

Realization and Real-time Properties of
 Reconfiguration and Transient Management Methods*

1 Tamás Kovácsházy, Gábor Péceli, Gyula Simon
{khazy,peceli,simon}@mit.bme.hu

2 Gabor Karsai
gabor.karsai@vanderbilt.edu

 October 21, 2002 

Technical Report
BMEMIT2002-TRAN02 (v1.0)

1 Budapest University of Technology and Economics, Budapest, Hungary
Department of Measurement and Information Systems
http://www.mit.bme.hu/
2 Vanderbilt University, Nashville, Tennessee
Institute for Software Integrated Systems,
http://www.isis.vanderbilt.edu/

* Funded, in part, by DARPA’s Software-Enabled Control Program under AFRL contract F33615-99-C-3611.

http://www.mit.bme.hu/
http://www.isis.vanderbilt.edu/

Table of contents

Table of contents... 2

List of Figures ... 3

1 Introduction... 4

2 Activities related to reconfiguration ... 5

2.1 Unintentional change in the system .. 5

2.2 Intentional reconfiguration.. 6

2.3 Reconfiguration and transient management.. 7

3 System architecture... 8

3.1 Reconfigurable system architecture.. 8

3.2 Reference system .. 10

3.3 Realization level of transient management ... 11

4 One-step reconfiguration with state preservation ... 13

4.1 LCs with configurations generated at design-time ... 14

4.2 LCs with configurations generated at run-time .. 15

5 Multiple-step reconfiguration with state preservation .. 17

5.1 Complexity of regulator design .. 17

5.2 LC level transient management .. 18

5.3 RM level transient management ... 19

6 The method of blending .. 22

6.1 LC level blending.. 22

6.2 RM level blending... 23

7 Computation of the initial states ... 26

8 Anti-transient signal injection... 29

9 Conclusions... 32

References... 35

2

List of Figures

Fig. 1 Timing diagram of activities related to reconfiguration done after an unintentional
change in the system ... 6

Fig. 2 Timing diagram of activities related to an intentional reconfiguration 7

Fig. 3 Components of the reconfigurable system ... 8

Fig. 4 Conceptual control system.. 11

Fig. 5 One-step reconfiguration by changing the coefficient of the regulator during operation
... 13

Fig. 6 One-step reconfiguration by copying the states and doing structural modifications13

Fig. 7 Activity diagram of the RM for the one-step reconfiguration from mode 1 to 2, when
the GSC does a synchronous reconfiguration... 14

Fig. 8 Activity diagram of the RM for the one-step reconfiguration from mode 2 to 1, when
the GSC does a asynchronous reconfiguration ... 15

Fig. 9 Activity diagram of the RM for the one-step reconfiguration from mode 1 to 2, when
the GSC does a synchronous reconfiguration and run-time PID design 16

Fig. 10 LC level multiple-step reconfiguration activity diagram 19

Fig. 11 Activity diagram of the RM for the multiple-step reconfiguration from mode 1 to 2,
when the GSC does a synchronous reconfiguration and run-time temporary PID design
... 21

Fig. 12 Blending on the LC level in the reference system. Note that the LCs support blending
by incorporating two parallel PIDs and the blending algorithm on the output......... 22

Fig. 13 Activity diagram of LC level blending... 23

Fig. 14 Blending on the RM level in the reference system... 24

Fig. 15 Activity diagram of RM level blending done during a reconfiguration from mode 1 to
2... 25

Fig. 16 Computing the initial states on the RM level in the conceptual control system .. 26

Fig. 17 Activity diagram of the LC level computation of the initial states at the
reconfiguration.. 27

Fig. 18 Activity diagram of the LC level computation of the initial states by filtering before
the reconfiguration .. 28

Fig. 19 The reference system modified for the application of anti-transient signal injection on
the RM level.. 30

Fig. 20 Activity diagram of RM level post system change anti transient signal injection done
during a reconfiguration from mode 1 to 2... 31

3

1 Introduction

System reconfigurations are of major concern in embedded control applications, where the
effects of internal or external changes may ask for drastic modifications within the
architecture and the operation of the controllers. In dynamic systems, these kinds of
modifications are followed by transient phenomena resulting in possibly unacceptable side
effects. For this very reason, reconfiguration methods should include also some measures
concerning transient behavior. These measures are referred to as transient management. In
this report some possible realization schemes of certain reconfiguration methods including
transient management are investigated. The primary aim of this work is to give aspects of
performance characterization of system reconfigurations, and to provide a conceptual
framework to support their development and design.

The problem to be solved here is how to move a real-time system from its actual
configuration to a new one with predictably low magnitude and short time transient response.
There are several activities, which might influence significantly this reconfiguration
procedure. To provide a proper design of this procedure we must be aware of the complete
system as much as possible both in design-time and also in run-time. The complete system in
our case includes both the plant and the controller, or equivalently the complete physical
environment and the embedded computational system. Changes, i.e., intentional or
unintentional reconfigurations might occur in any part of the overall system. Therefore,
during operation an ongoing real-time identification might be required to detect these
changes, and decision-making mechanisms are to be invoked, which might propose some
ongoing controller design, and initiate reconfiguration actions. While investigating
realization schemes, all these activities are strongly interrelated, and should be executed in a
timely manner. For this very reason, throughout this report the term reconfiguration, if not
indicated otherwise, refers to all these interrelated issues.

In this report, however, the main emphasis is laid on the implementation of transient
management methods. An attempt is made to characterize how the reconfiguration of discrete
time, linear dynamic systems (e.g., filters, PID controllers, etc.) can be solved within a
predefined reconfigurable system architecture. General issues of timing, concurrency and
complexity are analyzed, the results of which might help in solving resource management
problems both in design-time and run-time.

In section 2 the major activities related to reconfiguration of dynamic systems are described.
Section 3 introduces the system architecture and a reference system, which is used
throughout this report as an example to illustrate and compare the properties of the
alternative solutions. The one-step reconfiguration method is investigated in section 4.
Section 5 describes the multiple-step reconfiguration-with-state-preservation method. A
relatively smooth transition can be achieved if we operate both the old and the new
configurations, and systematically blend the outputs. This blending method is examined in
section 6. In section 7, the real-time performance of the some initial state computation
methods is described. Anti-transient signal generation closes the list of investigated transient
management method in section 8. Finally, the conclusions are drawn in Section 9.

4

2 Activities related to reconfiguration

There are two major types of reconfiguration processes having somewhat different scenarios:

• Reconfiguration process due to an unintentional (unexpected, unpredicted) change
within the system. The cause of the unintentional reconfiguration can be an error or
failure (within the controller or the plant), e.g., sudden degradation of sensors or
actuators. In this case, first the change in the system has to be identified and then a
decision is to be made how to reconfigure the controller, and how to reduce the
reconfiguration transients. The majority of these steps are run-time actions asking
for intensive on-line processing.

• Intentional (planned and possibly scheduled) reconfiguration process. The need for
such a reconfiguration is known well in advance, and its architectural forms and
parameters are mainly design-time issues. Typical examples are the regular,
operational mode changes. The reconfiguration process is initialized typically by
event signals coming from the higher layer sub-systems of the controller or from the
user.

2.1 Unintentional change in the system
The following activities are to be performed following an unintentional change within the
system:

1. Identification of change (or “diagnosis”),

2. Decision making,

3. Controller re-design,

4. Reconfiguration and run-time transient management.

The identification procedure takes some time, because the estimation of the changed system
parameters will be possible only if the system behavior diverges from the nominal behavior
perceptibly after the change.

Having the new system parameters, the controller decides how to modify itself to compensate
the (intolerable) effects of the sudden change (decision making), and works out its new
configuration (design). As the final step the controller reconfiguration and transient
management are to be done (intervention, corrective action).

The detailed timing diagram of the activities is shown on Fig. 1. The activities depicted as
gray are unavoidable in that epoch: the system has to perform these tasks. Typically the white
segments are not utilized, except in certain practical cases, and where execution can be done
in parallel with other activities. For example, in the majority of the cases the system
identification should be stopped during reconfiguration, and also for a given time after
reconfiguration, because the reconfiguration transients might mislead the system
identification procedure, and generate continuous oscillation between modes. In other
scenarios, it is possible to stop the identification just after the detection of the change within

5

the system, and thus possibly improve resource-utilization by scheduling other, important,
reconfiguration-related tasks and activities.

Time

Activity

Old mode

Identification

Decision
making

Design

Reconfiguration &
transient management

New mode

System change

System change
is identified

Decision made
to reconfigure

System and reconfiguration
design finishes

System reconfiguration
finishes

Identification
restarted

Fig. 1 Timing diagram of activities related to reconfiguration done after an

unintentional change in the system

2.2 Intentional reconfiguration
The scenario of the intentional reconfigurations is somewhat simpler, only the design of the
new controller and the reconfiguration including transient management are to be performed.
The event, which initiates reconfiguration, is associated with the parameters of the new plant
and the control objectives, and based on these data a new configuration is selected and
parameterized, and finally the reconfiguration, together with the transient management, is
performed. The selection of a new configuration is a design activity, however, in some
practical cases, it is possible to pre-design the controller for certain intentional events, which
makes it possible to omit the design phase resulting in lower resource utilization and reduced
reconfiguration time overhead.

Even in the case of intentional reconfiguration, identification is present as an activity before
and after the reconfiguration, because the system must be ready to do reconfigurations in
case of any unintentional change. As previously mentioned, the identification should be
stopped before the reconfiguration happens, and it can be restarted after the reconfiguration
transient settles, otherwise the identification may identify the reconfiguration as an
unintentional change, and start follow up reconfigurations putting the system into an unstable
mode.

6

Time

Activity

Old mode

Identification

Design

Reconfiguration &
transient management

New mode

Event to reconfigure
arrives

System and reconfiguration
design finishes

System reconfiguration
finishes

Identification
restarted

Fig. 2 Timing diagram of activities related to an intentional reconfiguration

2.3 Reconfiguration and transient management
In Fig. 1, and Fig. 2 reconfiguration and run-time transient management are not shown
detached from each other, because, depending on the available information, the relative
timing can be different for these two activities.

• If we are aware of the system to be changed by reconfiguration, and we know the
time schedule of the complete scenario, we can apply a priori transient management
methods, which, by perturbing/biasing the system before the changes, result in
smaller “energy” transients [PK99].

• If we do not know the exact time of the reconfiguration in advance, only a posteriori
transient management methods can be applied, i.e., such techniques, which directly
utilize information available only at the time instant of reconfiguration.

Obviously the first approach can be combined with the second one. Understanding of the
relative timing of the reconfiguration and run-time transient management is essential,
because it shows clearly when the execution of the transient management algorithms will
require additional resources.

Fortunately, the identification activity is typically stopped during the reconfiguration, so it is
likely that resources in excess are available to execute the transient management and
reconfiguration algorithm. On the other hand, the identification, transient management and
reconfiguration algorithms are not necessarily executed on the same hardware in a distributed
system; therefore further considerations might be essential.

7

3 System architecture

As shown before, there are various parallel and/or sequential activities to be done during the
operation of a reconfigurable system. These activities are realized by separate components,
which communicate with each other to achieve the proper operation. The relation of these
components, and their interaction closely connected to the real-time properties of the
algorithms used in the components; therefore, it is necessary to take into account the
architectural differences, and possible realizations. Furthermore, the complexity of
reconfigurable systems must be handled with proper and straightforward system partitioning,
which can be derived from the distinct activities.

In addition, a reference system is defined in this section, which is used as a common
application throughout the report with slight modifications to accommodate the differences
of the transient management and reconfiguration methods.

3.1 Reconfigurable system architecture
The inherent complexity of reconfigurable systems can be dealt with by introducing a
component-based, layered architecture. One possible partitioning is shown on Fig. 3, which
is used in the FACT framework [FWWW]. In this report, the right side of Fig. 3 is in the
center of interest, because all the transient management and reconfiguration related
components/layers are there.

PlantPlant

Data plane (signals and events)

Sensors Actuators

Local Controllers (Regulators)

Reconfiguration Manager

Global Supervisory Controller

System
Identification

Fig. 3 Components of the reconfigurable system

8

The components in Fig. 3 are the following:

• Global supervisory controller (GSC),

• Reconfiguration manager (RM),

• Local controllers (LC)

• Sensors and actuators,

• System identification,

• Data plane.

The report concentrates on the GSC, RM and LC components. The GSC component does not
directly influence the real-time performance of the transient management and
reconfiguration, because its main role:

• To capture global modes of the system,

• To produce global, high level control signals and events (primarily used by the RM
and LC components, and not by the plant directly).

Therefore, it performs primarily the high-level decision making related activities during
reconfiguration. The GSC has not only the knowledge of the system-level modes, but also the
current system-level control objectives. Obviously the GSC performs its activities in real-
time, but the real-time performance of the GSC is not investigated in this report. The GSC is
envisioned as a complex hierarchical state-chart [HAR87].

The GSC can make higher-layer-design related decisions too, but the detailed controller
design is mostly the task of the RM and LC components. The RM component:

• Acts as an intermediary between the GSC and LC:

o By mapping GSC modes to LC modes (not necessarily a one to one mapping),

• Does global transient management,

o By incorporating transient management related information and temporary
modes, and synchronizing the transient management related activities of LCs,

o By doing transient related decision-making and design.

The LC components encapsulate the regulators and all other regulator specific functionalities,
such as low-level regulator design; from low-level, implementation specific parameter
computation from higher-level specification to more complex non real-time design; regulator
level transient management, and regulator reconfiguration. Therefore, the LC components:

• Are connected to signals and events on the data plane,

• Operate on and produce signal and event inputs and outputs based on local criterion
by incorporating regulators (the global criterion are incorporated by the
configuration),

• Consist of the local logic (local supervisor) to do local (and implementation specific)
reconfiguration and local transient management,

9

• Incorporate design procedures.

In distributed systems requiring distributed control, the LCs may be real controller boxes
near the plant, connected to certain sub-systems of the plant; for example, one or more LCs
may be assigned to a control surface of an airplane. While the RM and GSC components are
higher-level components running typically on higher speed central computers, but they can
be distributed as well.

The data plane acts as a virtual, real-time, configurable “wiring closet” to distribute signals
and events to the interested components coming from the signal sources. This data plane can
be realized by a low-level communication network with such higher layer protocols on each
node (implementing the LC, RM, GSC, etc.), which provide guaranteed real-time
performance.

In the above-mentioned layered architecture the GSC component issues reconfiguration
commands to the RM component to start reconfigurations. The GSC can wait for the RM
component to complete reconfiguration, in which case the reconfiguration is called
synchronous, or it may enter into the next state without waiting, which is the case
asynchronous reconfiguration. These communication primitives are captured within the
statechart of the GSC as new pseudo states. The synchronous reconfiguration indicated with
a hexagonal form in the GSC statechart, while the asynchronous reconfiguration is captured
with a triangle form, see the GSC component in Fig. 4 for examples.

The synchronous reconfiguration makes possible to synchronize the GSC and the RM/LC
layers during the complete process of reconfiguration, and therefore complex, long
reconfigurations and context based error handling is possible. The asynchronous
reconfiguration lets the GSC to advance after issuing the reconfiguration command;
therefore, it limits the capability of the system from the point of view synchronization, while
its implementation is simpler and easier.

3.2 Reference system
A simple, conceptual system (controller and plant) is constructed to show the operation of the
GSC, RM and LCs, and to be used as reference system during the investigation of transient
management and reconfiguration methods. The task of this system is to regulate a plant with
two sensor and actuator pairs using a reconfigurable scheme. The regulation of the plant can
be done using PID controllers attached to the sensor and actuator pairs, as seen in Fig. 4.

The plant has two global modes (S1 and S2), and the configuration related to these modes is
known in design time, therefore the PID controllers and transient management can be totally
specified in design-time, no run-time system design is required. There are dedicated
reconfiguration manager sub-systems for both mode changes: one for going from mode S1 to
S2 (synchronous), and one for going from mode S2 to S1 (asynchronous). The transient
management methods applied within the components implementing the reconfiguration
managers (RM12, RM21) are identical in this example, but real applications may ask for
different transient management and the reconfiguration strategies. One reconfiguration is
synchronous and the other one is asynchronous from the point of view of communication
(between the GSC and RM) to show the differences resulted from this behavior, if there are
any.

10

Controller

RM

PlantPlant

LC1

PID

LC2

PID

GSC

S1

S2

RM21

TM21

TM22

RM12

TM11

TM12

Fig. 4 Conceptual control system

3.3 Realization level of transient management
The transient management algorithms can be realized in the RM, or in the LC components, or
in both of them.

• If the LCs are complex enough to handle transient management, then the main task of
the RM is the consistent and synchronized mapping of the GSC modes to LC modes.

• If the LCs do not provide transient management, and they provide only a standard
way to access the regulators, the RM has to handle also the transient management
related activities.

• In certain applications, it may be necessary to do transient management both on the
LC and the RM level. In these cases, the LCs deal with the low level, short term, local
transient management, and the transient management on the RM level addresses
primarily the global, longer-term requirements.

The decision to put the selected transient management technique into the LC or the RM level
depends mainly on the application and the information available. Some basic considerations
are listed in Table 1.

11

 RM level implementation LC level implementation

Run-time information used

Globally available run-time
information, such as large
number of plant and LC
inputs and outputs

Locally available run-time
information, such as
internal states, previous
inputs and outputs

Synchronized execution of
the reconfiguration

Synchronization of the

LCs is possible

No trivial synchronization
of the LCs is possible

Complexity

Complex algorithms are
possible, because the
resources used to perform

available in this phase

Depends on the available

lower complexity
algorithms are allowed only

Requirements Global, generic Local, regulator specific
requirements

Generality General algorithms may be
formulated on the RM level,
and may be used to
reconfigure LCs providing
standard reconfiguration
methods

The reconfiguration
ral,

but for performance reasons
it might be necessary to
dedicate them to the actual

reconfiguration of multiple

resources, but primarily

identification are freely

requirements

techniques may be gene

regulator

Table 1 Considerations to implement a transient management technique on RM or LC
level

12

4 One-step reconfiguration with state preservation

The one-step reconfiguration with state preservation is a reconfiguration method, which does
not include run-time transient management. The simplest form of this method does not affect
the structure of computational model of the system to be changed; only the parameters (e.g.,
filter coefficients) are modified (see Fig. 5). This approach implies that the run-time task of
the RM and the LCs is only to change the coefficients of the regulator.

time

k-1

k

x(n-1)

x(n-2)
u(n-2)

u(n-1)

y(n-2)

y(n-1)
x(n)

u(n)

u(n+1)

u(n+2)

y(n)

y(n+1)

y(n+2)

x(n+1)

x(n+2)

x(n+3)

x(n-3)
u(n-3) y(n-3)

Po

Po

Po

Pn

Pn

Pn

Ho(z)
< S , Po , x >

Ho(z)
< S , Po , x >

Pn

Hn(z)
< S , Pn , x >

Fig. 5 One-step reconfiguration by changing the coefficient of the regulator during
operation

Hn(z)

time

k-1

k

x(n-1)

x(n-2)
u(n-2)

u(n-1)

y(n-2)

y(n-1)
x(n)

u(n)

u(n+1)

u(n+2)

y(n)

y(n+1)

y(n+2)

x(n+1)

x(n+2)

x(n+3)

x(n-3)
u(n-3) y(n-3)

Ho(z)
< S, Po , x >

Ho(z)
< S, Po , x(k)>

Hn(z)
< S, Pn , x>

< S, Pn , x(k)>

old system

new system

Fig. 6 One-step reconfiguration by copying the states and doing structural
modifications

13

A more complicated version of this basic method involves structural changes (see Fig. 6), as
well. The preservation of the state variable values is solved in such a way, that the state
information of the old configuration is simply fed into the new one, without any further
considerations. This step is followed by the activation of the new configuration. The
initialization of the state variables is somewhat ad hoc, however, it is important to note, that
in this case there are no associated run-time computing costs; the “new states” are computed
by the old system.

4.1 LCs with configurations generated at design-time
Here it is assumed that no run-time design occurs, i.e., we can assume that the new
configurations of the PIDs are available in the LCs, and the RM only orders the LCs to
change configuration. The configurations are downloaded into the LCs during the system
initialization.

This can be implemented by swapping pointers/references identifying different sets of
coefficients, for example, in high-level computer languages such as C/C++ or JAVA. In
addition, this reconfiguration method can be implemented in programmable logic devices
too, by swapping register files or other memory blocks, which is an easy to implement and
computationally efficient realization. Therefore, these realizations show very limited
computational overhead compared to non-reconfigurable systems. Of course, the
configuration data should be stored, which increases storage requirements in the regulators
linearly with the number of configurations (generated at design time). In addition, to keep LC
level consistency, the swapping of the coefficient in the LC should be done when the LC
does not use the coefficients to compute its outputs. Furthermore, if multiple LCs are
reconfigured, it is necessary to keep all LCs in a consistent configuration.

Recon LC1 Recon LC2
goto_mode(S2)() goto_mode(S2)()

lc_reached_mode(S2)() lc_reached_mode(S2)()

Report to GSC
system_reached_mode(S2)()

Wait for LC1 Wait for LC2

Fig. 7 Activity diagram of the RM for the one-step reconfiguration from mode 1 to 2,

when the GSC does a synchronous reconfiguration

The internal activities performed in the RM are influenced by the communication scheme
used on the GSC level:

1. The GSC may require synchronous reconfiguration, in which case, the RM should
wait for the LCs to complete the reconfiguration. The GSC can leave the synchronous

14

reconfiguration mode when the RM sends a system_reached_mode message. See
Fig. 7 for an activity diagram detailing the RM used to switch from mode 2 to 1.

2. If the GSC requests an asynchronous reconfiguration, the RM needs to send out only
a reconfiguration request to the LCs. See Fig. 8 for the activity diagram.

Recon LC1 Recon LC2
goto_mode(S1)() goto_mode(S1)()

Fig. 8 Activity diagram of the RM for the one-step reconfiguration from mode 2 to 1,

when the GSC does a asynchronous reconfiguration

4.2 LCs with configurations generated at run-time
The activities detailed in Fig. 7 and Fig. 8 are valid only if the PIDs are designed at design-
time, and stored in the LCs, in other words, if run-time design is not needed. If run-time
design cannot be avoided, a more complex sequence of activities has to be implemented. See
Fig. 9 for a revised activity diagram for the run-time design case.

The reconfiguration, and copying of the coefficients can be considered negligible from the
point of view of resource needs and real-time properties compared to the design activity;
therefore, the real-time properties of this method are primarily determined by the design
phase, which is investigated in details in section 5 for discrete time, linear, dynamical
systems.

First, the new configurations are designed and downloaded into the LCs. Some activities may
be executed in parallel. In general, we assume RM level design, and the LCs may do some
simple mapping of the downloaded LC parameters to the coefficients of their internal
algorithm. When all the configurations are designed and downloaded, it is possible to do such
a reconfiguration, which has the same real-time properties as the previous case (no design).

If we store the configuration on the RM level, or we allow regulator design, the consistency
of the individual configuration must be maintained. In essence, the modification of an
individual configuration-change must be treated as an atomic operation assuring that the
regulator cannot operate with an intermediate configuration, in which a part of the
coefficients are appropriate for the old, and other part of the coefficients are appropriate for
the new configuration. If the RM to LC communication does not guarantee the conditions of
atomic coefficients changes, the LC should provide it.

Another prerequisite comes from the synchronization of the reconfiguration of multiple LCs.
The LCs should be in a consistent mode, and this must be guaranteed in most of the cases. By
sending out goto_mode(S1) and goto_mode(S2) in parallel, this consistency is not

15

necessarily kept, one of the LCs can go into S1 sooner than the other, and in some cases it
can lead to instability and/or other problems within the plant. Here we assume that the
goto_mode messages and the operations done in the LCs as a result of the goto_mode
message are executed instantaneously for all LCs, i.e., the PIDs are reconfigured at the same
time.

The activity diagrams do not capture erroneous operation, when exceptions arise; they
assume that all activities are completed properly and within the prescribed time. Error
handling would make the diagrams more complicated; and in addition, it would distract the
attention from the investigated timely, functional operation. Furthermore, the detail level of
error handling depends highly on the actual application, and the real-time aspects of
corrective actions cannot be described in general.

Recon LC1 Recon LC2
goto_mode(S2)() goto_mode(S2)()

lc_reached_mode(S2)() lc_reached_mode(S2)()

Report to GSC
system_reached_mode(S2)()

Wait for LC1 Wait for LC2

Design PID for LC1 Design PID for LC2

Download to LC1 Download to LC2

Fig. 9 Activity diagram of the RM for the one-step reconfiguration from mode 1 to 2,
when the GSC does a synchronous reconfiguration and run-time PID design

16

5 Multiple-step reconfiguration with state preservation

The multiple-step reconfiguration uses temporary configurations between the old and the
new configuration. The system is reconfigured using the one-step reconfiguration with state
preservation to change these configurations, i.e., the multiple-step reconfiguration method is
a series of one-step reconfigurations.

The transients and computational complexity of the multiple-step reconfiguration depend
primarily on the method used to compute the temporary configuration. A possible method to
compute the intermediate configurations is the linear interpolation of the coefficients of the
regulators. This method is used here to demonstrate the activities done during multiple-step
reconfigurations in the RM and LCs. More complex methods may linearly interpolate
between higher lever design parameters, such as the cut-off frequency of filters, and design
the filter according to these temporary parameters. It is even possible to search for the
optimal temporary configurations at run-time, however for this type of algorithms the timely
execution cannot be guaranteed.

5.1 Complexity of regulator design
There are various types of algorithms for intermediate configuration design, but they can be
classified into three main groups from the point of view of their real-time properties:

1. Coefficient interpolation schemes, which have O(N)..O(N2) computational complexity
(where N is the order of the regulator) and minimal additional storage space
requirements,

2. Higher-level design parameter interpolation and detailed regulator design based on
the interpolated parameter, which are more complex than the simple coefficient
interpolation schemes, but in the majority of the cases they do not involve activities
with unpredictable execution time,

3. Optimal temporary configuration search algorithms, for which it is hard to guarantee
strictly bounded execution time.

All these solutions can be used to pre-compute temporary configurations, which trades run-
time computational complexity for storage requirements, if the old and the new
configurations are known in advance.

The simplest coefficient interpolation scheme linearly interpolates the coefficients of the
temporary regulators between coefficients the old and the new system. This solution has
O(N) computational complexity, and requires some additional storage. Unfortunately, in
some cases this method causes the reconfigured system to loose stability temporarily [PK99].
Similarly, if we get relatively close to the stability margin, the transient properties of these
simple coefficient interpolation schemes might become unacceptable. The stability can be
maintained if we apply structurally passive filters [MR76, PK99], which automatically assure
stability during linear interpolation of the coefficients. Some more complex interpolation
schemes may use non-linear, or higher-order interpolation techniques, which require higher
computational complexity and storage requirements.

17

The transients can be reduced much better if higher-level parameter interpolation is used,
which guarantees more adequate temporary configurations. For example, the cut-off
frequency of a low-pass filter can be interpolated linearly between the old and new cut-off
frequency during reconfiguration, thus resulting in proper low-pass filters for all temporary
configurations. However, as a next step for all temporary configurations, the coefficients of
the system must be computed from the higher-level parameters. The computational
complexity and storage requirements of this process are highly regulator dependent. As an
example, we may consider the implementation of the above-mentioned low-pass filter using
different, e.g., direct, lattice, resonator-based, or parallel filter structures [PMP96]. Let us
assume that the transfer function of the low-pass filter is known because that is computed
first from the interpolated cut-off frequency. The coefficients of the direct structure are
known in this case (they are the same as the ai and bi coefficients of the transfer function);
the coefficients of the parallel and lattice structure can be computed with a worst-case O(N2)
complexity, while the computation time needed for of the resonator-based structure, which
involves finding of roots of polynomials, might be unpredictable.

Concerning optimal temporary configuration search algorithms only some preliminary
propositions based on [KP2001] are available yet; this problem is subject to intensive
research.

5.2 LC level transient management
In this case, the LCs implement the complete multiple-step reconfiguration method. By
reconfiguring them to the new configuration, they automatically start changing the
configurations, and reach the new configuration in a predefined number of steps. The number
of steps can be specified as a parameter of the goto_mode() message, or can be computed
based on the “distance” of the configurations, or can be in design time.

The LC sends lc_reached_mode() message if the new configuration is reached. Therefore,
in this case the activity diagram of the RM is identical to the one-step reconfiguration, as
seen in Fig. 7, Fig. 8, and Fig. 9, because only the activities done in the LC are different.

The LC level activities are detailed in Fig. 10. The system is driven by the incoming input
samples, because the transient management related activities are closely synchronized to the
sampling process. In other words, the system configuration needs to be evaluated for all input
samples. If in the actual step the system is not reconfigured, it computes only the regulator
output and states. If the system is to be reconfigured, it will compute the regulator outputs
and states, using the old temporary configurations, in parallel with the new temporary
configurations, then it modifies the regulator configuration from the old one to the new one.

The complexity of the LC level system design should be kept as simple as possible,
preferably in the range of O(N), where N is the order of the regulator. For example, simple
linear interpolation of the coefficients has this complexity; the required number of operations
(multiplications and additions) on the coefficients is in the range of 2N to 10N, the actual
number is defined by the used filter structure. The temporary configuration design depicted
in Fig. 10 is executed for all new samples. If the temporary configuration design needs more
resources to execute than available it may be split into smaller sub-phases, which can be
executed one after the other resulting a new temporary configuration in each ith iteration
(after any ith new input samples).

18

Report to GSC
lc_reached_mode()

Compute regulator output

Download new Temp. Config. to
regulator

Design Temporary Configuration

[new config reached]

Data plane
New_sample()

In Reconfig = FALSE In Reconfig = TRUE

Compute regulator output

[new config not reached]

In reconfig = FALSE

{Uses the current temporary configuration}

{Computes the new temporary configuration}

Fig. 10 LC level multiple-step reconfiguration activity diagram

5.3 RM level transient management
Multiple-step reconfiguration on the LC level does not allow complex synchronization
schemes to be used to reconfigure multiple LCs. Furthermore, an LC level multiple-step
reconfiguration method may work out intermediate configurations, which are not optimal in
the global sense, unless the LCs have global information is provided for the LCs. The RM
level approach allows the controller to take into account some global requirements and act in
a synchronized way during reconfiguration. It may happen, that the LCs support only one-
step reconfiguration with state preservation, in which case, the further reduction of transients
asks for the use RM level multiple-step reconfiguration.

The activity diagram shown in Fig. 11 depicts this type of globally optimized design
approach. As the first step “Design Global Temporary Configuration” activity is executed,
and a global temporary configuration worked out. As a next step, the PIDs are designed
according to the global temporary configuration, and the PIDs are downloaded to the LCs as
new configurations. Then the LCs are reconfigured into the new temporary configuration. If
synchronous reconfiguration is requested, the RM sends system_reached_mode() message

19

to the GSC as the final step. This sequence of activities is executed as long as the new
configuration is not reached.

The design phase must be finished in time to allow timely reconfiguration; therefore, the
intervals between the reconfigurations must be set according to the expected transient
properties and the available resources to compute the new temporary configurations. On the
RM level, it is possible to synchronize the reconfigurations to the incoming new samples, as
it is done on the LC level, but less stringent synchronization is possible by guaranteeing
reconfigurations periodically, e.g., using an RM level timer event, or other periodic event
sources.

Because the multiple-step RM level reconfiguration is a multiple one-step reconfiguration, all
remarks made there apply here, too. Therefore, the consistency of the individual
configuration must be maintained and the LCs must be kept in a consistent mode. This is
assured by executing the coefficient change command in an atomic way and instantaneously
for all LCs.

20

Recon LC1 Recon LC2
goto_mode(S2temp)() goto_mode(S2temp)()

lc_reached_mode(S2temp)() lc_reached_mode(S2temp)()

Report to GSC
system_reached_mode(S2)()

Wait for LC1 Wait for LC2

Design PID for LC1 Design PID for LC2

Download to LC1 Download to LC2

Design Global Temporary Configuration

[new config reached]

[new config not reached]

Reconfig_events()

{Must be done between
two LC level

reconfigurations}

{Considered to be atomic
and executed

instantaneously}

Fig. 11 Activity diagram of the RM for the multiple-step reconfiguration from mode 1
to 2, when the GSC does a synchronous reconfiguration and run-time temporary PID

design

21

6 The method of blending

The method of blending changes the system structure during reconfiguration by inserting the
new configuration in parallel with the old one, and smoothly replaces the old configuration
with the new one by blending the outputs of the two systems.

6.1 LC level blending
The application of the blending method on the LC level needs a minor modification of the
reference system. The LCs need to be modified to include the parallel PIDs and the blending
algorithms at the outputs as shown in Fig. 12. The activity diagram of the RM is identical in
this case to the RM activity diagrams of the one-step reconfiguration shown in Fig. 7 and Fig.
8. The RM has to realize the mapping between the GSC and the LCs.

The activities done on the LC level during blending are shown on Fig. 13. Blending needs to
be synchronized to the sampling procedure to guarantee smooth transition from the old
system to the new one. The duration (expressed by the number of samples) required for this
transition, may be supplied by the RM as a parameter of reconfiguration.

Control system

RM

PlantPlant
GSC

S1

S2

RM21

TM21

TM22

RM12

TM11

TM12

LC2

PIDold

PIDnew

+

LC1

PIDold

PIDnew

+

Fig. 12 Blending on the LC level in the reference system. Note that the LCs support

blending by incorporating two parallel PIDs and the blending algorithm on the output.

22

Report to GSC
lc_reached_mode()

Compute active regulator output

Compute new blending coefficients

Compute blending output

[new config reached]

Data plane
New_sample()

In Reconfig = FALSE In Reconfig = TRUE

[new config not reached]

In reconfig = FALSE

Compute both regulators

Fig. 13 Activity diagram of LC level blending

6.2 RM level blending
Blending on the RM level requires basic changes in the reference system, which is shown in
Fig. 14. It is necessary to split the local controllers into smaller, more specialized local
controllers, and reconfigure them in a synchronized manner. There are two possible
realizations of blending on the RM level form the point of construction and destruction of
LCs:

1. Design-time construction and destruction of LCs. All LCs are constructed at design-
time, therefore all of them run parallel at run-time. This option is similar to the LC
level blending; only the blender LCs must be reconfigured in a synchronized manner.
The activities done in this case can be derived from the LC level blending, just by
moving all activities to the RM level.

2. Run-time construction and destruction of LCs. Only the necessary LCs are executed,
and therefore they must be constructed and destroyed run-time if required. See Fig.
15 for the RM level activity diagram.

Run-time construction of LCs include the following activities:

23

• Construction of the run-time components (LCs),

• Downloading the initial configuration of LCs into the LCs,

• Placing the new run-time components into ready-to-run mode.

A ready-to-run mode of the LCs can be described as a mode, in which the LC is ready-to-run,
but not signaled, because it is not connected to the data plane.

Control system

LC1n

LC1o

RM

PlantPlant
GSC

S1

S2

RM21

TM21

TM22

RM12

TM11

TM12

LC1bPIDold

PIDnew

+

LC2n

LC2o
LC2bPIDold

PIDnew

+

Fig. 14 Blending on the RM level in the reference system

24

Create new PID Local Controllers Create new Blender Local Controllers

Recon Blenders
goto_mode(temp1&temp2)()

lc_reached_mode(temp1&temp2)()

Report to GSC
system_reached_mode(S2)()

Wait for Blenders Waiting to Timeout

Report Error to GSC
lc_timeout_error(S2)()

Design Temporary Blender Configurations

[new config reached]

[new config not reached]

MinWait

Destroy old PID Local Controllers Destroy old Blender Local Controllers

Do Structural Reconfiguration to Include the new LCs

Do Structural Reconfiguration to Remove the old LCs and the Blenders

Download Configuration to Blender LCs

Fig. 15 Activity diagram of RM level blending done during a reconfiguration from

mode 1 to 2

25

7 Computation of the initial states

Computation of the initial states (CIS) is a pure transient management method; it needs to be
applied together with an appropriate reconfiguration method. It uses local knowledge, such
inputs and internal states, and therefore it can be considered primarily for LC level
implementations. In the majority of the cases the one-step reconfiguration method is used to
change the controllers, as it is shown in Fig. 16.

Controller

RM

PlantPlant

LC1

PID

LC2

PID

GSC

S1

S2

RM21

TM21

TM22

RM12

TM11

TM12

CIS

CIS

Fig. 16 Computing the initial states on the RM level in the conceptual control system

The initial internal states can be computed:

• at the reconfiguration of regulators instantaneously (Fig. 17),

• or before the reconfiguration of regulators using some kind of a filtering scheme (Fig.
18).

The operation depicted in Fig. 17, which assumes the computation of the initial states at the
reconfiguration, at one time instant, between processing the two consecutive input samples
coming in before and after the reconfiguration. The instantaneous computation has
O(N2)..O(N3) computational complexity because typically it requires to solve a set of linear
equations [SPK02]. Here we must note that this computation of initial internal states must be

26

completed before starting computing the new outputs after reconfiguration, thus forming a
real-time constraint for the system.

Report to GSC
lc_reached_mode()

Compute regulator output

Compute initial states

Data plane
New_sample()

In Reconfig = FALSE In Reconfig = TRUE

Compute regulator output

In reconfig = FALSE

{Must be done
between two

input samples}

Reconfigure the regulators

Fig. 17 Activity diagram of the LC level computation of the initial states

at the reconfiguration

The filtering scheme introduced on Fig. 18 exploits the fact that sets of linear equations can
be solved recursively, with O(N)..O(N2) computational complexity. On the other hand, this
scheme delays the reconfiguration, because the system needs at least N iterations (input
samples) to compute the proper initial states. The algorithmic details and underlying
operation of the filtering scheme is also discussed in [SPK02].

Due to its high computational complexity, the instantaneous computation of the initial states
requires large amount of free resources are available. It should be used in systems, which do
not allow delaying the reconfiguration. The alternative filtering scheme is likely to used in all
other cases with less stringent timing, or with resource limitations.

27

Report to GSC
lc_reached_mode()

Compute regulator output

Copy Initial States from Filter

Data plane
New_sample()

Reconfig = No Reconfig = At

Compute regulator output

In reconfig = No

{Must be done
between two

input samples}

Reconfigure the regulatorsFilter Initial State

Compute regulator output

In reconfig = At

Reconfig = Before

Filtering Finished = FALSE

Filtering Finished = TRUE

Fig. 18 Activity diagram of the LC level computation of the initial states

by filtering before the reconfiguration

28

8 Anti-transient signal injection

Anti-transient signal injection is a pure transient management technique, and it is envisioned
primarily as a method to reduce transients caused by system components within the plant to
which we do not have direct and internal access1. Just because it is primarily for these types
of systems, it is applicable on the RM level, where global information is available. The anti
transient signal can be injected into the system:

• Before the system changes, i.e., the controllers or the plant reconfigured or changed
(presumes an intentional or predictable change in the system),

• After the system changes (allows the identification of the change, such as an error),

• Both (before and after the reconfiguration, and also presumes intentional or
predictable change).

Injection of the anti transient signal before the reconfiguration makes the system ready for
the change. If it is combined with an anti transient signal generated after reconfiguration,
further reduction can be achieved.

The anti transient signal generation to the reference system introduced in section 3.2 should
be arranged as shown in Fig. 19. Anti transient signal injection requires the close
synchronization of the plant (and its model), the controllers and, the anti transient signal
injector (ATSI) component. In the majority of the cases the anti transient signal has to be
generated based on the actual values of the state variables. The ATSI component adds the
generated anti transient signal to the controller output, and those two forms together the input
of the plant.

Two distinct activities are present during the application of the anti transient signal
generation:

• First, the ATSI component must be designed and constructed (at time of starting the
reconfiguration),

• Second, the ATSI component generates the anti transient signal.

If the reconfiguration is made intentionally, and both the old and new system models are
known a priori, then the computation of the coefficients of the ATSI can be computed at
design-time. In all the other cases the run-time computational complexity at the
reconfiguration is high, and strongly depends on the used algorithms, but typically higher
than O(N2).

The run-time computational complexity is O(N2), because the ATSI component does matrix
multiplications [SPK02].

1 The internal states, internal behavior, executed code or algorithms cannot be accessed, set or changed directly
as in case of the typical digital implementations of controllers and other components.

29

Control system
LC1ats

RM

PlantPlant

LC1

PID

LC2

PID

GSC

S1

S2

RM21

TM21

TM22

RM12

TM11

TM12

+

ATSI

LC2ats

+

ATSI

Fig. 19 The reference system modified for the application of anti-transient signal

injection on the RM level

The activity diagram of the post system change anti transient signal injection is shown on
Fig. 20 for systems in which the anti transient signal is generated by an autonomous
dynamical system. The initial states of the autonomous system are computed at
reconfiguration (run-time), while the properties of this autonomous system can be computed
design time, because the reference system introduced in Section 3.2 assumes design time
knowledge of the system parameters. The ATSI lifetime timer on the figure specifies the
duration of the anti transient signal.

30

Create new PID Local Controllers Create new ATSI Local Controllers

Report to GSC
system_reached_mode(S2)()

Waiting to Timeout

Report Error to GSC
lc_timeout_error(S2)()

ATSI lifetime

Destroy old PID Local Controllers Destroy old ATSI Local Controllers

Do Structural Reconfiguration to Include the new LCs

Do Structural Reconfiguration to Remove the old LCs and the ATSIs

System reconfiguration

Compute new ATSI intitial states

Download new ATSI initial states into the ATSI LCs
{Must be done
between two

input samples}

Fig. 20 Activity diagram of RM level post system change anti transient signal injection

done during a reconfiguration from mode 1 to 2

31

9 Conclusions

The results of the investigations can be summarized in the following way:

One-step reconfiguration with state preservation using design-time information:

• Computational complexity and overhead of the reconfiguration method: Very low

• Storage requirements of the reconfiguration method: Pre-designed configurations
must be stored in the regulators; therefore, storage requirements grow linearly with
the number of configurations.

• Transient management: Design-time activity, no run-time resources are required.

One-step reconfiguration with state preservation using run-time design:

• Computational complexity and overhead: Very low

• Storage requirements: The current and the next configurations need to be stored in the
regulators.

• Computational complexity and storage requirements of the run-time design depend on
the regulators and their design algorithms. There are various methods to reduce
computational complexity by increasing storage requirements, and/or by sacrificing
precision.

• Transient management: Design-time activity, run-time resources are not needed.

Multiple-step reconfiguration on the LC level

• Computational complexity and overhead: Very low

• Storage requirements: At least three configurations need to be stored in the LC for
linear interpolation, which are the old, the new, and the temporary configurations.

• Computational complexity and storage requirements of the run-time design depend on
the regulators and their design algorithms used to work out the new and temporary
configurations. Simple interpolation schemes guarantee O(N) complexity while more
complex schemes may have unpredictable timing behavior.

• Transient management: Transient management is based on the design of the
temporary configurations, so the design related statements apply here.

Multiple-step reconfiguration on the RM level

• Computational complexity and overhead on the LC level: See the one-step
reconfiguration with state preservation using run-time design.

• Storage requirements on the LC level: See the one-step reconfiguration with state
preservation using run-time design.

• Computational complexity and storage requirements of the run-time design depend on
the regulators and their design algorithms used to work out the new and temporary

32

configurations. There are various methods to reduce computational complexity by
increasing storage requirements, and/or by sacrificing precision.

• Transient management: Transient management is based on the design of temporary
configurations, so the design related statements apply here.

Blending on the LC or on the RM level

• Computational complexity and overhead: At least doubled, because the old and the
new controller should be operated in parallel.

• Storage requirements: At least doubled, because the old, and the new controllers and
their data need to be stored.

• Computational complexity and storage requirements of the run-time design depend on
the regulators and their design algorithms used to work out the new configurations.
There are various methods to reduce computational complexity by increasing storage
requirements, and/or by sacrificing precision.

• Transient management: Transient management is done by operating the old and the
new systems in parallel, and the output is formed as a linear combination of the two.
The overhead related to transient management is minimum.

Computation of the initial states (LC level only)

• Pure transient management method.

• Computational complexity and overhead of the transient management:

• Instantaneous computation: high, it can be even unpredictable in time,

• Filtering scheme: moderate, but it delays reconfiguration.

• Storage requirements of the transient management method: Strongly implementation
dependent. The past inputs, outputs, or states may need to be stored to compute the
initial states.

Anti-transient signal injection (RM level only)

• Pure transient management method.

• May require access to the internal states of the LC.

• Computational complexity and overhead of the transient management:

• Intentional reconfiguration between controllers known in design-time:
minimal at reconfiguration, the ATSI must be operated after the
reconfiguration,

• General case: high, and even unpredictable in time at reconfiguration; the
ATSI system must be also operated.

• Storage requirements of the transient management method: Strongly implementation
dependent. The past inputs, outputs, or states may need to be stored to compute the
injected signal.

33

This summary clearly shows that the selection of proper reconfiguration and transient
management method is a complex task, which requires detailed knowledge of the system in
hand, the realization platform, and its real-time requirements. Furthermore, to achieve better
transient properties higher computational power and more stringent real-time behavior is
required. Therefore, a delicate balance needs to be found during the design.

34

35

References

[FWWW] http://www.isis.vanderbuilt.edu/Projects/Fact/Fact.htm

[HAR87] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of
Computer Programming 8, pp. 231-274, 1987.

[KP2001] Kovácsházy T., Péceli, G., “Transients in Reconfigurable Signal Processing
Channels”, IEEE Transactions on Instrumentation and Measurement, Vol. 50, pp.
936-940, Aug. 2001.

[MR76] Mullis, C.T., R.A. Roberts, “Synthesis of minimum roundoff noise fixed point
digital filters,” IEEE Trans. Circuits & Systems, Vol. CAS-23, pp. 551-562, Sept.
1976.

[PK99] Péceli, G., Kovácsházy T., “Transients in Reconfigurable Digital Signal
Processing Systems,” IEEE Transactions on Instrumentation and Measurement,
Vol. 48, No. 5, pp. 986-989, Oct. 1999.

[SKP02] Simon Gy., Kovácsházy T., Péceli, G., “Transient Management in Reconfigurable
Control Systems”, BME-MIT Technical Report, 2002.
Available at: http://www.mit.bme.hu/~khazy/publist.html

[PMP96] Padmanabhan, M., Martin K., and Péceli G., Feedback-based Orthogonal Filters:
Theory, Applications, and Implementation. Kluwer Academic Publishers, Boston-
Dordrecht-London, 1996. 265 p.

[RTUML] Douglass B. P., Real-time UML : developing efficient objects for embedded
systems, 2nd Edition. Addison-Wesley, Upper Saddle River, 2000.

http://www.isis.vanderbuilt.edu/Projects/Fact/Fact.htm
http://www.mit.bme.hu/~khazy/publist.html

	Table of contents
	List of Figures
	Introduction
	Activities related to reconfiguration
	Unintentional change in the system
	Intentional reconfiguration
	Reconfiguration and transient management

	System architecture
	Reconfigurable system architecture
	Reference system
	Realization level of transient management

	One-step reconfiguration with state preservation
	LCs with configurations generated at design-time
	LCs with configurations generated at run-time

	Multiple-step reconfiguration with state preservation
	Complexity of regulator design
	LC level transient management
	RM level transient management

	The method of blending
	LC level blending
	RM level blending

	Computation of the initial states
	Anti-transient signal injection
	Conclusions
	References

