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AbstractÑ We presenta mobile acoustic beaconbasedsensor
node localization method. Our technique is passive in that the
sensor nodes themselves do not need to generate an acoustic
signal for ranging. This saves cost, power and provides stealthy
operation. Furthermor e, the beacon can generate much more
acousticenergy than a severely resourceconstrainedsensornode,
thereby signiÞcantly increasingthe range. The acoustic ranging
method uses a linear fr equency modulated signal that can be
accurately detected by matched Þltering. This provides longer
range and higher accuracy than the curr ent state-of-the-art.
The localization algorithm was especially designed to work in
suchacousticallyreverberant envir onment,asurban terrain. The
algorithm presentedhandlesnon-Gaussianranging errors caused
by echoes.Node locations are computed centrally by solving
a global non-linear optimization problem in an iterati ve and
incremental fashion.

I . INTRODUCTION

Localizationis an essentialtool for the deploymentof low-
cost sensornetworks for use in location-aware applications
[12], [13], [25] and ubiquitous networking [4], [26]. In a
typical sensornetwork applicationeachsensornodemonitors
andgatherslocal information.This local informationhasmuch
more signiÞcanceif it can be tied to the physical location it
belongsto. In location-criticalapplications,suchas shooter-
localization[24], sub-meteraccuracy of 3D nodelocationsis
an absolutenecessityfor the correct operationof the system.

Range-freelocalizationtechniques provide roughestimates
of nodepositionsonly. Rangingmethodsfall into two main
classes:acoustic and radio signal strength-based.The latter
requiresextensive calibration,yet it still achieves low accu-
racy and limited range.Acoustic ranginghas relatively high
accuracy, but short range.The main reasonsare the limited
acousticenergy a sensornodecanemit andthe possiblyhigh
environmentalnoise. Having a speaker or sounderon every
node adds size and cost also. When stealthy operation is
required,only ultrasoundcanbe used.But ultrasonic ranging
haseven more limited rangeanddirectionalityconstraints.

A sensornetwork deploymentscenariowith many favorable
characteristicsin numerousapplicationareasis thedispersalof
sensornodesfrom alow-ßyingunmannedaerialvehicle(UAV)
platform. After deployment, an acousticbeaconmountedon
the aircraft cansenda radio messagefollowed by an acoustic
signal at randomintervals. All the nearbysensornodes can
estimatetheir distance from the beaconby measuringthe
time-of-ßightof the sound.As sizeandpower arenot asbig
constraintson a UAV ason a sensornode,themaximumrange

canbe signiÞcantly increased.Furthermore,the nodes do not
reveal their positionssincethey are only passive listenersin
this scenario.

The self-localizationproblem in this case is to Þnd the
sensornode locationsgiven only the distancemeasurements
betweenunknown mobile beacontransmissionlocationsand
the sensornodes.Neitherthe mobile beaconpositionsnor the
sensornodesthemselves are locatednecessarilyon a plane.
Therefore, the localization problem needsto be solved in
3D. Furthermore,to our knowledge,no solutionsexist in the
literaturethathandlemultipatheffectssatisfactorily. For urban
deploymentsboth of theseproblemsneedto be addressed.

The main contributions of our work are (1) the acoustic
ranging methodproviding increasedrangeand accuracy, (2)
the localizationalgorithm basedon the novel idea of a mo-
bile acousticbeaconand (3) the ability to handlemultipath
effects. The ranging method is basedon the time-of-ßight
measurementof anacousticsignalsemittedby a singlebeacon
from multiple locations.The acousticsignal usedis a linear
frequency modulated(chirp) signal,thatcanbeidentiÞedwith
high accuracy by matchedÞlteringat the sensorseven at low
SNR.Self localizationis modeledasa non-linearoptimization
problem where node locationsare the optimization variable
anddistanceequationsinvolving nodelocationsarenon-linear
objective functions.Thelocalizationalgorithmis bothiterative
andincremental.At eachiterationa partof thesensornetwork
is selected,localizedandevaluated.It is incrementalbecause
at each iteration the part of sensornetwork selectedwill
grow aroundthe previously localizednodes.This methodis a
generalizationof iterative localization algorithmswherenode
location is improved in eachiteration.

The rest of the paper is organizedas follows. Section II
summarizesrelatedresearchin self localization. Section III
presentsthe novel acoustic ranging technique.Section IV
formulatesthe self localization problem.The main algorithm
is presentedin sectionV while its implementation,resultsand
conclusionsareprovided in sections VI andVII.

I I . RELATED RESEARCH

Self localization,due to its importancein sensornetwork
applications,has been an active researcharea for the past
few years.An early survey of somelocalization systemsis
presentedby Hightower and Boriello in [6]. Many of these
systemsadopt a simple connectivity basedapproach,while
someof themfurtherreÞnerangeestimatesbetweennodepairs
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by measuringthereceivedradiosignalstrength.However, RSS
basedranging requiresextensive calibration and still yields
inaccuraterangeestimates[7] resultingin coarselocalization.

The GPS-lesssystemby Bulushu [1] employs a grid of
referencenodes with overlapping regions. Unknown nodes
localizethemselvesto thecentroidof theirproximatereference
nodes.Localizationaccuracy is aboutone third of separation
distancebetween referencenodes.Doherty[3] formulatedself
localizationasageometricconstraintfeasibilityproblembased
on nodeconnectivity that wassolved usingconvex optimiza-
tion. Additionally, rectangularboundson nodelocationswere
usedfor tighter geometricconstraints.

Other techniquesthat provide much better range esti-
matesinvolve time-of-ßightmeasurements,particularlywhen
acousticand RF signals are combined [2], [5], [20], [21],
[22]. Acousticsignals,however, requirean unobstructedline-
of-sight. In an urbanenvironmentechoespresenta signiÞcant
problem,thusany localizationalgorithmhasto considermulti-
pathpropagation.

Savvides [22] solves for unknown nodeposition estimates
by setting up a global non-linear optimization problem and
solving it using iterative least-squares.The methodrequires
theknown beaconsto surroundtheunknown nodes,which the
author calls beacon-unknown node convexity. However, this
topologyconstraintis hardto satisfyin realworld deployment
scenarios.

Savarese[20] follows a two phaselocalization algorithm:
start-up and reÞnement.The start-up phase utilizes hop-
TERRAIN algorithm which is similar to DV-hop [15]. The
reÞnementphaseis aniterativealgorithmthatusesthelocation
estimatesfrom start-up phase.[20] also introducesa crude
notionof conÞdencevalue,a metric for thequality of location
estimate.

Therearefew approaches,that dealwith multi-pathpropa-
gation.Onesuchapproachfor two dimensionsis presentedby
Moore [14]. It identiÞesechoesas geometricimpossibilities.
The idea can be extended to three dimensionsbut under
low connectivity or high measurementnoise conditions the
algorithmmaybeunableto localizea usefulnumberof nodes
[14]. Anothercasewherethe geometricconstraintbasedecho
identiÞcationmay fail is when the distributions of nodesin
the threedimensionsaredifferent.In a typical sensornetwork
the X and Y distribution of nodesis much higher than that
in Z which affects the performanceof the algorithmabove.

Recentlysomework has beendone in localization using
mobile beacons.Sichitiu [23] usesa mobile beaconthat is
aware of its location using GPS. Priyantha [17] describes
mobile-assistedlocalizationwheremobile beaconmovement
andnodelocalizationis interlaced.

Thepresentedlocalizationalgorithm modelstheproblemas
global non-linearoptimizationasin [22], however it goesone
stepfurther to dealwith echoesandnon-convexity of anchor-
unknown nodetopology.

I I I . RANGING

The conceptof acousticrangingis basedon measuringthe
time-of-ßightof thesoundsignalbetweenthesource(beacon)
and the acousticsensor. The rangeestimate can be trivially
calculatedfrom the time measurement.However, the speedof
soundis temperaturedependent.This problemcanberesolved
by a single temperaturemeasurementat the basestation.An
appealingcharacteristicof the proposedranging algorithm is
that this is the only calibration that is needed.That is the
sensorsdo not needindividual calibrationat all.

A. Hardware

The acousticrangingapplicationtargetsthe MICA2 motes
developed at UC Berkeley [8]. The mote is equippedwith
a custom acoustic sensor board, which was developed at
Vanderbilt University for a shooter localization application
[24]. The heart of the sensorboard is the low-power Þxed
point ADSP-2189digital signalprocessorrunningat 50 MHz.
The availability of the DSP enablesthe implementationof
sophisticateddigital signalprocessingalgorithms.

There are two independentanalog input channelson the
board, furnishedwith low-cost electretmicrophonesand 2-
stageampliÞers with softwareprogrammablegain (0-54 dB).
The analogchannelsaresampledby A/D convertersat up to
100kSPSwith 12-bit resolution.Theboardalsohas ananalog
output channelcapableof driving a 250 mW external loud-
speaker. Theboardis connectedto themoteby programmable
interruptandacknowledgmentlines anda standardI2C bus.

In the current implementationthe mobile beaconis based
on a MICA2 mote and the same sensor board with an
active loudspeaker attachedto its analogoutputchannel. The
maximumoutput power is 105dB measured10 cm away from
the loudspeaker.

B. Rangingalgorithm

In orderto calculatetherangefrom thetime-of-ßightof the
acousticsignal, the departureand arrival times of the signal
have to be identiÞedand measuredprecisely. The beginning
of the transmissioncanbe measuredat the beacon,while the
time of arrival is measuredat thereceiving sensors.Therange
calculationis performedon the receivers,thusthe beaconhas
to sendthe startingtime to the receivers in a radio message.

Employing a sophisticatedtime synchronization mecha-
nism is essentialto accuratelymeasurethe time-of-ßight.
Our approachemploys the messagetime-stampingprimitives
introducedin [11]. The synchronization betweenthe source
and the sensornodesis implementedas follows.

The source queriesits local time t0 anddecidesthat it will
emit an acousticsignal at time tsend = t0 + ! . The source
sendsthe value tsend to all the sensorsin a radio message.
Therefore,the value of ! is chosensuch that it is greater
than the time required by the sensorsto processthe radio
messageand to prepare for receiving. The sensorsschedule
their acousticboardfor samplingwhen the beaconstarts the
transmissionof the acousticsignal.



We assumethat the skew of the local clocks is negligible
during the short time of the measurement, but we allow
arbitraryclock offsets.Sinceneitherthesourcenor thesensors
have knowledgeof a global time, the sensorsneedto convert
tsend includedin themessagefrom thelocal timeof thesource
to their own local times.This is achievedby timestampingthe
radio message at transmissionand at receptionas well. The
timestampingof the radio messageis donein the MAC layer
just beforetransmissionand just after receptionrespectively.
Since the radio signal is traveling at the speedof light, the
differencebetweenthe transmit time instant and the receive
time instantis negligible, hencethe transmittimestamp(given
by the local clock of the beacon)and the receive timestamps
(in the local time of the receivers) are assumedto represent
the sameglobal time instance.Thus, a sensorcan use the
differenceof thetransmittimestampandits receive timestamp
to calculate the offset of its local clock from the local clock
of the beacon.This offset is addedto the received tsend to
convert it to the local time of the receiver.
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Fig. 1. The emittedacousticsignal

The sensornodealsohasto measurethe time of arrival of
the acousticsignal.The accuratedetectionof the signalis not
trivial in a noisy environment, as it is difÞcult to emit sharp
rising edgesor pulseswith generalpurposeloudspeakers.Ad-
ditionally, the signalhasto be emittedwith the highestpower
available in orderto maximizethe rangeof the measurement.
Theserequirementsare analogousto the problemsof radar
signals,a well researchedarea[10], [18]. The problemarises
asthe limited bandwidthof theanalogoutputchannelrestricts
the emissionof rising edgeswith arbitrarily steepslope.The
contradictionis resolved by long duration signalswith short
duration correlation functions, so when the received signal
goes through an appropriatematchedÞlter, the output will
be a sharppulse.The emittedsignal is thereforea Gaussian-
windowed linear frequency modulated(chirp) signal shown
in Fig.1, that is commonly used in radar applications.The
windowing is neededdue to the limited bandwidth of the
acousticchannel.

A similar solution is presentedin [5], where the emitted
signal is a binary phaseshift keying (BPSK) spreadspectrum
signal. Since our method does not require to distinguish
multiple sources,theuseof linear frequency modulatedsignal
is morenatural.

The frequency spanof this signal is spreadin the whole
acousticband of the analogchannels.The matchedÞlter is
realizedas an FIR Þlter on the DSP. The matchedÞltering
essentiallymeansthe correlation of the expectedsignature
with the measureddata, therefore the length of the FIR

Þlter is the sameas the length of the expectedsignature.To
avoid a high orderFIR Þlter which would be computationally
expensive,eitherthe lengthof thechirp signalor thesampling
ratehasto be decreased.However, as the lengthof the chirp
signalcannot bearbitrarily shortdueto thelimited bandwidth
of thephysical hardware, thesampleratehasto bedecreased.
Thus,theraw datais decimatedto a lower samplingfrequency
beforethe matchedÞltering.

In order to increasethe signal-to-noiseratio (SNR), one
rangemeasurementconsistsof a seriesof time-of-arrival mea-
surements.As the delaysbetweenthe consecutive chirps are
known a-priori, anaccuratecombinedresultcanbecalculated
by averagingthesemeasurements.In the averagedsignal the
chirp signaturecomponentis preservedasit is addedup at the
samephase,but thenoisewhich is assumedto be independent
Gaussianwhite noise is decreasedby

!
N where N is the

numberof chirps added.Currently we use8 chirps, thus the
SNR of the averagedsignal is 9 dB higherthanthe SNR of a
singlechirp.

Delays betweenconsecutive chirps are varied to avoid a
situation when multiple runs have the samenoise patternat
the same offset, which is a commonphenomenoncausedby
acousticmultipath effects. Hencethe independentnatureof
the disturbancesis preserved.

The decimationÞltering runs online on the DSP, and the
decimatedsignal is storedin a RAM buffer. The consecutive
measurementsareaddedtogetherin the samebuffer. After all
the chirps are received, the matchedÞltering and the peak-
detectionalgorithm is performedofßine. The peak-detection
algorithmis simply a maximumÞnderabove a threshold level,
as the output of the matchedÞlter has distinctive peaksat
chirps. The time of arrival of the chirp signal can easily be
identiÞedbasedon the location of the peak.

C. Results

The above algorithm was testedon a grassyÞeld with a
single beaconand multiple receivers. In Fig. 2 the ranging
results are presented,and in Fig. 3 the standarddeviation
of the measurementsis shown, after outlier rejection.Outlier
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Fig. 3. Standarddeviation of ranging

rejectionis doneby a simple medianÞlter, wherethe values
greatly differing from the median of the measurementsare
rejected. Note that since it is statistical Þltering, multiple
measurementsare neededfor eachbeaconpositionto perform
the rejectionalgorithm.

The effective range of the presentedimplementation is 30
meters,as the numberof outliers and the standard deviation



(a) (b)
Fig. 2. Rangingmeasurementresults(a) without outlier rejection,(b) with outlier rejection

of the measurementsare getting signiÞcantly high above
this value. Below 30 meters the standarddeviation grows
approximatelylinearly with

STD "= k1d + k2 (1)

wherek1 = 0.011 and k2 = 0.024 and d denotesthe actual
distance.

Theeffective rangeof themeasurementsaremorethantwo
times larger than in previous acoustic ranging experiments
[19], [9], where the reliable range was 10 m on asphalt
and 15 m on grass, respectively. The standarddeviation is
also signiÞcantlyimproved. In [19], the output power of the
sounderwaslimited (88 dB at 10 cm from source)andtheno
customDSPboardwasused.In [9] thepower of thebeaconis
approximatelythe sameas in the presentedsolution (105 dB
at 10 cm from source),however our use of the DSP board
and the linear frequency modulatedsignal provides better
performance.

Theseexperimentalresultsare very promising and justify
the presentedapproach.Moreover, the currentlimits on range
andprecisionareprimarily causedby issueswith the current
implementation.First, thepower of theemittedacousticsignal
is still constrainedby the gain on the output channelof the
board.Second,the analoginput channels of the DSP board
also limit the range, as they were designedfor a shooter
detectionapplication [24], whereeven the maximumgain is
relatively low.

IV. SELF LOCALIZATION

Formally, a generalizedself localization problem can be
deÞnedas follows. Given node IDs and their rangesfrom
eachother conjecturethe relative physical location of each
nodein the network. A few anchornodes canbe provided to
transformrelative positions to absolutelocations. There are
many challengesto be addressedin this problem.First let us
deÞnesometerminology.

DISTANCE MATRIX D is a matrix such that dij is
the range measurementbetweennode i and node
j . Distance is negative for node pairs for which
rangemeasurementis notknown. Numberof positive

entriesin row i representsthe numberof neighbors
of nodei .
NECESSARY CONDITION FOR LOCALIZATION in 3-
dimensionsstatesthat a nodeshouldhave distance
measurementswith at leastfour non-coplanarneigh-
bor nodes.

In a typical urban environment many sensornodesmight
not have line-of-sight with mobile beaconpositions,but they
canreceive the acousticsignalvia multipath.Thesemultipath
rangesor echoes,when usedfor localization, producefalse
or infeasibleresults.The amountof echoespresentin range
measurementsheavily dependson the environment and the
maximumrangeof the applied rangingmethod.In typical ur-
banenvironments,low network connectivity andnon-uniform
node distribution in the Z-direction further deteriorate the
localization accuracy, that is even more critical at boundary
nodes.

A. SelfLocalizationAs DistanceOptimization

The self localizationproblem in its mostbasicform canbe
modeledas a distanceoptimizationproblem.Here the inde-
pendentoptimizationvariablesarenodelocationsandthenon-
linearobjective functionsare thedifferencesbetweendistances
computedfrom nodelocationsandrangemeasurementsfor all
nodepairs for which rangemeasurementsexist (Equation2).
It can be observed that the distanceoptimization is actually
a function-Þttingproblemwheredistancesare the non-linear
functions of node locations. Least square optimization is
known to work best for function-Þttingproblems[16]. The
mathematicalformulationof distance optimizationproblemis
presentedbelow.

Find x ! , a global minimizer for

F (x) =
1
2

N∑

i =1

N , ödij " 0∑

j =1

(
dij # ödij

)2
(2)

where dij = { (xi # xj )2 + (yi # yj )2 + (zi # zj )2} 1/ 2 is
the computeddistancebetweennodes i and j , and ödij is
the measureddistance. x = [x1y1z1 . . . xn yn zn ]T is the
optimization variable where [xi yi zi ] is the 3D coordinate
of node i . The non-linear objective function F (x) is the



squaresum of distanceerrors for all pairs (i, j ) for which
rangemeasurementsexist ( ödij $ 0). The componentsof the
optimization variable x are subjectedto the boundaryvalue
constraints.

xmin % xi % xma x

ymin % yi % yma x (3)

zmin % zi % zma x

V. SELF LOCALIZATION ALGORITHM

An obviousandstraightforwardalgorithm would beto solve
for all unknown nodelocationssimultaneously(Algorithm 1).

Algorithm 1 Self localizationalgorithm
1: Consider 3D coordinates of all unknown

nodes in optimization var iable.
2: Construct and solve non-li near

least-square optimization problem with
objective function in eqn. (2 ).

Thisapproachhassomeseriousdisadvantages.Convergence
of the optimizationproblemstronglydependsuponthe initial
guessgiven to the solver. A close-to-optimuminitial guess
would converge to global optimum relatively fast, while a
bad initial guessfor the sameproblemmight lead to a local
optimum.Initial estimatesfor nodelocationscanbecomputed
by usinganextensionof theboundingbox techniquedescribed
in [22]. But due to the large size of the sensornetwork and
relatively few randomlydistributedanchornodes, it is possible
that we do not have good initial estimatesfor the whole
network, but only for the part close to the anchors.

An iterative incrementalapproach wherein a part of the
network nearanchornodesis localizedÞrstand thenthenode
locationsare propagated further seems suitable.The idea is
to iteratively selectand localizea part of the network (a sub-
system)for which a goodinitial estimateis available. At each
iteration the part of the network selectedfor localizationwill
grow, consistingof nodesthat are alreadylocalizedand few
unknown neighboringnodesthat have betterestimatesin the
current iteration. In each iteration rangesthat are believed
to be echoesare identiÞedand removed from computation.
The algorithm is presentedbelow (Algorithm 2). Symbol x
representsthe 3D location vector of nodes,xest and xsol

denoteestimated and localizednodelocation vectorsrespec-
tively. N denotesthesetof nodesin thenetwork and" denotes
the conÞdencevalue for the localization (an estimateof the
accuracy of the currentlocationdescribedin sectionV-C).

Thereare two levels of looping in the algorithm.The outer
loop starts with an estimate, xest for the whole network.
The Þrst run of the outer loop starts with a random (or
usergiven) estimate.Eachrun afterwardsstartswith the Þnal
estimateof thepreviousrun.Theinnerloopcorrespondsto the
incrementalselection andlocalizationof a sub-system÷N , that
we will call an iteration. At eachiteration,the selectedsub-
systemwill increasein size,morenodeswill belocalizedwith

Algorithm 2 Incrementaliterative self localizationalgorithm

1: xest & 0, xsol & 0
2: for r un = 1 to r unma x do
3: Configure parameters, read distance

matrix D , set sub-system ÷N & '
4: repeat
5: ÷Nol d & ÷N
6: Estimate bounding-box Bi ( i ) N
7: Choose xest

i & x ) Bi ( i ) N # ÷Nol d

based on neighbor polling
8: Select ÷N * N such that xest

i
satisfies goodness ( i ) ÷N

9: Optimize x for sub-system ÷N
10: xest & x
11: for all i ) ÷N do
12: Compute " i

13: ÷Nsol & '
14: if " i acceptable then
15: xsol

i & x i

16: ÷Nsol & ÷Nsol + { i }
17: end if
18: end for
19: until ÷Nsol # ÷Nol d = '
20: end for
21: Output xsol

higheraccuracy until thereareno morenodesto be localized
or no morenodescanbelocalized(i.e. the necessarycondition
for localization doesnot hold). Later sections describeeach
stepof the algorithmin detail.

A. Sub-SystemSelection

Eachnodeis representedby a bounded-boxwith lower and
upperbounds(x l b, xub). The nodecoordinatescan take any
value in the closedinterval [x l b xub]. Sinceanchornodesare
known with high accuracy, their bounding-boxis very small.
Initially, the bounding-boxes for all unknown nodescan be
set to the size of the Þeld and can be updatedusing range
measurementsödij betweennodei and its neighborsj .

x l b,i = min
j

{ (x l b,j # ödij ), x l b,i } (4)

xub,i = min
j

{ (xub,j + ödij ), xub,i } (5)

The orderin which bounding-boxupdateshouldbe doneis
also important.Consideringthe sensornetwork as a graphit
turns out that a variant of the topologicalsort (Algorithm 3)
will provide the requirednodeordering.

For nodei thatalreadyhasanestimatexest
i andconÞdence

value " i , the boundsare resetas follows. ConÞdencevalues
for node location estimatesare computedin the sub-system
evaluationsectionanddescribed later.

x l b,i = max{ (xest
i # " i ), x l b,i } (6)

xub,i = min { (xest
i + " i ), xub,i } (7)



Algorithm 3 Topologicalsort
1: Set known neighbor index, # = , for

anchors and # = 0 for all other
vertices

2: while Graph not empty do
3: Find a vertex u with highest #[u]
4: Output u
5: Delete all edges e = (u, v) of u,

increment #[v] by 1
6: Delete u from graph
7: end while

For all other nodesa location estimate is picked from the
bounding-box.The most obvious way would be to pick the
centerof the box, but a heuristicmethodinvolving bounding-
box partitioning is usedinstead.The bounding-boxof a node,
if larger than some critical size, is partitioned into smaller
boxesandneighborsarepolled for the partition in which the
nodeis most likely to be present.The centerof the winning
partition is assumedto betheestimatedlocationfor thatnode.
A polling index Cp is computedfor eachpartition p, which is
essentiallya weightedsumof distanceerrors for all neighbors
j of nodei .

Cp =
∑

j # N eig h( i )

∣∣∣
∥∥xp # xest

j

∥∥ # ödij

∣∣∣ á" j (8)

wherexp is the centerpoint of partition p. The centerpoint
of the partition with minimum polling index is chosenas the
estimatedlocation for that node.

A part of the network is selectedbased the following
notion of goodnessof estimatednodelocations.An estimated
locationfor nodei is consideredgood if the nodehasat least
threeneighborsandits bounding-boxsatisÞestwo properties.
First, its volume Vi is smaller than somecritical volume V
and second,its aspectratio $i is greater than somecritical
ø$adapt i ve. Aspect ratio $i is a measureof cubenessof the
bounding-box. $i is expressedin terms of bounding-box
volumeVi , spacediagonaldi andsurfaceareaAi ,

$i =
6
!

3 áVi

Ai ádi
(9)

Notice that for a node with a small bounding-box an
estimateis acceptableeven if it has a smaller aspectratio.
For this reasonthe critical aspect ratio is made adaptive,
quadraticallydependingon the bounding-boxvolume.

B. Sub-SystemLocalization

The distanceoptimization problem for the selectedsub-
systemis solved in multiple stages.At eachstagethesolution
is movedcloserto theoptimum.First, let usdeÞneanoperator
min and two optimizationproblemformulations.

Operator min:

DEFINITION 1. Let f i be a list of N function
evaluations(or numbers),thenminp f i is the list of

-pN . -many smallestfunction evaluations(or num-
bers)where- . is ceiling operatorand0 % p % 1.
DEFINITION 2. Let

∑N
i f i be a seriessum of N

functionevaluations(or numbers),then
∑N

i minp f i

is the seriessum of -pN . -many smallestfunction
evaluationswhere - . is ceiling operatorand 0 %
p % 1.

1) PrunedDistanceOptimizationProblem.: As mentioned
in sectionIV we have non-Gaussianerror asechoesin range
measurements.In least-squareoptimization terminology, these
echo rangesare outliers that tend to shift the least-square
model from the actualmodel. It is desirablenot to consider
theseoutliers in optimization.The outlier rejectionin section
III-C is statisticalandrequiresmultiple rangingmeasurements.
The outlier rejection in this section identiÞesand removes
consistentechoes.

Find x ! , a global minimizer for

F (x) =
1
2

N∑

i =1

N , ödij " 0∑

j =1

min
p

(
dij # ödij

)2
(10)

where ödij and dij are the rangemeasurementand distance
computed from localized nodes i and j respectively and
optimizationvariablex = [x1y1z1 . . . xn yn zn ]T .

If the optimizer x is closeto global optimizer x ! then all
functionevaluationsbut thosecorrespondingto echoeswill be
closeto zero.We can saythat nearthe global optimizer large
function evaluationscorrespondto echoes.Least-squareopti-
mization works best if the errorshave Gaussiandistribution.
When we discardthe top few function evaluationsusing the
mi n operator, wearediscardingthemostsigniÞcantoutliersin
the distribution andhenceobtainingan approximateGaussian
distribution.

2) DistancePenaltyOptimization Problem.: The optimiza-
tion solver used in this work are for unconstrained opti-
mization. The bounded-value constraints on the optimization
variablesare incorporatedby modelingthemaspenaltyfunc-
tions in the objective function. Penaltyfunctions incorporate
a penaltyvalue if variablesgo out of bound.

The most intuitive form of a penalty function is a rectan-
gular penaltywhereina constanthigh penalty is incorporated
if the variablegoesout of bounds.For optimizationpurposes
rectangularpenaltydoesnot provide motivation (descentdi-
rection) for the variableto fall within bounds. Another forms
of penalty functionsare linear or quadraticgrowing linearly
or quadraticallywith the offset from the bounds.Logarithmic
penalty functions are most suitable for bounded-value con-
straintsbecauseof their suddendescentnearboundaryvalues.

Find x ! , a global minimizer for

F (x) =
1
2

N∑

i =1

{ # áln(1 + ! xo! ,i )}
2 (11)

where # is penalty constant and ! xo! ,i is the offset from



feasibleboundary,

! xo! ,i =






|xi # xmin | if xi < xmin

0 if xmin % xi % xma x

|xi # xma x | if xi > xma x

(12)

andoptimizationvariablex = [x1y1z1 . . . xn yn zn ]T .
3) CompositionOf Least-Square OptimizationProblems.:

Two or more least-squareoptimization problems can be
composedas follows. Considertwo least-squareoptimization
problemsP1 and P2 on optimization variable x and objec-
tive functions

∑N
i f i (x) and

∑M
j gj (x), then the combined

least-squareoptimization problem P on variable x have the
objectionfunction

FP (x) =
N∑

i

f i (x ) +
M∑

j

gj (x) (13)

Now we describe the stagesof optimization. We solve
problemV-B.1 or the combinationof problemsV-B.1 andV-
B.2 at eachstage.Thesolutionfrom thepreviousstageis used
as a startingpoint for the current stage.At the end of each
stagesomerangemeasurementsthatarebelievedto have non-
Gaussianerrors(echoes)are identiÞedandremoved from the
distancematrix.

¥ STAGE I . At this stageechorangesareidentiÞedanddis-
cardedbasedon the evaluationof the objective function
in Equation10 at the currentoptimizerxest .

¥ STAGE I I . At this stagethe optimizationproblemV-B.1
is optimizedin a Þxed numberof iterations.The solver
is stoppedeven if the optimizerhasnot converged.Lets
visualize this stageas a 3D earth terrain optimization
problemwherex andy directionsareoptimizationvari-
ablesand altitude from sea-level, i.e. z, is the optimiza-
tion function. The global optimization in this problem
is looking for the deepesttrench on earth. Optimizing
for Þxed numberof iterationscanbe visualizedasgoing
downwardsa local trenchbut not goingall theway down
becausethat may take unboundedtime.

¥ STAGE I I I . At the previous stagewe did not consider
bounded-value constraintson the optimization variable.
Thevariablemight go out of thefeasible region asguided
by theobjective function.In this stagethecombinationof
theoptimizationproblems V-B.1 andV-B.2 areoptimized
in a Þxed numberof iterations. The objective function in
Equation11 ensuresthat the variablewill fall within the
feasibleregion. The reasonfor having stageII separate
from stageIII is that sometimesthe path to the global
optimizergoesthrougha region thatmight not be partof
the feasibleregion.

¥ STAGE IV. This Þnal stageis similar to stageII I except
parameterp in Equation10 is set to 1.0, i.e. no pruning
of the distancematrix is done.It is expectedthat by the
endof stageIII we would have discardedmostsigniÞcant
echomeasurements.

C. Sub-SystemEvaluation

Thequality of computedlocationsproducedby thesolver is
evaluatedusinga measurecalledconÞdencevalue.ConÞdence
valueis an indicatorof uncertaintyin nodelocationaroundthe
currentlocationestimate.

Thealgorithmto computetheconÞdencevalueis following.
Computethe ranges betweennodelocationsandthedeviation
of thesecomputedrangesfrom measuredranges.Now for each
node i we have a deviation vector ! i whose elementsare
the deviations of computedrangesfrom measuredrangesfor
all its neighbors.A large value in ! i indicatethat either (1)
the nodelocation is incorrector (2) the correspondingrange
measurementis incorrect. If the node location is incorrect
then most of the elementsof ! i should be large. If only a
few rangemeasurementsare incorrectthen the meanand the
varianceof ! i shouldbesmallexceptfor thoseincorrectrange
measurements.Practically, all node locationsare categorized
basedon meanµi andstandarddeviation %i in ! i . ConÞdence
value" i is equalto |µi | + %i .

1) If bothµi and%i arecloseto zerothenthenodelocation
is correct.

2) If µi is close to zero but %i is large then either the
range deviations are spreadaround zero or few large
deviations caused%i to be large. We say that the node
locationmay be affectedby echo.In this casewe strike
out a few largedeviationsandre-categorize the location
basedon a recomputedmeanand standarddeviation.

3) If |µi | is large but %i is small then all elementsof ! i

are large i.e. the nodelocation is deÞnitelyincorrect.
4) If both |µi | and %i are large then again location might

be affectedby echoand we follow the sameprocedure
as in case2 above.

5) If |µi | and %i are neither large nor small then location
correctnessis undecided.We follow thesameprocedure
hereas in cases2 and4.

Nodelocationscategorizedasincorrector potentiallyecho-
affectedareconsiderednot localized.

VI . IMPLEMENTATION AND RESULTS

We have implementedthe proposedlocalizationalgorithm
in MATLAB andranit onsimulatedsensornetwork topologies
and rangingdata.The Levenberg-Marquardtsolver was used
for optimization.

A topology of 50 sensornode locations was generated
randomly in a 100/ 100/ 20 m Þeld with at least half of
the nodeson ground level. 80 soundsourceswere generated
on randompathssuchthat the separation betweensuccessive
soundsourceswasbounded(0# 8 m). Also, theZ variationof
the sourceswas limited to 2 m to simulatea mobile beacon,
which is moving on the ground in the sensorÞeld. Ranging
data was generatedwith 30 m maximum range. Gaussian
noisewith zeromeanandrangedependent standarddeviation
(Equation 1 in section III) was addedto the ranging data.
Thismatchestheresultsfrom our rangingexperiments.Echoes
were also introducedto ranging data basedon our previous
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Fig. 4. Comparisonof computednodelocationsto their true valuesin (a) X Y and(b) X Z planefor rangingdataw/ echoes.Ô+ ! s without a Ô! ! indicate
unlocalizednodes.

rangingmeasurementsin urbanenvironments.Approximately
1000 range estimates were gatheredusing the 80 beacon
positions.10% of thesehadaddednon Gaussianerror (echo).
Fivesensornodeswereassumedto beknown anchorlocations.
Two different rangingdatasets,onewith echoesandanother
onewithout echoes,weregeneratedfor the topology.

In the presence of ground truth, the performanceof the
algorithm can be evaluatedby the localization error which
is the differencebetweencomputedlocationsand the ground
truth. Localizationerror for nodei is,

%2
p,i = (xi # ÷xi )2 + (yi # ÷yi )2 + (zi # ÷zi )2 (14)

wherexi , yi and zi are the computedcoordinates of nodei ,
and ÷xi , ÷yi and÷zi arethe true locationcoordinatesof thesame
node.

Figure4 comparesthecomputednodelocationsto their true
valuesin X Y and X Z views for ranging datawith echoes.
Solid linesshow thepathsof themobile beacon.Solid arrows
in Figure 4(a) indicate the sensornodesthat has the highest
localizationerrors.Noticethatall suchmotesarevery far from
their nearestsoundsource.

Figures5(a) and 5(b) show the histograms of localization
error with andwithout simulatedechoes.Table I summarizes
the localizationresults.

Ranges w/o
echoes

Ranges w/
echoes

Unlocalizedsensors 7 9
Meanerror [m] 0.8962 1.0664
Max error [m] 4.3252 4.5119

TABLE I

LOCALIZATION RESULTS

Noticethatthedistribution of localizationerroris very steep
in case(a) while its more ßat in case(b). More nodeswere
localizedwith betteraccuracy when we did not have echoes
in rangingdataasexpected.

From Figure 5 we can seethat the computedlocationsof
soundsourcesare more accuratethan that for sensornodes.

This high accuracy can be attributed to the topological fact
that sensornodesareuniformly distributedaround the sound
sources.For nodelocalizationapplication we areactuallynot
concernedaboutthe computedbeaconlocations.However, it
is an important observation that if we distribute the sound
sourcesuniformly aroundsensornodes,thenwecangethigher
localizationaccuracy for the sensors.

VI I . CONCLUSIONS

Thepresentedsensornodelocalizationtechniquehasseveral
contributions. The method is passive since only the mobile
beaconneedsto emit acousticsignals.This savesenergy, size
andcost on the sensornodesandprovidesstealthy operation.
Furthermore,the mobile beaconcanemit muchhigher-energy
soundthan the sensornodestherebyincreasingthe effective
range. To the best of our knowledge our acoustic ranging
methodhas the longestrange even when normalizedby the
emitted sound energy. This is due to the signal processing
algorithmsimplementedon the sensorboard.

The iterative and incrementalnon-linearoptimizationtech-
niqueprovidesaneffectiveway to dealwith acousticmultipath
effectsandworkswell for 3D localization.Thereis li ttle work
in the wirelesssensornetwork literature that addressesthese
problems.

We put special emphasis on making our experi-
ments/simulationas realistic as possible.Our setupstrongly
resemblea feasiblereal world deployment.Nodedensitywas
relatively low. The techniqueneededto dealwith both echoes
and 3D locations. There were a relatively low number of
beaconpositions.Beaconpositions varied very little in the
Z dimension.We hadonly a few anchornodes.Therefore,we
believe that the resultsare realistic.

Approximatelyhalf of the nodeswere localizedwith sub-
meter accuracy. That is very good when comparedto the
currentstate-of-the-art,but unfortunatelystill not goodenough
for such location-criticalapplicationsas shooterlocalization.
However, many other application domains have much less
strict requirements.Finally, to put the resultsinto perspective,
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Fig. 5. Histogramsof localizationerror for all sensornodesandsoundsourceswithout (a) andwith (b) echoesin rangingdata.

(non-differential) GPS-basedlocalization would have much
lessaccuracy than theseresults.
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