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Abstract

Regression-type algorithms are widely used for system modeling and characterization. There are

applications where such characterizations are to be performed “on-line” to support control

mechanisms and other decisions. In embedded autonomous systems robustness considerations ask

for techniques, which, in addition to reflecting the actual state of the system and its environment,

can continuously provide immediate signal processing results even in case of abrupt changes and/or

temporal shortage of computational power and/or loss of some data. With other words in such

situations the actual processing should be continued to insure appropriate performance.

Consequently there is a need for robust techniques called “anytime” algorithms, which can provide



Várkonyi-Kóczy, A.R., T. Kovácsházy, O. Takács, and Cs. Benedecsik, “Anytime Evaluation of Regression-Type
Algorithms.” International Journal of Advanced Computational Intelligence, Vol. 5, No. 1, pp. 2-7, Feb. 2001.

short response time and be very flexible with respect to the available input information and

computational power. The paper presents some considerations concerning such flexibility in the

case of regression-type algorithms.

1. Introduction

Computer-based monitoring and diagnostic systems are designed to handle abrupt changes due to

failures within the supervised system or in its environment. This capability involves on one hand

different, simultaneously operated digital signal processors (DSPs), while on the other the

corresponding information processing algorithms. These algorithms should be performed under

prescribed response time conditions. It is an obvious requirement to provide enough computational

power but the achievable processing speed is highly influenced by the precedence, timing and data

access conditions of the processing itself. It seems to be unavoidable even in the case of extremely

careful design to get into situations where the shortage of necessary data and/or processing time

becomes serious. Such situations may result in a critical breakdown of the computer-based

monitoring and/or diagnostic systems.

With the introduction of  “anytime” signal processing algorithms [1] we try to handle the above

changes and their consequences in larger scale embedded DSP systems [2]. The idea is that if there

is a temporal shortage of computational power and/or there is a loss of some data the actual

evaluation should be continued to provide appropriate overall performance. The solution should be

signal processing of simpler complexity producing outputs of acceptable quality to continue the

operation of the complete embedded system. The accuracy of the processing may be temporarily

lower but possibly still enough to produce data for qualitative evaluations and supporting
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unavoidable decisions. Consequently “anytime” algorithms provide short response time and are

very flexible with respect to the available input information and computational power. Such and

similar flexibility is investigated in a somewhat different environment in [3]. It is important to

observe at this point that such flexibility is possible only if a set of “shortage indicators” is an

additional input of the signal processing facilities in use. Obviously the shortage indicators are

outputs of such information processing units which monitor the actual rate of sensory data and the

rate of the computational load.

In Section II of this paper regression-type algorithms will be considered. Since the operation of

the monitoring and/or diagnostic systems should run in parallel with the data acquisition, the

investigations are restricted to recursive algorithms (see, e.g., [4] - [6]). These algorithms are

typically one-step prediction-correction schemes, where the weighted difference between the

measured and the predicted inputs corrects the previous estimates. Recursive techniques are

advantageous concerning also the response time since they almost always can provide some kind of

an estimate at a price of acceptable computational load. In this Section the key equations of the

recursive least squares method are investigated more in detail from the above-mentioned point of

view.

In Section III of this paper a “shortage controlled” mechanism is developed to adapt the recursive

least
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Figure 1. The signal-flow scheme of a typical regression-type algorithm. The goal of the

procedure is to set the parameter vector W to minimize the modeling error

squares method to the available amount of computing capacity. The adaptation is a temporal

reduction of the number of the model parameters to be updated within one iteration step.

Those parameters should be omitted which have less influence on the model output.

In Section IV, as an illustrative example, the classical linear regression problem is

considered for anytime evaluation. The analytical formulas help to understand the nature and

complexity of the modified recursive least square technique.

2. Recursive evaluation of regression-type algorithms

The signal-flow scheme of a typical regression-type algorithm is given on Fig. 1. The

system to be characterized is perturbed by a sequence of input samples u(k), k=0,1, … , and

produces an output sequence of y(k). The regression problem is to fit a model to the system

using the set of inputs and outputs ({u(k)} and {y(k)}) in such a way that the difference at the

output {e(k)} is minimum in a given sense. The typical approach fixes the model-structure
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and offers a parameter vector W to set or adapt during the procedure. A widely used model

form is where a fixed part generates the so-called regression vectors {X(k)}, and this is

followed by a variable part producing output estimates { })(ˆ ky . Since for practical reasons it is

advantageous to apply models which are linear in their parameters, usually this second part is

simply a linear combiner with variable weights. The solution of such and similar regression

problems is well known in the literature (see, e.g. [4], [5]), here only the key elements of the

simplest least-squares procedure are repeated.

Notations:

[ ]Y n y y y n T( ) ( ), ( ),..., ( )= −0 1 1  observation vector

[ ]TnyyynY )1(ˆ),...,1(ˆ),0(ˆ)(ˆ −=   estimation vector

n identifies the number of  observations

[ ]X( ) ( ), ( ),..., ( )n X X X n T= −0 1 1 nxm regression matrix

m number of model parameters

W(n) m-dimensional parameter vector based on n observations

[ ]P X X( ) ( ) ( )n n nT=
−1

 mxm matrix

G(n) m-dimensional correction-gain vector

ε(n) squared error after n observations

Off-line version: The first step of solving the regression problem off-line is the collection

of n input and output samples ({u(k)}, {(y(k)}) and the calculation of  n regression vectors

{X(k)} to get Y(n) and X(n). The second step is to calculate W(n) which minimizes
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where

)()()(ˆ nWnnY X=  (2)

The optimum set of parameters based on n observations is given by

[ ]W n n n n Y n n n Y nT T T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= =
−

X X X P X
1

 (3)

On-line (recursive) version: The equation for the recursive evaluation can be interpreted

as a one-step prediction-correction form, which having W(n) utilizes the new observation y(n)

and the new regression vector X(n) to calculate W(n+1):

[ ]W n W n G n y n X n W nT( ) ( ) ( ) ( ) ( ) ( )+ = + + −1 1 (4)

         ↑       ↑                    
        new observation   new regression vector

where the correction-gain vector is given by

G n n X n
X n n X nT( ) ( ) ( )

( ) ( ) ( )
+ =

+
1

1
P

P
 (5)

Fortunately P(n+1) can be calculated recursively

[ ]P I P( ) ( ) ( ) ( )n G n X n nT+ = − +1 1  (6)

To use the recursive algorithms, initial values for their start-up are required. Hints can be

found in the literature (see, e.g., [4]).

The recursive algorithms are widely used also in non-stationary/time-varying systems. In

such case regression-type problem turns to a parameter adaptation problem, where the

characterization of the system becomes time-dependent and older observations loose their

importance. The introduction of special weights (“forgetting factors”) into (1), or as a special

case the application of the sliding window slightly influences the above algorithms, but the
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key elements of the solution do not change.

3. Temporal computational complexity reduction

In the subsequent discussion we will suppose that n>>m, i.e., W(n) is based on a large

amount of observations. We will also suppose that a temporal shortage of computational

power requires temporal complexity reduction. The computational power needed to evaluate

equations (4)-(6) can be estimated if the sampling rate and the required number of parameters

m is known. The computational load can be lowered if either the sampling rate or the number

of parameters to be updated within one iteration step is lower. There are several possible

alternatives:

1. The input/output sampling rate can be reduced if the system characterization with lower

“bandwidth” is tolerable.

2. The number of parameters can be reduced by neglecting regression vector components

having small contribution to )(ˆ ny . In this case all the vectors and matrices in equations

(4)-(6) will have reduced size. To avoid non-tolerable transient oscillations of the

parameter values, the withdrawal of regression vector components might be performed

step-by-step. Similarly, the reduction of the regression component values to zero might

be performed in multiple steps. On the way back to the original number of parameters

similar considerations may help.

3. Defining subsets of parameter vector components and to solve the optimization problem

for the subsets separately and sequentially.

4. Defining a subset of such parameter vector components, which show relatively small

variations during adaptation, and fix them for a given number of iterations.

For the last two alternatives equations (2)-(6) can be rewritten, but we need some new
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notations. The ideas will be explained for two subsets.

New notations:

[ ]X1 1 1 10 1 1( ) ( ), ( ), ... , ( )n X X X n T= −  nxm1 regression matrix

[ ]X2 2 2 20 1 1( ) ( ), ( ), ... , ( )n X X X n T= − nxm2 regression matrix

m1,m2 (m1+m2=m) number of model parameters

W1(n) m1-dimensional parameter vector

W2(n) m2-dimensional parameter vector

P
P P
P P

( )
( ) ( )
( ) ( )

n
n n
n n

=










11 12

21 22
 mxm matrix, where

dim P11(n) = m1xm1, dim P12(n) = m1xm2,

dim P21(n) = m2xm1, dim P22(n) = m2xm2

G1(n) m1-dimensional correction-gain vector

G2(n) m2-dimensional correction-gain vector

P1 (n) = m1xm1 dimensional matrix

P2(n) = m2xm2 dimensional matrix

If we follow alternative 3, and separate the regression and the parameter vector elements

into two groups, equation (2) can be rewritten as

[ ] )()()()(
)(
)(

)()()(ˆ 2211
2

1
21 nWnnWn

nW
nW

nnnY XXXX +=







=  (7)
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If we could consider the two sets independently, then the off-line version of the solution

would have the form

[ ] [ ])()()(
)(

)()()( 221

1

1
111 nWnnY
n

nnnW TT XX
P

XX −=
−

44 344 21
 (8)

[ ] [ ])()()(
)(

)()()( 112

2

1
222 nWnnY
n

nnnW TT XX
P

XX −=
−

44 344 21
 (9)

The on-line (recursive) version can also be developed using (7) from equations (4)-(6).

Unfortunately, however, the two sets can not be handled separately, because they are

interrelated via equation (7). Since from previous iterations both parameter vectors are

known, we can fix one of them, and continue the iteration only for the other, and then fix this

latter, and iterate the first one. All these calculations may be performed within one iteration

step at a lower price, since matrix manipulations of (m1+m2)x(m1+m2) size are replaced by

manipulations of m1xm1 and m2xm2 size. With this approach the optimization problem is

divided into two “conditional” optimizations, which are performed separately with the

assumption that the “other” parameter set is appropriate. A weak point of this technique is

that unlike the original method, it separates also the original regression vector components,

and therefore only their subsets will improve the corresponding subsets of parameters.

If we follow alternative 4, the parameter adaptation can be written as

[ ]
)()1(ˆ

)()()()1()()1(

22

111

nWnW

nWnXnynGnWnW T

=+

−++=+
 (10)

where the parameter vector W2(n) is fixed, and therefore instead of G2(n+1) its approximation

0)1(ˆ
2 =+nG  is applied.  G1(n+1) is evaluated according to the original method:

0)1(ˆ;
)()()(1

)()()()(
)1( 2

221111
1 =+

+

+
=+ nG

nXnnX

nXnnXn
nG

T P

PP
 (11)
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The updated value of P(n+1) will be replaced by an approximation )1(ˆ +nP , where the  last

m2 rows remain fixed:


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The required computational power can be reduced drastically, if m1<<m2. An important

feature is that the information of the regression vector is fully utilized. Another advantage is

that with this approach we continuously have an approximation to P( ), therefore the “on-

line” change of the fixed and adapted parameter subsets is always possible.

4. Illustrative example

In this Section the temporal complexity reduction alternatives 3 and 4 will be investigated

via the least-squares evaluation/approximation of the one-dimensional linear regression

problem. The results are in analytical form, therefore we can have more insight into the

details of the propositions. For the one-dimensional linear regression equation (7) has the

form of









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






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


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−

=
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nW
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nu

u
u
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       (13)

where the parameter vector consists of two elements. If we define two one-dimensional

subsets, then using (8) and (9) we get the off-line solution in the form of a set of linear

equations with two unknowns.
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The side-effect of the separation is that this equation remained to be solved. The solution is

obviously the same as without separation. The on-line (recursive) evaluation for this

separated case is based on the following equations:

[ ]W n W n G n y n W n W n u n1 1 1 1 21 1( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + + − −   (15)

G n
n

P n n
n

P n1 1 11 1
1

1
1

( ) ; ( ) ( )+ =
+

+ =
+

    (16)

[ ]W n W n G n y n W n W n u n2 2 2 1 21 1( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + + − −  (17)
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∑
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∑
 (18)

Here it is important to note that since we have two “conditional” optimization problems,

the regression vector is not fully utilized. E.g., G1( ) and P( ) are independent of u( ) in (16).

Consequently the parameter set produced by the actual iteration will be sub-optimal.

If we do not apply separation, then the off-line evaluation requires equation (3) with
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and results in
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where “¯” stands for the linear averaging operator (average of n samples with indices running

from 0 to     n-1).

Obviously the same results can be obtained by the on-line (recursive) version. The

parameter update can be performed by equation (4) using
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as gain vector. If we try to apply alternative 4, and we fix W2(n), then this corresponds to the

assumption that u(n) equals its average (see equation (21)). Since this condition is not

necessarily a valid assumption, the analytical forms of (19)-(21) will not be valid for further

n.

The analytical expressions above, especially (20), offer a further “level” of recursive

evaluations, since averaging can be performed recursively, as well. This means, that we can

decide to use (20) instead of (4)-(6) simply by “combining” the recursively evaluated

averages of u( ), y( ), u2( ) and u( )y( ).

5. Conclusions

In this paper temporal computational complexity reduction methods are proposed for

recursively evaluated regression-type signal processing algorithms. Such and similar

algorithms are intensively used in computer-based monitoring and control systems for on-line

characterization of the application environment. The purpose of temporal computational

complexity reduction is to increase the flexibility of embedded information systems.

Increased flexibility enables adaptation and evolution within the application, which may
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require temporarily additional computing power at the price of limiting other on-going

activities. However, even if the available computing power is limited, some parts of the

actual data evaluation and signal processing should be continued possibly using algorithms of

lower performance. In this paper such reconfiguration problems are investigated for the case

of recursive least squares algorithms.
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