP daemon
	PPS subsystem
	Local network

	Implementation and usage details
	Cloning the reference time
	Physical connection of the GPS receiver
	Setting up the serial connection & the gpsd daemon
	Disciplining the time and frequency on network adapters

	Distribution of time
	PTP services using linuxptp
	Supporting legacy equipment


	Measurements and validation
	Testing equipment & configuration
	Reference clock for calibration & validation
	Nodes for testing and remote development
	Other active elements

	Measurement methodologies & results
	Measurement methods
	Calibration process
	Measurements with an active network element


	Industrial applications and future directions
	Common applications of packet based time synchronization
	Usage in distributed measurement systems
	Audio-video bridging
	Financial systems

	Further directions & conclusion

	Acknowledgement
	Köszönetnyilvánítás
	List of figures
	References
	Appendix
	Obtaining the software and source code
	igb–pps & utilites
	Linuxptp
	Garmin setup utility



