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1 Introduction 

System reconfigurations are of major concern in embedded control applications, where the 
effects of internal or external changes may ask for drastic modifications within the 
architecture and the operation of the controllers. In dynamic systems, these kinds of 
modifications are followed by transient phenomena resulting in possibly unacceptable side 
effects. For this very reason, reconfiguration methods should include also some measures 
concerning transient behavior. These measures are referred to as transient management. In 
this report some possible realization schemes of certain reconfiguration methods including 
transient management are investigated. The primary aim of this work is to give aspects of 
performance characterization of system reconfigurations, and to provide a conceptual 
framework to support their development and design.   

The problem to be solved here is how to move a real-time system from its actual 
configuration to a new one with predictably low magnitude and short time transient response. 
There are several activities, which might influence significantly this reconfiguration 
procedure. To provide a proper design of this procedure we must be aware of the complete 
system as much as possible both in design-time and also in run-time. The complete system in 
our case includes both the plant and the controller, or equivalently the complete physical 
environment and the embedded computational system. Changes, i.e., intentional or 
unintentional reconfigurations might occur in any part of the overall system. Therefore, 
during operation an ongoing real-time identification might be required to detect these 
changes, and decision-making mechanisms are to be invoked, which might propose some 
ongoing controller design, and initiate reconfiguration actions. While investigating 
realization schemes, all these activities are strongly interrelated, and should be executed in a 
timely manner. For this very reason, throughout this report the term reconfiguration, if not 
indicated otherwise, refers to all these interrelated issues.  

In this report, however, the main emphasis is laid on the implementation of transient 
management methods. An attempt is made to characterize how the reconfiguration of discrete 
time, linear dynamic systems (e.g., filters, PID controllers, etc.) can be solved within a 
predefined reconfigurable system architecture. General issues of timing, concurrency and 
complexity are analyzed, the results of which might help in solving resource management 
problems both in design-time and run-time. 

In section 2 the major activities related to reconfiguration of dynamic systems are described. 
Section 3 introduces the system architecture and a reference system, which is used 
throughout this report as an example to illustrate and compare the properties of the 
alternative solutions. The one-step reconfiguration method is investigated in section 4. 
Section 5 describes the multiple-step reconfiguration-with-state-preservation method. A 
relatively smooth transition can be achieved if we operate both the old and the new 
configurations, and systematically blend the outputs. This blending method is examined in 
section 6. In section 7, the real-time performance of the some initial state computation 
methods is described. Anti-transient signal generation closes the list of investigated transient 
management method in section 8. Finally, the conclusions are drawn in Section 9. 
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2 Activities related to reconfiguration 

There are two major types of reconfiguration processes having somewhat different scenarios: 

• Reconfiguration process due to an unintentional (unexpected, unpredicted) change 
within the system. The cause of the unintentional reconfiguration can be an error or 
failure (within the controller or the plant), e.g., sudden degradation of sensors or 
actuators. In this case, first the change in the system has to be identified and then a 
decision is to be made how to reconfigure the controller, and how to reduce the 
reconfiguration transients. The majority of these steps are run-time actions asking 
for intensive on-line processing. 

• Intentional (planned and possibly scheduled) reconfiguration process. The need for 
such a reconfiguration is known well in advance, and its architectural forms and 
parameters are mainly design-time issues. Typical examples are the regular, 
operational mode changes. The reconfiguration process is initialized typically by 
event signals coming from the higher layer sub-systems of the controller or from the 
user. 

2.1 Unintentional change in the system 
The following activities are to be performed following an unintentional change within the 
system: 

1. Identification of change (or “diagnosis”), 

2. Decision making, 

3. Controller re-design, 

4. Reconfiguration and run-time transient management. 

The identification procedure takes some time, because the estimation of the changed system 
parameters will be possible only if the system behavior diverges from the nominal behavior 
perceptibly after the change. 

Having the new system parameters, the controller decides how to modify itself to compensate 
the (intolerable) effects of the sudden change (decision making), and works out its new 
configuration (design). As the final step the controller reconfiguration and transient 
management are to be done (intervention, corrective action). 

The detailed timing diagram of the activities is shown on Fig. 1. The activities depicted as 
gray are unavoidable in that epoch: the system has to perform these tasks. Typically the white 
segments are not utilized, except in certain practical cases, and where execution can be done 
in parallel with other activities. For example, in the majority of the cases the system 
identification should be stopped during reconfiguration, and also for a given time after 
reconfiguration, because the reconfiguration transients might mislead the system 
identification procedure, and generate continuous oscillation between modes. In other 
scenarios, it is possible to stop the identification just after the detection of the change within 
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the system, and thus possibly improve resource-utilization by scheduling other, important, 
reconfiguration-related tasks and activities. 

Time

Activity

Old mode

Identification

Decision
making

Design

Reconfiguration &
transient management

New mode

System change

System change
is identified

Decision made 
to reconfigure

System and reconfiguration
design finishes

System reconfiguration
finishes

Identification
restarted

 
Fig. 1 Timing diagram of activities related to reconfiguration done after an 

unintentional change in the system 

2.2 Intentional reconfiguration 
The scenario of the intentional reconfigurations is somewhat simpler, only the design of the 
new controller and the reconfiguration including transient management are to be performed. 
The event, which initiates reconfiguration, is associated with the parameters of the new plant 
and the control objectives, and based on these data a new configuration is selected and 
parameterized, and finally the reconfiguration, together with the transient management, is 
performed. The selection of a new configuration is a design activity, however, in some 
practical cases, it is possible to pre-design the controller for certain intentional events, which 
makes it possible to omit the design phase resulting in lower resource utilization and reduced 
reconfiguration time overhead. 

Even in the case of intentional reconfiguration, identification is present as an activity before 
and after the reconfiguration, because the system must be ready to do reconfigurations in 
case of any unintentional change. As previously mentioned, the identification should be 
stopped before the reconfiguration happens, and it can be restarted after the reconfiguration 
transient settles, otherwise the identification may identify the reconfiguration as an 
unintentional change, and start follow up reconfigurations putting the system into an unstable 
mode. 
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Reconfiguration &
transient management
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Event to reconfigure 
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System and reconfiguration
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System reconfiguration
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restarted

 

Fig. 2 Timing diagram of activities related to an intentional reconfiguration 

2.3 Reconfiguration and transient management 
In Fig. 1, and Fig. 2 reconfiguration and run-time transient management are not shown 
detached from each other, because, depending on the available information, the relative 
timing can be different for these two activities.  

• If we are aware of the system to be changed by reconfiguration, and we know the 
time schedule of the complete scenario, we can apply a priori transient management 
methods, which, by perturbing/biasing the system before the changes, result in 
smaller “energy” transients [PK99]. 

• If we do not know the exact time of the reconfiguration in advance, only a posteriori 
transient management methods can be applied, i.e., such techniques, which directly 
utilize information available only at the time instant of reconfiguration.  

 
Obviously the first approach can be combined with the second one. Understanding of the 
relative timing of the reconfiguration and run-time transient management is essential, 
because it shows clearly when the execution of the transient management algorithms will 
require additional resources.  

Fortunately, the identification activity is typically stopped during the reconfiguration, so it is 
likely that resources in excess are available to execute the transient management and 
reconfiguration algorithm. On the other hand, the identification, transient management and 
reconfiguration algorithms are not necessarily executed on the same hardware in a distributed 
system; therefore further considerations might be essential. 
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3 System architecture 

As shown before, there are various parallel and/or sequential activities to be done during the 
operation of a reconfigurable system. These activities are realized by separate components, 
which communicate with each other to achieve the proper operation. The relation of these 
components, and their interaction closely connected to the real-time properties of the 
algorithms used in the components; therefore, it is necessary to take into account the 
architectural differences, and possible realizations. Furthermore, the complexity of 
reconfigurable systems must be handled with proper and straightforward system partitioning, 
which can be derived from the distinct activities. 

In addition, a reference system is defined in this section, which is used as a common 
application throughout the report with slight modifications to accommodate the differences 
of the transient management and reconfiguration methods. 

3.1 Reconfigurable system architecture 
The inherent complexity of reconfigurable systems can be dealt with by introducing a 
component-based, layered architecture. One possible partitioning is shown on Fig. 3, which 
is used in the FACT framework [FWWW]. In this report, the right side of Fig. 3 is in the 
center of interest, because all the transient management and reconfiguration related 
components/layers are there. 

PlantPlant

Data plane (signals and events)

Sensors Actuators

Local Controllers (Regulators) 

Reconfiguration Manager 

Global Supervisory Controller

System
Identification

 
Fig. 3 Components of the reconfigurable system 
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The components in Fig. 3 are the following: 

• Global supervisory controller (GSC), 

• Reconfiguration manager (RM), 

• Local controllers (LC) 

• Sensors and actuators, 

• System identification, 

• Data plane. 

The report concentrates on the GSC, RM and LC components. The GSC component does not 
directly influence the real-time performance of the transient management and 
reconfiguration, because its main role: 

• To capture global modes of the system, 

• To produce global, high level control signals and events (primarily used by the RM 
and LC components, and not by the plant directly). 

Therefore, it performs primarily the high-level decision making related activities during 
reconfiguration. The GSC has not only the knowledge of the system-level modes, but also the 
current system-level control objectives. Obviously the GSC performs its activities in real-
time, but the real-time performance of the GSC is not investigated in this report. The GSC is 
envisioned as a complex hierarchical state-chart [HAR87]. 

The GSC can make higher-layer-design related decisions too, but the detailed controller 
design is mostly the task of the RM and LC components. The RM component: 

• Acts as an intermediary between the GSC and LC: 

o By mapping GSC modes to LC modes (not necessarily a one to one mapping), 

• Does global transient management, 

o By incorporating transient management related information and temporary 
modes, and synchronizing the transient management related activities of LCs, 

o By doing transient related decision-making and design. 

The LC components encapsulate the regulators and all other regulator specific functionalities, 
such as low-level regulator design; from low-level, implementation specific parameter 
computation from higher-level specification to more complex non real-time design; regulator 
level transient management, and regulator reconfiguration. Therefore, the LC components: 

• Are connected to signals and events on the data plane, 

• Operate on and produce signal and event inputs and outputs based on local criterion 
by incorporating regulators (the global criterion are incorporated by the 
configuration), 

• Consist of the local logic (local supervisor) to do local (and implementation specific) 
reconfiguration and local transient management, 
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• Incorporate design procedures. 

In distributed systems requiring distributed control, the LCs may be real controller boxes 
near the plant, connected to certain sub-systems of the plant; for example, one or more LCs 
may be assigned to a control surface of an airplane. While the RM and GSC components are 
higher-level components running typically on higher speed central computers, but they can 
be distributed as well. 

The data plane acts as a virtual, real-time, configurable “wiring closet” to distribute signals 
and events to the interested components coming from the signal sources. This data plane can 
be realized by a low-level communication network with such higher layer protocols on each 
node (implementing the LC, RM, GSC, etc.), which provide guaranteed real-time 
performance. 

In the above-mentioned layered architecture the GSC component issues reconfiguration 
commands to the RM component to start reconfigurations. The GSC can wait for the RM 
component to complete reconfiguration, in which case the reconfiguration is called 
synchronous, or it may enter into the next state without waiting, which is the case 
asynchronous reconfiguration. These communication primitives are captured within the 
statechart of the GSC as new pseudo states. The synchronous reconfiguration indicated with 
a hexagonal form in the GSC statechart, while the asynchronous reconfiguration is captured 
with a triangle form, see the GSC component in Fig. 4 for examples. 

The synchronous reconfiguration makes possible to synchronize the GSC and the RM/LC 
layers during the complete process of reconfiguration, and therefore complex, long 
reconfigurations and context based error handling is possible. The asynchronous 
reconfiguration lets the GSC to advance after issuing the reconfiguration command; 
therefore, it limits the capability of the system from the point of view synchronization, while 
its implementation is simpler and easier. 

3.2 Reference system 
A simple, conceptual system (controller and plant) is constructed to show the operation of the 
GSC, RM and LCs, and to be used as reference system during the investigation of transient 
management and reconfiguration methods. The task of this system is to regulate a plant with 
two sensor and actuator pairs using a reconfigurable scheme. The regulation of the plant can 
be done using PID controllers attached to the sensor and actuator pairs, as seen in Fig. 4. 

The plant has two global modes (S1 and S2), and the configuration related to these modes is 
known in design time, therefore the PID controllers and transient management can be totally 
specified in design-time, no run-time system design is required. There are dedicated 
reconfiguration manager sub-systems for both mode changes: one for going from mode S1 to 
S2 (synchronous), and one for going from mode S2 to S1 (asynchronous). The transient 
management methods applied within the components implementing the reconfiguration 
managers (RM12, RM21) are identical in this example, but real applications may ask for 
different transient management and the reconfiguration strategies. One reconfiguration is 
synchronous and the other one is asynchronous from the point of view of communication 
(between the GSC and RM) to show the differences resulted from this behavior, if there are 
any. 
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Controller

RM

PlantPlant

LC1

PID

LC2

PID

GSC

S1

S2

RM21

TM21

TM22

RM12

TM11

TM12

 
Fig. 4 Conceptual control system 

3.3 Realization level of transient management 
The transient management algorithms can be realized in the RM, or in the LC components, or 
in both of them. 

• If the LCs are complex enough to handle transient management, then the main task of 
the RM is the consistent and synchronized mapping of the GSC modes to LC modes. 

• If the LCs do not provide transient management, and they provide only a standard 
way to access the regulators, the RM has to handle also the transient management 
related activities. 

• In certain applications, it may be necessary to do transient management both on the 
LC and the RM level. In these cases, the LCs deal with the low level, short term, local 
transient management, and the transient management on the RM level addresses 
primarily the global, longer-term requirements. 

 

The decision to put the selected transient management technique into the LC or the RM level 
depends mainly on the application and the information available. Some basic considerations 
are listed in Table 1. 
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 RM level implementation LC level implementation 

 

Run-time information used 

Globally available run-time 
information, such as large 
number of plant and LC 
inputs and outputs 

Locally available run-time 
information, such as 
internal states, previous 
inputs and outputs 

 
Synchronized execution of 
the reconfiguration 

Synchronization of the 

LCs is possible 

No trivial synchronization 
of the LCs is possible 

 
Complexity 

Complex algorithms are 
possible, because the 
resources used to perform 

available in this phase  

Depends on the available 

lower complexity 
algorithms are allowed only 

Requirements Global, generic Local, regulator specific 
requirements 

Generality General algorithms may be 
formulated on the RM level, 
and may be used to 
reconfigure LCs providing 
standard reconfiguration 
methods 

The reconfiguration 
ral, 

but for performance reasons 
it might be necessary to 
dedicate them to the actual 

reconfiguration of multiple 

resources, but primarily 

identification are freely 

requirements 

techniques may be gene

regulator  

Table 1 Considerations to implement a transient management technique on RM or LC 
level 
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4 One-step reconfiguration with state preservation 

The one-step reconfiguration with state preservation is a reconfiguration method, which does 
not include run-time transient management. The simplest form of this method does not affect 
the structure of computational model of the system to be changed; only the parameters (e.g., 
filter coefficients) are modified  (see Fig. 5). This approach implies that the run-time task of 
the RM and the LCs is only to change the coefficients of the regulator. 

time

k-1

k

x(n-1)

x(n-2)
u(n-2)

u(n-1)

y(n-2)

y(n-1)
x(n)

u(n)

u(n+1)

u(n+2)

y(n)

y(n+1)

y(n+2)

x(n+1)

x(n+2)

x(n+3)

x(n-3)
u(n-3) y(n-3)

Po

Po

Po

Pn

Pn

Pn

Ho(z)
< S , Po , x >

Ho(z)
< S , Po , x >

Pn

Hn(z)
< S , Pn , x >

 

Fig. 5 One-step reconfiguration by changing the coefficient of the regulator during 
operation 

Hn(z)

time
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k
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x(n-2)
u(n-2)

u(n-1)

y(n-2)

y(n-1)
x(n)

u(n)

u(n+1)

u(n+2)

y(n)

y(n+1)

y(n+2)

x(n+1)

x(n+2)

x(n+3)

x(n-3)
u(n-3) y(n-3)

Ho(z)
< S, Po , x >

Ho(z)
< S, Po , x(k)>

Hn(z)
< S, Pn , x>

< S, Pn , x(k)>

old system

new system
 

Fig. 6 One-step reconfiguration by copying the states and doing structural 
modifications 
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A more complicated version of this basic method involves structural changes (see Fig. 6), as 
well. The preservation of the state variable values is solved in such a way, that the state 
information of the old configuration is simply fed into the new one, without any further 
considerations. This step is followed by the activation of the new configuration. The 
initialization of the state variables is somewhat ad hoc, however, it is important to note, that 
in this case there are no associated run-time computing costs; the “new states” are computed 
by the old system. 

4.1 LCs with configurations generated at design-time 
Here it is assumed that no run-time design occurs, i.e., we can assume that the new 
configurations of the PIDs are available in the LCs, and the RM only orders the LCs to 
change configuration. The configurations are downloaded into the LCs during the system 
initialization. 

This can be implemented by swapping pointers/references identifying different sets of 
coefficients, for example, in high-level computer languages such as C/C++ or JAVA. In 
addition, this reconfiguration method can be implemented in programmable logic devices 
too, by swapping register files or other memory blocks, which is an easy to implement and 
computationally efficient realization. Therefore, these realizations show very limited 
computational overhead compared to non-reconfigurable systems. Of course, the 
configuration data should be stored, which increases storage requirements in the regulators 
linearly with the number of configurations (generated at design time). In addition, to keep LC 
level consistency, the swapping of the coefficient in the LC should be done when the LC 
does not use the coefficients to compute its outputs. Furthermore, if multiple LCs are 
reconfigured, it is necessary to keep all LCs in a consistent configuration. 

Recon LC1 Recon LC2
goto_mode(S2)() goto_mode(S2)()

lc_reached_mode(S2)() lc_reached_mode(S2)()

Report to GSC
system_reached_mode(S2)()

Wait for LC1 Wait for LC2

 
Fig. 7 Activity diagram of the RM for the one-step reconfiguration from mode 1 to 2, 

when the GSC does a synchronous reconfiguration 

The internal activities performed in the RM are influenced by the communication scheme 
used on the GSC level: 

1. The GSC may require synchronous reconfiguration, in which case, the RM should 
wait for the LCs to complete the reconfiguration. The GSC can leave the synchronous 
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reconfiguration mode when the RM sends a system_reached_mode message. See 
Fig. 7 for an activity diagram detailing the RM used to switch from mode 2 to 1. 

2. If the GSC requests an asynchronous reconfiguration, the RM needs to send out only 
a reconfiguration request to the LCs. See Fig. 8 for the activity diagram. 

Recon LC1 Recon LC2
goto_mode(S1)() goto_mode(S1)()

 
Fig. 8 Activity diagram of the RM for the one-step reconfiguration from mode 2 to 1, 

when the GSC does a asynchronous reconfiguration 

4.2 LCs with configurations generated at run-time 
The activities detailed in Fig. 7 and Fig. 8 are valid only if the PIDs are designed at design-
time, and stored in the LCs, in other words, if run-time design is not needed. If run-time 
design cannot be avoided, a more complex sequence of activities has to be implemented. See 
Fig. 9 for a revised activity diagram for the run-time design case. 

The reconfiguration, and copying of the coefficients can be considered negligible from the 
point of view of resource needs and real-time properties compared to the design activity; 
therefore, the real-time properties of this method are primarily determined by the design 
phase, which is investigated in details in section 5 for discrete time, linear, dynamical 
systems. 

First, the new configurations are designed and downloaded into the LCs. Some activities may 
be executed in parallel. In general, we assume RM level design, and the LCs may do some 
simple mapping of the downloaded LC parameters to the coefficients of their internal 
algorithm. When all the configurations are designed and downloaded, it is possible to do such 
a reconfiguration, which has the same real-time properties as the previous case (no design). 

If we store the configuration on the RM level, or we allow regulator design, the consistency 
of the individual configuration must be maintained. In essence, the modification of an 
individual configuration-change must be treated as an atomic operation assuring that the 
regulator cannot operate with an intermediate configuration, in which a part of the 
coefficients are appropriate for the old, and other part of the coefficients are appropriate for 
the new configuration. If the RM to LC communication does not guarantee the conditions of 
atomic coefficients changes, the LC should provide it. 

Another prerequisite comes from the synchronization of the reconfiguration of multiple LCs. 
The LCs should be in a consistent mode, and this must be guaranteed in most of the cases. By 
sending out goto_mode(S1) and goto_mode(S2) in parallel, this consistency is not 
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necessarily kept, one of the LCs can go into S1 sooner than the other, and in some cases it 
can lead to instability and/or other problems within the plant. Here we assume that the 
goto_mode messages and the operations done in the LCs as a result of the goto_mode 
message are executed instantaneously for all LCs, i.e., the PIDs are reconfigured at the same 
time. 

The activity diagrams do not capture erroneous operation, when exceptions arise; they 
assume that all activities are completed properly and within the prescribed time. Error 
handling would make the diagrams more complicated; and in addition, it would distract the 
attention from the investigated timely, functional operation. Furthermore, the detail level of 
error handling depends highly on the actual application, and the real-time aspects of 
corrective actions cannot be described in general. 

 

Recon LC1 Recon LC2
goto_mode(S2)() goto_mode(S2)()

lc_reached_mode(S2)() lc_reached_mode(S2)()

Report to GSC
system_reached_mode(S2)()

Wait for LC1 Wait for LC2

Design PID for LC1 Design PID for LC2

Download to LC1 Download to LC2

 

Fig. 9 Activity diagram of the RM for the one-step reconfiguration from mode 1 to 2, 
when the GSC does a synchronous reconfiguration and run-time PID design 
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5 Multiple-step reconfiguration with state preservation 

The multiple-step reconfiguration uses temporary configurations between the old and the 
new configuration. The system is reconfigured using the one-step reconfiguration with state 
preservation to change these configurations, i.e., the multiple-step reconfiguration method is 
a series of one-step reconfigurations. 

The transients and computational complexity of the multiple-step reconfiguration depend 
primarily on the method used to compute the temporary configuration. A possible method to 
compute the intermediate configurations is the linear interpolation of the coefficients of the 
regulators. This method is used here to demonstrate the activities done during multiple-step 
reconfigurations in the RM and LCs. More complex methods may linearly interpolate 
between higher lever design parameters, such as the cut-off frequency of filters, and design 
the filter according to these temporary parameters. It is even possible to search for the 
optimal temporary configurations at run-time, however for this type of algorithms the timely 
execution cannot be guaranteed. 

5.1 Complexity of regulator design 
There are various types of algorithms for intermediate configuration design, but they can be 
classified into three main groups from the point of view of their real-time properties: 

1. Coefficient interpolation schemes, which have O(N)..O(N2) computational complexity 
(where N is the order of the regulator) and minimal additional storage space 
requirements,  

2. Higher-level design parameter interpolation and detailed regulator design based on 
the interpolated parameter, which are more complex than the simple coefficient 
interpolation schemes, but in the majority of the cases they do not involve activities 
with unpredictable execution time, 

3. Optimal temporary configuration search algorithms, for which it is hard to guarantee 
strictly bounded execution time. 

All these solutions can be used to pre-compute temporary configurations, which trades run-
time computational complexity for storage requirements, if the old and the new 
configurations are known in advance. 

The simplest coefficient interpolation scheme linearly interpolates the coefficients of the 
temporary regulators between coefficients the old and the new system. This solution has 
O(N) computational complexity, and requires some additional storage. Unfortunately, in 
some cases this method causes the reconfigured system to loose stability temporarily [PK99]. 
Similarly, if we get relatively close to the stability margin, the transient properties of these 
simple coefficient interpolation schemes might become unacceptable. The stability can be 
maintained if we apply structurally passive filters [MR76, PK99], which automatically assure 
stability during linear interpolation of the coefficients. Some more complex interpolation 
schemes may use non-linear, or higher-order interpolation techniques, which require higher 
computational complexity and storage requirements. 
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The transients can be reduced much better if higher-level parameter interpolation is used, 
which guarantees more adequate temporary configurations. For example, the cut-off 
frequency of a low-pass filter can be interpolated linearly between the old and new cut-off 
frequency during reconfiguration, thus resulting in proper low-pass filters for all temporary 
configurations. However, as a next step for all temporary configurations, the coefficients of 
the system must be computed from the higher-level parameters. The computational 
complexity and storage requirements of this process are highly regulator dependent. As an 
example, we may consider the implementation of the above-mentioned low-pass filter using 
different, e.g., direct, lattice, resonator-based, or parallel filter structures [PMP96]. Let us 
assume that the transfer function of the low-pass filter is known because that is computed 
first from the interpolated cut-off frequency. The coefficients of the direct structure are 
known in this case (they are the same as the ai and bi coefficients of the transfer function); 
the coefficients of the parallel and lattice structure can be computed with a worst-case O(N2) 
complexity, while the computation time needed for of the resonator-based structure, which 
involves finding of roots of polynomials, might be unpredictable. 

Concerning optimal temporary configuration search algorithms only some preliminary 
propositions based on [KP2001] are available yet; this problem is subject to intensive 
research. 

5.2 LC level transient management 
In this case, the LCs implement the complete multiple-step reconfiguration method. By 
reconfiguring them to the new configuration, they automatically start changing the 
configurations, and reach the new configuration in a predefined number of steps. The number 
of steps can be specified as a parameter of the goto_mode() message, or can be computed 
based on the “distance” of the configurations, or can be in design time. 

The LC sends lc_reached_mode() message if the new configuration is reached. Therefore, 
in this case the activity diagram of the RM is identical to the one-step reconfiguration, as 
seen in Fig. 7, Fig. 8, and Fig. 9, because only the activities done in the LC are different. 

The LC level activities are detailed in Fig. 10. The system is driven by the incoming input 
samples, because the transient management related activities are closely synchronized to the 
sampling process. In other words, the system configuration needs to be evaluated for all input 
samples. If in the actual step the system is not reconfigured, it computes only the regulator 
output and states. If the system is to be reconfigured, it will compute the regulator outputs 
and states, using the old temporary configurations, in parallel with the new temporary 
configurations, then it modifies the regulator configuration from the old one to the new one. 

The complexity of the LC level system design should be kept as simple as possible, 
preferably in the range of O(N), where N is the order of the regulator. For example, simple 
linear interpolation of the coefficients has this complexity; the required number of operations 
(multiplications and additions) on the coefficients is in the range of 2N to 10N, the actual 
number is defined by the used filter structure. The temporary configuration design depicted 
in Fig. 10 is executed for all new samples. If the temporary configuration design needs more 
resources to execute than available it may be split into smaller sub-phases, which can be 
executed one after the other resulting a new temporary configuration in each ith iteration 
(after any ith new input samples). 
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{Computes the new temporary configuration}

 
Fig. 10 LC level multiple-step reconfiguration activity diagram 

5.3 RM level transient management 
Multiple-step reconfiguration on the LC level does not allow complex synchronization 
schemes to be used to reconfigure multiple LCs. Furthermore, an LC level multiple-step 
reconfiguration method may work out intermediate configurations, which are not optimal in 
the global sense, unless the LCs have global information is provided for the LCs. The RM 
level approach allows the controller to take into account some global requirements and act in 
a synchronized way during reconfiguration. It may happen, that the LCs support only one-
step reconfiguration with state preservation, in which case, the further reduction of transients 
asks for the use RM level multiple-step reconfiguration. 

The activity diagram shown in Fig. 11 depicts this type of globally optimized design 
approach. As the first step “Design Global Temporary Configuration” activity is executed, 
and a global temporary configuration worked out. As a next step, the PIDs are designed 
according to the global temporary configuration, and the PIDs are downloaded to the LCs as 
new configurations. Then the LCs are reconfigured into the new temporary configuration. If 
synchronous reconfiguration is requested, the RM sends system_reached_mode() message 
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to the GSC as the final step. This sequence of activities is executed as long as the new 
configuration is not reached.  

The design phase must be finished in time to allow timely reconfiguration; therefore, the 
intervals between the reconfigurations must be set according to the expected transient 
properties and the available resources to compute the new temporary configurations. On the 
RM level, it is possible to synchronize the reconfigurations to the incoming new samples, as 
it is done on the LC level, but less stringent synchronization is possible by guaranteeing 
reconfigurations periodically, e.g., using an RM level timer event, or other periodic event 
sources. 

Because the multiple-step RM level reconfiguration is a multiple one-step reconfiguration, all 
remarks made there apply here, too. Therefore, the consistency of the individual 
configuration must be maintained and the LCs must be kept in a consistent mode. This is 
assured by executing the coefficient change command in an atomic way and instantaneously 
for all LCs. 
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Fig. 11 Activity diagram of the RM for the multiple-step reconfiguration from mode 1 
to 2, when the GSC does a synchronous reconfiguration and run-time temporary PID 

design 
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6 The method of blending 

The method of blending changes the system structure during reconfiguration by inserting the 
new configuration in parallel with the old one, and smoothly replaces the old configuration 
with the new one by blending the outputs of the two systems. 

6.1 LC level blending 
The application of the blending method on the LC level needs a minor modification of the 
reference system. The LCs need to be modified to include the parallel PIDs and the blending 
algorithms at the outputs as shown in Fig. 12. The activity diagram of the RM is identical in 
this case to the RM activity diagrams of the one-step reconfiguration shown in Fig. 7 and Fig. 
8. The RM has to realize the mapping between the GSC and the LCs. 

The activities done on the LC level during blending are shown on Fig. 13. Blending needs to 
be synchronized to the sampling procedure to guarantee smooth transition from the old 
system to the new one. The duration (expressed by the number of samples) required for this 
transition, may be supplied by the RM as a parameter of reconfiguration. 
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Fig. 12 Blending on the LC level in the reference system. Note that the LCs support 

blending by incorporating two parallel PIDs and the blending algorithm on the output. 
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Fig. 13 Activity diagram of LC level blending 

6.2 RM level blending 
Blending on the RM level requires basic changes in the reference system, which is shown in 
Fig. 14. It is necessary to split the local controllers into smaller, more specialized local 
controllers, and reconfigure them in a synchronized manner. There are two possible 
realizations of blending on the RM level form the point of construction and destruction of 
LCs: 

1. Design-time construction and destruction of LCs. All LCs are constructed at design-
time, therefore all of them run parallel at run-time. This option is similar to the LC 
level blending; only the blender LCs must be reconfigured in a synchronized manner. 
The activities done in this case can be derived from the LC level blending, just by 
moving all activities to the RM level. 

2. Run-time construction and destruction of LCs. Only the necessary LCs are executed, 
and therefore they must be constructed and destroyed run-time if required. See Fig. 
15 for the RM level activity diagram. 

Run-time construction of LCs include the following activities: 
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• Construction of the run-time components (LCs), 

• Downloading the initial configuration of LCs into the LCs, 

• Placing the new run-time components into ready-to-run mode. 

A ready-to-run mode of the LCs can be described as a mode, in which the LC is ready-to-run, 
but not signaled, because it is not connected to the data plane. 
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Fig. 14 Blending on the RM level in the reference system 
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Fig. 15 Activity diagram of RM level blending done during a reconfiguration from 

mode 1 to 2 
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7 Computation of the initial states 

Computation of the initial states (CIS) is a pure transient management method; it needs to be 
applied together with an appropriate reconfiguration method. It uses local knowledge, such 
inputs and internal states, and therefore it can be considered primarily for LC level 
implementations. In the majority of the cases the one-step reconfiguration method is used to 
change the controllers, as it is shown in Fig. 16. 
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Fig. 16 Computing the initial states on the RM level in the conceptual control system  

 
The initial internal states can be computed: 

• at the reconfiguration of regulators instantaneously (Fig. 17), 

• or before the reconfiguration of regulators using some kind of a filtering scheme (Fig. 
18). 

The operation depicted in Fig. 17, which assumes the computation of the initial states at the 
reconfiguration, at one time instant, between processing the two consecutive input samples 
coming in before and after the reconfiguration. The instantaneous computation has 
O(N2)..O(N3) computational complexity because typically it requires to solve  a set of linear 
equations [SPK02]. Here we must note that this computation of initial internal states must be 
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completed before starting computing the new outputs after reconfiguration, thus forming a 
real-time constraint for the system.   

Report to GSC
lc_reached_mode()

Compute regulator output

Compute initial states

Data plane
New_sample()

In Reconfig = FALSE In Reconfig = TRUE

Compute regulator output

In reconfig = FALSE

{Must be done
between two

input samples}

Reconfigure the regulators

 
Fig. 17 Activity diagram of the LC level computation of the initial states  

at the reconfiguration 

The filtering scheme introduced on Fig. 18 exploits the fact that sets of linear equations can 
be solved recursively, with O(N)..O(N2) computational complexity. On the other hand, this 
scheme delays the reconfiguration, because the system needs at least N iterations (input 
samples) to compute the proper initial states. The algorithmic details and underlying 
operation of the filtering scheme is also discussed in [SPK02]. 

Due to its high computational complexity, the instantaneous computation of the initial states 
requires large amount of free resources are available. It should be used in systems, which do 
not allow delaying the reconfiguration. The alternative filtering scheme is likely to used in all 
other cases with less stringent timing, or with resource limitations. 
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Fig. 18 Activity diagram of the LC level computation of the initial states  

by filtering before the reconfiguration 
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8 Anti-transient signal injection 

Anti-transient signal injection is a pure transient management technique, and it is envisioned 
primarily as a method to reduce transients caused by system components within the plant to 
which we do not have direct and internal access1. Just because it is primarily for these types 
of systems, it is applicable on the RM level, where global information is available. The anti 
transient signal can be injected into the system: 

• Before the system changes, i.e., the controllers or the plant reconfigured or changed 
(presumes an intentional or predictable change in the system), 

• After the system changes (allows the identification of the change, such as an error), 

• Both (before and after the reconfiguration, and also presumes intentional or 
predictable change). 

Injection of the anti transient signal before the reconfiguration makes the system ready for 
the change. If it is combined with an anti transient signal generated after reconfiguration, 
further reduction can be achieved. 

The anti transient signal generation to the reference system introduced in section 3.2 should 
be arranged as shown in Fig. 19. Anti transient signal injection requires the close 
synchronization of the plant (and its model), the controllers and, the anti transient signal 
injector (ATSI) component. In the majority of the cases the anti transient signal has to be 
generated based on the actual values of the state variables. The ATSI component adds the 
generated anti transient signal to the controller output, and those two forms together the input 
of the plant. 

Two distinct activities are present during the application of the anti transient signal 
generation: 

• First, the ATSI component must be designed and constructed (at time of starting the 
reconfiguration), 

• Second, the ATSI component generates the anti transient signal. 

If the reconfiguration is made intentionally, and both the old and new system models are 
known a priori, then the computation of the coefficients of the ATSI can be computed at 
design-time. In all the other cases the run-time computational complexity at the 
reconfiguration is high, and strongly depends on the used algorithms, but typically higher 
than O(N2).  

The run-time computational complexity is O(N2), because the ATSI component does matrix 
multiplications [SPK02]. 

                                                 
1 The internal states, internal behavior, executed code or algorithms cannot be accessed, set or changed directly 
as in case of the typical digital implementations of controllers and other components. 
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Fig. 19 The reference system modified for the application of anti-transient signal 

injection on the RM level 

The activity diagram of the post system change anti transient signal injection is shown on 
Fig. 20 for systems in which the anti transient signal is generated by an autonomous 
dynamical system. The initial states of the autonomous system are computed at 
reconfiguration (run-time), while the properties of this autonomous system can be computed 
design time, because the reference system introduced in Section 3.2 assumes design time 
knowledge of the system parameters. The ATSI lifetime timer on the figure specifies the 
duration of the anti transient signal. 
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Fig. 20 Activity diagram of RM level post system change anti transient signal injection 

done during a reconfiguration from mode 1 to 2 
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9 Conclusions 

The results of the investigations can be summarized in the following way: 

One-step reconfiguration with state preservation using design-time information: 

• Computational complexity and overhead of the reconfiguration method: Very low 

• Storage requirements of the reconfiguration method: Pre-designed configurations 
must be stored in the regulators; therefore, storage requirements grow linearly with 
the number of configurations. 

• Transient management: Design-time activity, no run-time resources are required. 

One-step reconfiguration with state preservation using run-time design: 

• Computational complexity and overhead: Very low 

• Storage requirements: The current and the next configurations need to be stored in the 
regulators. 

• Computational complexity and storage requirements of the run-time design depend on 
the regulators and their design algorithms. There are various methods to reduce 
computational complexity by increasing storage requirements, and/or by sacrificing 
precision. 

• Transient management: Design-time activity, run-time resources are not needed. 

Multiple-step reconfiguration on the LC level 

• Computational complexity and overhead: Very low 

• Storage requirements: At least three configurations need to be stored in the LC for 
linear interpolation, which are the old, the new, and the temporary configurations. 

• Computational complexity and storage requirements of the run-time design depend on 
the regulators and their design algorithms used to work out the new and temporary 
configurations. Simple interpolation schemes guarantee O(N) complexity while more 
complex schemes may have unpredictable timing behavior. 

• Transient management: Transient management is based on the design of the 
temporary configurations, so the design related statements apply here. 

Multiple-step reconfiguration on the RM level 

• Computational complexity and overhead on the LC level: See the one-step 
reconfiguration with state preservation using run-time design. 

• Storage requirements on the LC level: See the one-step reconfiguration with state 
preservation using run-time design. 

• Computational complexity and storage requirements of the run-time design depend on 
the regulators and their design algorithms used to work out the new and temporary 
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configurations. There are various methods to reduce computational complexity by 
increasing storage requirements, and/or by sacrificing precision. 

• Transient management: Transient management is based on the design of temporary 
configurations, so the design related statements apply here. 

Blending on the LC or on the RM level 

• Computational complexity and overhead: At least doubled, because the old and the 
new controller should be operated in parallel. 

• Storage requirements: At least doubled, because the old, and the new controllers and 
their data need to be stored. 

• Computational complexity and storage requirements of the run-time design depend on 
the regulators and their design algorithms used to work out the new configurations. 
There are various methods to reduce computational complexity by increasing storage 
requirements, and/or by sacrificing precision. 

• Transient management: Transient management is done by operating the old and the 
new systems in parallel, and the output is formed as a linear combination of the two. 
The overhead related to transient management is minimum. 

Computation of the initial states (LC level only) 

• Pure transient management method. 

• Computational complexity and overhead of the transient management: 

• Instantaneous computation: high, it can be even unpredictable in time, 

• Filtering scheme: moderate, but it delays reconfiguration. 

• Storage requirements of the transient management method: Strongly implementation 
dependent. The past inputs, outputs, or states may need to be stored to compute the 
initial states. 

Anti-transient signal injection (RM level only) 

• Pure transient management method. 

• May require access to the internal states of the LC. 

• Computational complexity and overhead of the transient management: 

• Intentional reconfiguration between controllers known in design-time: 
minimal at reconfiguration, the ATSI must be operated after the 
reconfiguration, 

• General case: high, and even unpredictable in time at reconfiguration; the 
ATSI system must be also operated. 

• Storage requirements of the transient management method: Strongly implementation 
dependent. The past inputs, outputs, or states may need to be stored to compute the 
injected signal. 
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This summary clearly shows that the selection of proper reconfiguration and transient 
management method is a complex task, which requires detailed knowledge of the system in 
hand, the realization platform, and its real-time requirements. Furthermore, to achieve better 
transient properties higher computational power and more stringent real-time behavior is 
required. Therefore, a delicate balance needs to be found during the design. 
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