SensorNode LocalizationUsing Mobile Acoustic
Beacons

Manish Kushwaha,Karoly Molnar, JanosSallai, Peter Velgyesi, Mikl @s Mareti, Akos Ledeczi
Institute for Software IntegratedSystems VanderbiltUniversity
{manish.kushwha,janos.sallaiakos.ledeczi@vanderbilt.edu

Abstracfl We presenta mobile acoustic beaconbasedsensor
node localization method. Our technique is passve in that the
sensor nodes themseles do not need to generate an acoustic
signal for ranging. This saves cost, power and provides stealthy
operation. Furthermor e, the beacon can generate much more
acousticenergy than a severely resource constrained sensornode,
thereby signibcantly increasingthe range. The acoustic ranging
method usesa linear frequency modulated signal that can be
accurately detected by matched Pltering. This provides longer
range and higher accuracy than the current state-of-the-art.
The localization algorithm was especially designedto work in
suchacousticallyreverberant ervironment, asurban terrain. The
algorithm presentedhandlesnon-Gaussianranging errors caused
by echoes.Node locations are computed centrally by solving
a global non-linear optimization problem in an iterative and
incremental fashion.

|. INTRODUCTION

Localizationis an essentiatool for the deploymentof low-
cost sensornetworks for use in location-avare applications
[12], [13], [25] and ubiquitous networking [4], [26]. In a
typical sensometwork applicationeachsensomodemonitors
andgatherdocalinformation.This local informationhasmuch
more signibcanceif it canbe tied to the physical location it
belongsto. In location-critical applications,such as shooter
localization[24], sub-meteraccurag of 3D nodelocationsis
an absolutenecessityfor the correct operationof the system.

Range-fredocalizationtechniqus provide rough estimates
of node positionsonly. Rangingmethodsfall into two main
classes:acousic and radio signal strength-basedThe latter
requiresextensive calibration,yet it still achieveslow accu-
ragy and limited range.Acoustic ranging hasrelatively high
accurag, but short range.The main reasonsare the limited
acousticenegy a sensomodecanemit andthe possiblyhigh
ervironmentalnoise. Having a spe&er or sounderon every
node adds size and cost also. When stealtly operationis
required,only ultrasound can be used.But ultrasonic ranging
haseven morelimited rangeand directionality constraints.

A sensometwork deploymentscenariowith mary favorable
characteristicn numerousapplicationareads thedispersabf
sensomnodesrom alow-Rying unmannederialvehicle(UAV)
platform. After deployment, an acousticheaconmountedon
the aircraft can senda radio messagdollowed by an acoustic
signal at randomintenals. All the nearbysensornodes can
estimatetheir distance from the beaconby measuringthe
time-of-Rightof the sound.As size and power are not as big
constrainton a UAV ason a sersornode,the maximumrange
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canbe signibcany increasedFurthermorethe nodes do not
reveal their positionssincethey are only passve listenersin
this scenario.

The self-localization problem in this caseis to bnd the
sensornode locationsgiven only the distancemeasurements
betweenunknavn mobile beacontransmissiorlocationsand
the sensomodes.Neitherthe mobile beaconpositionsnor the
sensornodesthensehes are located necessarilyon a plane.
Therefore, the localization problem needsto be sdved in
3D. Furthermoreto our knowledge,no solutionsexist in the
literaturethathandlemultipatheffectssatistictorily. For urban
deploymentsboth of theseprodemsneedto be addressed.

The main contritutions of our work are (1) the acoustic
ranging methodproviding increasedrangeand accurag, (2)
the localization algorithm basedon the novel idea of a mo-
bile acousticbeaconand (3) the ability to handle multipath
effects. The ranging method is basedon the time-of-Right
measuremerdf anacousticsignalsemittedby a singlebeacon
from multiple locations. The acousticsignal usedis a linear
frequeny modulatedchirp) signal,thatcanbe identibedwith
high acawrag by matded Pltering at the sensorsven at low
SNR. Self localizationis modeledasa non-linearoptimization
problem where node locations are the optimization variable
anddistanceequationdgnvolving nodelocationsarenon-linear
objectve functions.Thelocalizationalgorithmis bothiteratve
andincremental At eachiterationa partof the sensometwork
is selected]ocalizedand evaluated.lt is incrementalbecause
at each iteration the part of sensornetwork selectedwill
grow aroundthe previously localizednodes.This methodis a
generalizatiorof iterative localizaion algorithmswherenode
locationis improved in eachiteration.

The rest of the paperis organized as follows. Sectionll
summarizegelatedresearchin self localization. Section Il
presentsthe novel acoustic ranging technique. Section IV
formulatesthe self localization problem. The main algorithm
is presentedn sectionV while its implementationresultsand
conclusionsare provided in sedions VI andVII.

Il. RELATED RESEARCH

Self localization, due to its importancein sensornetwork
applications,has been an active researchareafor the past
few years.An early suney of somelocalization systemsis
presentedby Hightower and Boriello in [6]. Many of these
systemsadopt a simple connectity basedapproach,while
someof themfurtherrebPnerange estimatedbetweemodepairs
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by measuringherecevedradiosignalstrength.However, RSS
basedranging requiresextensie calibration and still yields
inaccuraterangeestimateg7] resultingin coarselocalization.

The GPS-lesssystemby Bulushu [1] employs a grid of
referencenodeswith overlapping regions. Unknovn nodes
localizethemselesto the centroidof their proximatereference
nodes.Localizationaccuray is aboutonethird of separation
distancebetwea referencenodes.Doherty[3] formulatedself
localizationasa geometricconstrainfeasibility problembased
on nodeconnectvity that was solved using corvex optimiza-
tion. Additionally, rectangulatboundson nodelocationswere
usedfor tighter geometriccongraints.

Other techniquesthat provide much better range esti-
matesinvolve time-of-Right measurementgarticularly when
acousticand RF signals are combined[2], [5], [20], [21],
[22]. Acoustic signals,however, requirean unobstructedine-
of-sight. In an urbanervironmentechoespresenta signibcant
problem thusary localizationalgorithmhasto considemulti-
path propagtion.

Savvides [22] solves for unknavn node position estimates
by setting up a global non-linear optimization problem and
solving it using iterative least-squaresThe methodrequires
the known beaonsto surroundthe unknown nodeswhich the
author calls beacon-unknawn node corvexity. However, this
topologyconstraintis hardto satisfyin realworld deployment
scenarios.

Savarese[20] follows a two phaselocalization algorithm:
start-up and rebnement.The start-up phase utilizes hop-
TERRAIN algorithm which is similar to DV-hop [15]. The
rePnemenphasds aniterative algorithmthatuseshelocation
estimatesfrom start-up phase.[20] also introducesa crude
notion of conbdenceralue,a metricfor the quality of location
estimate.

Therearefew approacheshat dealwith multi-path propa-
gation. OnesuchapproacHor two dimersionsis presentedy
Moore [14]. It identiPesechoesas geometricimpossibilities.
The idea can be extendedto three dimensionsbut under
low connectity or high measuremenhoise conditions the
algorithmmay be unableto localize a usefulnumberof nodes
[14]. Anothercasewherethe geometricconstraintbasedecho
identibcationmay fail is when the distributions of nodesin
the threedimensionsaredifferent.In a typical sensometwork
the X andY distribution of nodesis much higher than tha
in Z which affectsthe performance of the algorithmabove.

Recently somework has beendonein localization using
mobile beacons.Sichitiu [23] usesa mobile beaconthat is
aware of its location using GPS. Priyantha[17] describes
mobile-assistedocalization where mobile beaconmovement
and nodelocalizationis interlaced.

The presentedocalizationalgorithm modelsthe problemas
global non-linearoptimizationasin [22], however it goesone
stepfurtherto dealwith echoesand non-corvexity of anchor
unknovn nodetopology

I1l. RANGING

The conceptof acousticrangingis basedon measuringhe
time-of-Rightof the soundsignalbetweenthe source(beacon)
and the acousticsensar The range estmate can be trivially
calculatedfrom the time measurment. However, the speedof
soundis temperatur@ependentThis problemcanbe resohed
by a single temperaturameasuremendt the basestation. An
appealingcharacteristiof the proposedrangirg algorithmis
that this is the only calibration that is needed.That is the
sensorgdo not needindividual calibrationat all.

A. Hardware

The acousticrangingapplicationtargetsthe MICA2 motes
developedat UC Berkeley [8]. The mote is equippedwith
a custom acousic sensorboard, which was developed at
Vanderbilt University for a shooterlocalization application
[24]. The heartof the sensorboardis the low-power bxed
point ADSP-2189digital signalprocessorunningat 50 MHz.
The availability of the DSP enablesthe implementationof
sophisticatedligital signal processingalgorithms.

There are two independentanabg input channelson the
board, furnished with low-cost electret microphonesand 2-
stageamplibes with software programmableagain (0-54 dB).
The analogchannelsare sampledby A/D corvertersat up to
100kSPSwith 12-bit resolution.The boardalsohas ananalog
output channelcapableof driving a 250 mW external loud-
spealer. The boardis connecédto the moteby programmable
interruptand acknavledgmentlines and a standard2C bus.

In the currentimplementationthe mobile beaconis based
on a MICA2 mote and the same sensor board with an
active loudspeakr attachedo its analogoutputchanrel. The
maximumoutput power is 105dB measured.0 cm away from
the loudspeakr.

B. Rangingalgorithm

In orderto calculatethe rangefrom the time-of-Rightof the
acousticsignal, the departureand arrival times of the signal
have to be identipedand measuredorecisely The beginning
of the transmissiorcan be measuredt the beaconwhile the
time of arrival is measuredt therecaving sensorsTherange
calculationis performedon the recevers,thusthe beaconhas
to sendthe startingtime to the receiversin a radio message.

Employing a sophisticatedtime synchronization mecha-
nism is essentialto accurately measurethe time-of-Bight.
Our approachemploys the messagdime-stampingprimitives
introducedin [11]. The synchronizabn betweenthe source
andthe sensomodesis implementedas follows.

The soure queriesits local time to anddecidesthatit will
emit an acousticsignal at time tgeng = to + !. The source
sendsthe value tseng to all the sensorsin a radio message.
Therefore,the value of ! is chosensuch that it is greater
than the time required by the sensorsto processthe radio
messageand to prepare for receving. The sensorsschedule
their acousticboardfor samplingwhen the beaconstarts the
transmissiorof the acousticsignal.



We assumethat the skew of the local clocks is negligible
during the shot time of the measurment, but we allow
arbitraryclock offsets.Sinceneitherthe sourcenor the sensors
have knowledgeof a global time, the sensorseedto corvert
tsend includedin the messagé&om thelocal time of the source
to their own local times. This is achieved by timestampinghe
radio messag at transmissionand at receptionas well. The
timestampingof the radio messagés donein the MAC layer
just beforetransmissiorand just after receptionrespectiely.
Since the radio signal is traveling at the speedof light, the
differencebetweenthe transmittime instantand the receve
time instantis nggligible, hencethe transmittimestamp(given
by the local clock of the beacon)and the receve timestamps
(in the local time of the recevers) are assumedto represent
the sameglobal time instance.Thus, a sensorcan use the
differenceof the transmittimestampandits receve timestamp
to calaulate the offset of its local clock from the local clock
of the beacon.This offset is addedto the receved tsenq to
corvert it to the local time of the recever.
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Fig. 1. The emittedacousticsignal

The sensomodealsohasto measurehe time of arrival of
the acousticsignal. The accuratedetectionof the signalis not
trivial in a noisy environment, asit is difbcult to emit sharp
rising edgesor pulseswith generalpurposeloudspeakrs. Ad-
ditionally, the signalhasto be emittedwith the highestpower
availablein orderto maximizethe rangeof the measurement.
Theserequirementsare analogousto the problemsof radar
signals,a well researchedrea[10], [18]. The problemarises
asthe limited bandwidthof the analogoutputchannelrestricts
the emissionof rising edgeswith arbitrarily steepslope.The
contradictionis resolhed by long duratian signalswith short
duration correlation functions, so when the receved signal
goesthrough an appropriatematchedplter, the output will
be a sharppulse. The emittedsignal is thereforea Gaussian-
windowed linear frequeny modulated(chirp) signal shavn
in Fig.1, that is commonly usedin radar applications.The
windowing is neededdue to the limited bandwidth of the
acousticchannel.

A similar solution is presentedn [5], where the emitted
signalis a binary phaseshift keying (BPSK) spreadspectrum
signal. Since our method does not require to distinguish
multiple sourcesthe useof linearfrequeny modulatedsignal
is more natural.

The frequeng spanof this signal is spreadin the whole
acousticband of the analogchannels.The matchedplter is
realizedas an FIR blter on the DSP The matchedPpltering
essentiallymeansthe correlation of the expected signature
with the measureddata, therefore the length of the FIR

blter is the sameas the length of the expectedsignature.To
avoid a high orderFIR Plter which would be computationally
expensve, eitherthelength of the chirp signalor the sampling
rate hasto be decreasedHowever, asthe length of the chirp
signalcannot be arbitraily shortdueto the limited bandwidth
of the physical hardware, the samplerate hasto be decreased.
Thus,theraw datais decimatedo a lower samplingfrequeng
beforethe matchedpltering.

In order to increasethe signal-to-noiseratio (SNR), one
rangemeasurementonsistsof a seriesof time-of-arrval mea-
surementsAs the delaysbetweenthe consecutie chirps are
known a-priori, an accuratecombinedresultcanbe calculated
by averagingthesemeasurementdn the averagedsignal the
chirp signaturecomponents preseredasit is addedup atthe
samephaseput the noisewhich is assumedo be independent
Gaussianwhite noiseis decreasecdby N where N is the
numberof chirps added.Currently we use8 chirps, thusthe
SNR of the averagedsignalis 9 dB higherthanthe SNR of a
single chirp.

Delays betweenconsecutie chirps are varied to avoid a
situation when multiple runs have the samenoise patternat
the same offset, which is a commonphenomenorcausedby
acousticmultipath effects. Hence the independentature of
the disturbancess presered.

The decimationpltering runs online on the DSR and the
decimatedsignalis storedin a RAM buffer. The consecutie
measurementare addedtogetherin the samebuffer. After all
the chirps are receved, the matchedpbltering and the peak-
detectionalgorithm is performedoff3ine. The peak-detection
algorithmis simply a maximumpnderabove a threshotl level,
as the output of the matchedblter has distinctive peaksat
chirps. The time of arrival of the chirp sigral can easily be
identiPedbasedon the location of the peak.

C. Results

The above algorithm was testedon a grassybeld with a
single beaconand multiple recevers. In Fig. 2 the ranging
results are presentedand in Fig. 3 the standarddeviation
of the measurements shawn, after outlier rejection. Outlier
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rejectionis doneby a simple medianblter, wherethe values
greatly differing from the median of the measurementsare
rejected. Note that since it is statistical bltering, multiple
measurementare neededor eachbeacorpositionto perform
the rejectionalgorithm.

The effective rarge of the presentedmplementaton is 30
meters,as the numberof outliers and the standird deviation
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Fig. 2. Rangingmeasurementesults(a) without outlier rejection, (b) with outlier rejection

of the measurementsare getting signibcantly high above
this value. Below 30 metersthe standarddeviation grows
approximatelylinearly with

STD = kid+ ks (1)
wherek; = 0.011 and k, = 0.024 and d denotesthe actual
distance.

The effective rangeof the measuremantsare morethantwo
times lamger than in previous acoustic ranging experiments
[19], [9], where the reliable range was 10 m on asphalt
and 15 m on grass respectiely. The standarddeviation is
also signibcantlyimproved. In [19], the output power of the
soundemwaslimited (88 dB at 10 cm from source)andthe no
customDSPboardwasused.In [9] the power of the beaconis
approximatelythe sameasin the presated solution (105 dB
at 10 cm from source),however our use of the DSP board
and the linear frequengy modulatedsignal provides better
performance.

Theseexperimentalresultsare very promising and justify
the presentedipproachMoreover, the currentlimits on range
and precisionare primarily causedby issueswith the current
implementationFirst, the power of the emittedacousticsignal
is still constrainedby the gain on the output channelof the
board. Second,the analoginput channe$ of the DSP board
also limit the range, as they were designedfor a shooter
detectionapplication [24], where even the maximum gain is
relatively low.

IV. SELF LOCALIZATION

Formally, a generalizedself localization problem can be
debnedas follows. Given node IDs ard their rangesfrom
each other conjecturethe relative physical location of each
nodein the network. A few anchornodes canbe provided to
transformrelative positins to absolutelocations. There are
mary challengedo be addressedn this problem.First let us
debPnesometerminology

DISTANCE MATRIX D is a matrix suchthat d; is
the range measuremenbetweennode i and node
j. Distane is negative for node pairs for which
rangemeasuremeris notknovn. Numberof positive

entriesin row i representshe numberof neighbors
of nodei.

NECESSARY CONDITION FOR LOCALIZATION in 3-
dimensionsstatesthat a node should have distance
measurementwith at leastfour non-coplananeigh-
bor nodes.

In a typical urban ervironmentmary sensornodesmight
not have line-of-sightwith mobile beaconpositions,but they
canreceve the acousticsignal via multipath. Thesemultipath
rangesor echoes,when usedfor localization, producefalse
or infeasibleresults. The amountof echoespresentin range
measurementdieavily dependson the ervironment and the
maximumrangeof the appled rangingmethod.In typical ur-
banervironments,low network connectvity and non-uniform
node distribution in the Z-direction further deteriora¢ the
localization accuray, that is even more critical at boundary
nodes.

A. SelfLocalization As Distance Optimization

The self localizationproblemin its mostbasicform canbe
modeledas a distanceoptimization problem. Here the inde-
pendenbptimizationvariablesarenodelocationsandthe non-
linearobjectve functionsare the differencedbetweerdistances
computedrom nodelocations andrangemeasurement®r all
node pairs for which rangemeasurementgxist (Equation?2).
It can be obsered that the distanceoptimizationis actually
a function-pttingproblemwhere distancesare the non-linear
functions of node locations. Least square optimization is
known to work bestfor function-pbttingproblems[16]. The
mathematicaformulationof distarce optimizationproblemis
presentedelow.

Find x', a global minimizer for

ERER L
FOo=35> > (6 #8) @
i=1  j=1
wheredj = {(xi# x)°+ (yi# )+ (z#2)}Y?2 is

the computeddistancebetweennodesi and j, and & is
the measureddistance.x = [xlylzl...xnynzn]T is the
optimization variable where [x;y;iz] is the 3D coordinate
of node i. The non-linear objective function F(x) is the



squaresum of distanceerrors for all pairs (i, j) for which
rangemeasurementsxist (& $ 0). The componentsof the
optimization variable x are subjectedto the boundaryvalue
constraints.

Xmin 0 Xi % Xmax

Ymin %0Yi % Ymax
Zmin %Zi %Zmax

®3)

V. SELF LOCALIZATION ALGORITHM

An obviousandstraightforvard algoiithm would beto solve
for all unknovn nodelocationssimultaneouslyAlgorithm 1).

Algorithm 1 Self localizationalgorithm

1. Consider 3D coordinates of all unknown
nodes in optimization var iable.

2: Construct and solve non-li near
least-square optimization problem with
objective function in egn. (2).

This approacthassomeseriousdisadwantagesCornvergence
of the optimizationproblemstrongly dependsiponthe initial
guessgiven to the solver. A close-to-optimuminitial guess
would corverge to global optimum relatively fast, while a
bad initial guessfor the sameproblemmight leadto a local
optimum.Initial estimatedor nodelocationscanbe computed
by usinganextensionof the boundingbox techniquedescribed
in [22]. But due to the large size of the sensornetwork and
relatively few randomlydistributedanchomodesit is possible
that we do not have good initial estimatesfor the whole
network, but only for the part close to the anchors.

An iteratve incrementalappro&h wherein a part of the
network nearanchornodesis localizedbrstand thenthe node
locations are propagted further seens suitable. The idea is
to iteratively selectandlocalize a part of the network (a sub-
system)for which a goodinitial estimateis available At each
iterationthe part of the network selectedfor localizationwill
grow, consistingof nodesthat are alreadylocalized and few
unknovn neighboringnodesthat have betterestimatesn the
current iteration. In each iteration rangesthat are believed
to be echoesare identipedand removed from computation.
The algorithm is presentedbelonv (Algorithm 2). Symbol x
representsthe 3D location vector of nodes,x®st and x5
denoteestimate and localized node location vectorsrespec-
tively. N denoteghe setof nodesin thenetwork and" denotes
the conbdencevalue for the localization (an estimateof the
accuray of the currentlocation describedn sectionV-C).

Thereare two levels of loopingin the algorithm. The outer
loop starts with an estimde, x®' for the whole network.
The brst run of the outer loop stars with a random (or
usergiven) estimate Eachrun afterwardsstartswith the Pnal
estimateof the previousrun. Theinnerloop correspondso the
incrementakelection andlocalizationof a sub-systeniN, that
we will call aniteration At eachiteration,the selectedsub-
systemwill increasén size,morenodeswill belocalizedwith

Algorithm 2 Incrementaliterative self localizationalgorithm
1: x5t & 0, x> & 0

2: forrun=1to runmay do
3. Configure  parameters, read distance
matrix D, set sub-system N & '

4: repeat

5: N-old & N

6: Estimate  bounding-box B (i) N

7: Choose xf' & x) Bi (i) N # Nyqg
based on neighbor polling
Select N * N such that x®t
satisfies goodness (i) N

o: Optimize x for sub-system N

10: xest & x

11: foralli) N do

12: Compute "

13 Neol &

14: if i acceptable then

15: x$o & xi

16: N-sol & N-sol + {|}

17: end if

18: end for

19:  until Ngo # Ngjg =

20: end for

21: Output  x*°

higheraccurag until thereare no more nodesto be localized
or nomorenodescanbelocalized(i.e. the necessargondition
for localization doesnot hold). Later sections describeeach
stepof the algorithmin detal.

A. Sub-SysterSelection

Eachnodeis representethy a bounded-boxwvith lower and
upperbounds(Xp, Xup). The node coordinatescan take ary
valuein the closedintenal [X|p Xyp]. Sinceanchornodesare
known with high accurag, their bounding-boxis very small.
Initially, the bounding-boes for all unknavn nodescan be
setto the size of the Peld and can be updatedusing range
measurementd; betweennodei andits neighborsj .

4
®)

Xipi = mjin{(le,j # &), X}

Xub,i = n}in{(xub,j + &) Xuw,i }

The orderin which bounding-boxupdateshouldbe doneis
also important. Consideringthe sensometwork asa graphit
turns out that a variant of the topological sort (Algorithm 3)
will provide the requirednodeordering.

For nodei thatalreadyhasan estimatex ' andconbdence
value ", the boundsare resetas follows. Conbdencevalues
for node location estimatesare computedin the sub-system
evaluationsectionand descrbed later.

max{ (xS # "), Xpi}
min { (X&' + "i), Xup,i }

(6)
()

Xip,i =

Xub,i



Algorithm 3 Topologicalsort

1: Set known neighbor index, #=, for
anchors and #= 0 for all other
vertices

2: while Graph not empty do

3. Find a vertex u with highest #[u]

4:  Output u

5. Delete all edges e= (u,v) of u,

increment  #[v] by 1

6: Delete u from graph

7: end while

For all other nodesa location estimae is picked from the
bounding-box.The most obvious way would be to pick the
centerof the box, but a heuristicmethodinvolving bounding-
box paritioning is usedinstead.The bounding-boxof a node,
if larger than some critical size, is partitionedinto smaller
boxes and neighborsare pdled for the partition in which the
nodeis mostlikely to be present.The centerof the winning
partitionis assumedo be the estimatedocationfor thatnode.
A polling index C,, is computedor eachpartitionp, which is
essentiallya weightedsumof distanceerrorsfor all neighbors
j of nodei.

Co= D |lIxo# xp# & | &

j#N eigh(i)

(8)

wherex, is the centerpoint of partition p. The centerpoint
of the partition with minimum polling index is chosenasthe
estimatedocation for that node.

A part of the network is selectedbasd the following
notion of goodnes®f estimatechode locations.An estimated
locationfor nodei is consideredyoodif the nodehasat least
three neighborsandits bounding-boxsatisPeswo properties.
First, its volume V; is smallerthan somecritical volume V
and second.its aspectratio $; is greder than somecritical
Badaptive- Aspectratio $; is a measureof cubenesof the
bounding-box. $; is expressedin terms of boundirg-box
volumeV;, spacediagonald; andsurfaceareaA;,

I
6 3avi
$i = — !
A adi
Notice that for a node with a small bounding-box an
estimateis acceptableeven if it hasa smaller aspectratio.

For this reasonthe critical aspectratio is made adaptve,
guadraticallydependingon the bounding-boxvolume.

)

B. Sub-Systerhocalization

The distanceoptimization problem for the selectedsub-
systemis solved in multiple stagesAt eachstagethe solution
is moved closerto the optimum.First, let usdeme anoperator
min and two optimizationproblemformulations.

Opeiator min:

DEFINITION 1. Let f; be a list of N function
evaluations(or numbers),thenming f; is the list of

-pN.-mary smallestfunction evaluations(or num-
bers)where- . is ceiling operatorand0 % p % 1.
DEFINITION 2. Let Zi’\' fi be a seriessumof N
function evaluations(or numbers)then ZiN ming f;
is the seriessum of -pN.-mary smallestfunction
evaluationswhere - . is ceiling operatorand 0 %
p %1

1) PrunedDistanceOptimizationProblem.: As mentiored
in sectionlV we have non-Gaussiamrror asechoesn range
measurementsn least-squareptimization terminology these
echo rangesare outliers that tend to shift the least-square
model from the actualmodel. It is desirablenot to consider
theseoutliersin optimization. The outlier rejectionin section
[1I-C is statisticalandrequiresmultiple rangingmeasurements.
The outlier rejection in this sectionidentiPesand removes
consistentechoes.

Find x', a global minimizer for
N "o

1

N N2
F(x) = min (d; # &), (10)
=S i (0, 4)

NI =

where d andd; are the range measuremenand distance
computed from localized nodesi and j respectiely and
optimizationvariablex = [X1Y121 ...XnVYnZn]" .

If the optimizerx is closeto global optimizerx' thenall
function evaluationsbut thosecorrespondingo echoeswill be
closeto zero.We can saythat nearthe global optimizerlarge
function evaluationscorrespondo echas. Least-squarepti-
mization works bestif the errorshave Gaussiardistribution.
When we discardthe top few function evaluationsusing the
min operatoywe arediscardingthe mostsignibcanbutliersin
the distribution and henceobtainingan approximateGaussian
distribution.

2) DistancePenalty Optimiztion Problem.: The optimiza-
tion solver used in this work are for unconsrained opti-
mization. The bounded-alue constrants on the optimization
variablesareincorporatedby modelingthem as penaltyfunc-
tions in the objective function. Penaltyfunctionsincorporate
a penaltyvalueif variablesgo out of bound.

The mostintuitive form of a penaltyfunction is a rectan-
gular penaltywhereina constanthigh penaltyis incorporated
if the variablegoesout of bounds.For optimizationpurposes
rectangulampenalty doesnot provide motivation (descentdi-
rection) for the variableto fall within bounds Anotherforms
of penaltyfunctionsare linear or quadraticgrowing linearly
or quadraticallywith the offset from the bounds.Logarithmic
penalty functions are most suitable for bounded-alue con-
straintsbecaus®f their suddendescennearboundaryvalues.

Find x', a global minimizer for

N
FOO= Y (#an(+ 1 xg ) (D)
i=1

where # is penalty congant and ! Xq ; is the offset from



feasibleboundary

[Xi # Xmin | I Xi < Xmin
! XO! | = 0 |f Xmin %Xi %Xmax (12)
|Xi # Xmaxl if Xi > Xmax

and optimizationvariablex = [X1y1Z1 ...XnYnZn]"

3) CompositionOf Least-Squar Optimization Problems.:
Two or more least-squareoptimizaion problems can be
composedas follows. Considertwo least-sgare optimization
problemsP; and P, on optimizationvariable x and objec-
tive functionsziN fi(x) and ZjM g (x), then the combined
least-squareptimization problem P on variable x have the
objectionfunction

N M
Fo(x)= Y i)+ > g(x) (13)
i j

Now we describethe stagesof optimization. We solve
problemV-B.1 or the combinationof problemsV-B.1 and V-
B.2 at eachstage.The solutionfrom the previous stageis used
as a starting point for the currentstage.At the end of each
stagesomerangemeasurementhat arebelieved to have non-
Gaussiarerrors(echoes)re identibedand removed from the
distancematrix.

¥ STAGE |. At this stageechorangesareidenibedanddis-
cardedbasedon the evaluationof the objective function
in Equation10 at the currentoptimizerx st

¥ STAGE Il. At this stagethe optimizationproblemV-B.1
is optimizedin a bxed numberof iterations.The solver
is stoppedeven if the optimizerhasnot converged. Lets
visualize this stageas a 3D earth terrain optimizaton
problemwherex andy directionsare optimizationvari-
ablesand altitude from sea-level, i.e. z, is the optimiza-
tion function. The global optimization in this problem
is looking for the deepesttrench on earth. Optimizing
for bxed numberof iterationscan be visualizedas going
downwardsa local trenchbut not going all theway down
becauseahat may take unbaindedtime.

¥ STAGE Ill. At the previous stagewe did not consder
bounded-alue constraintson the optimization variabk.
Thevariablemight go out of the feasibk region asguided
by the objective function. In this stagethe combinationof
theoptimizationproblens V-B.1 andV-B.2 areoptimized
in a Pxed numberof iteratiors. The objedive functionin
Equation11 ensureghat the variablewill fall within the
feasibleregion. The reasonfor having stagell separte
from stagelll is that sometimesthe path to the global
optimizergoesthrougha region that might not be part of
the feasibleregion.

¥ STAGE |V. This bPnal stageis similar to stagelll except
parametemp in Equation10 is setto 1.0, i.e. no pruning
of the distancematrix is done.lt is expectedthat by the
endof stagelll we would have discardednostsignibcat
echomeasurements.

C. Sub-Systenkvaluation

The quality of computedocationsproducedoy the solver is
evaluatedusinga measurealledconbdencealue.Conbdence
valueis an indicatorof uncertaintyin nodelocationaroundthe
currentlocation estimate.

Thealgorithmto computethe conbdencealueis following.
Computethe ranges betweemodelocationsandthe deviation
of thesecomputedangesrom measiredrangesNow for each
nodei we have a deviation vector! ; whose elementsare
the deviations of computedrangesfrom measuredangesfor
all its neighbors.A large valuein ! ; indicatethat either (1)
the nodelocationis incorrector (2) the correspondingrange
measurements incorrect. If the node location is incorrect
then most of the elementsof ! ; shouldbe large. If only a
few rangemeasurementare incorrectthen the meanandthe
varianceof ! ; shouldbe smallexceptfor thoseincorrectrange
measurementPractically all nodelocationsare cateyorized
basedon meany; andstandardieviation % in! ;. Conbdence
value"; is equalto |pi| + %.

1) If bothy; and% arecloseto zerothenthe nodelocation

is correct.

2) If y; is closeto zero but % is large then either the
range deviations are spreadaround zero or few large
deviations caused% to be large. We say tha the node
locationmay be affectedby echo.In this casewe strike
out a few large deviationsandre-catgorize the location
basedon a recomputedneanand standarddeviation.

3) If |ui| is large but % is small then all elementsof ! ;
arelargei.e. the nodelocationis depbnitelyincorrect.

4) If both |pj| and % are large then again location might
be affectedby echoand we follow the sameprocedure
asin case2 above.

5) If |ui| and % are neitherlarge nor small then location
correctnesss undecidedWe follow the sameprocedure
hereasin case? and4.

Nodelocationscateyorizedasincorrector potentiallyecho-
affectedare considerechot localized.

V1. IMPLEMENTATION AND RESULTS

We have implementedthe proposediocalizationalgorithm
in MATLAB andranit on simulatedsensometwork topologies
andrangingdata. The Leverbeig-Marquardtsolver was used
for optimization.

A topology of 50 sensornode locations was generated
randomlyin a 100/ 100/ 20 m beld with at leasthalf of
the nodeson ground level. 80 soundsourceswere generated
on randompathssuchthat the separatia betweensuccessie
soundsourcesvasbounded0# 8 m). Also, the Z variationof
the sourceswaslimited to 2 m to simulatea mobile beacon,
which is maving on the groundin the sensorbeld. Ranging
data was generatedwith 30 m maximum range. Gaussian
noisewith zeromeanandrangedepenént standarddeviation
(Equationl in sectionlll) was addedto the ranging data.
This matchegheresultsfrom our rangingexperimentsEchoes
were also introducedto ranging databasedon our previous
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Fig. 4. Comparisorof computednodelocationsto their true valuesin (a) X Y and(b) X Z planefor rangingdataw/ echoesGr ' s withouta @' indicate

unlocalizednodes.

rangingmeasurements urbanervironments Approximately
1000 range estmates were gathered using the 80 beacon
positions.10% of thesehad addednon Gaussiarerror (echo).
Five sensonodesvereassumedo be knovn anchorocations.
Two differentrangingdatasets,one with echoesand another
onewithout echoeswere generatedfor the topology

In the preseke of ground truth, the performanceof the
algorithm can be evaluatedby the localization error which
is the differencebetweencomputediocationsand the ground
truth. Localizationerror for nodei is,

B = (xi#x)+ (Yi#w)+ (z#=z)” (14)

wherex;, yi andz arethe computedcoordinats of nodei,
andx;, y; andz arethetruelocationcoordinateof the same
node.

Figure4 comparesthe computechodelocationsto their true
valuesin XY and X Z views for ranging datawith echoes.
Solid lines shaw the pats of the mobile beacon Solid arrovs
in Figure 4(a) indicate the sensornodesthat hasthe highest
localizationerrors. Noticethatall suchmotesarevery farfrom
their nearestsoundsource.

Figures5(a) and 5(b) shawv the histograns of localization
error with and without simulatedechoesTable | summarizes
the localizationresults.

Ranges w/o | Ranges w/
echoes echoes
Unlocalizedsensors| 7 9
Meanerror [m] 0.8962 1.0664
Max error [m] 4.3252 45119
TABLE |

LOCALIZATION RESULTS

Noticethatthedistribution of localizationerroris very steep
in case(a) while its more Rat in case(b). More nodeswere
localizedwith betteraccurag whenwe did not have echoes
in rangingdataas expected.

From Figure 5 we can seethat the computedlocations of
soundsourcesare more accuratethan that for sensornodes.

This high acarag/ can be attributed to the topological fact
that sensomodesare uniformly distributed around the sound
sourcesFor nodelocalizationapplication we are actually not
concernedaboutthe computedbeaconlocations.However, it
is an important obsenation that if we distribute the sound
sourceauniformly aroundsensomodesthenwe cangethigher
localizationaccurag for the sensors.

VIl. CONCLUSIONS

Thepresentedensomnodelocalizationtechniquenasseveral
contritutions. The methodis passve since only the mobile
beaconneedsto emit acousticsignals.This saresenegy, size
and cost on the sensomodesand provides stealtly operation.
Furthermorethe mobile beaconcanemit muchhigherenegy
soundthan the sensornodestherebyincreasingthe effective
range. To the best of our knowledge our acousticranging
methodhasthe longestrarge even when normalizedby the
emitted sound enegy. This is due to the signal processing
algorithmsimplementedon the sensorboard.

The iterative andincrementalnon-linearoptimizationtech-
nigueprovidesaneffective way to dealwith acoustiomultipath
effectsandworkswell for 3D localization.Thereis little work
in the wirelesssensometwork literature that addresseshese
problems.

We put special emphasis on making our experi-
ments/simulatioras redistic as possible.Our setupstrongly
resemblea feasiblereal world deployment. Node densitywas
relatively low. The techniqueneededo dealwith both echoes
and 3D locations. There were a relatively low number of
beaconpositions. Beaconpositions varied very little in the
Z dimension.We hadonly a few anchornodes.Therefore we
believe that the resultsare realistic.

Approximately half of the nodeswere localized with sub-
meter accurag. That is very good when comparedto the
currentstate-of-the-arthut unfortunatelystill not goodenough
for such location-critical applicationsas shooterlocalization.
However, mary other application domains have much less
strict requirements Finally, to put the resultsinto perspectie,
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Fig. 5. Histogramsof localizationerror for all sensomodesand soundsourceswithout (a) andwith (b) echoesin rangingdata.

(non-diferential) GPS-basedocalization would have much
lessaccurag thantheseresuls.
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