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Abstract: The paper presents a new calibration algorithm for current output R-2R
ladders. The R-2R ladders are popular because they are easy to realise, but the
resistance tolerances limit their linearity properties. However, it is possible to achieve
higher linearity with self-calibration techniques. A formerly published algorithm by
Cutkosky is available for the so-called Cutkosky R-2R ladders. A similar algorithm
can be applied to the current-output ladders, which are widely used as MDAC or
DAC. In the paper the Cutkosky divider is shortly discussed, and then a new
description is presented as basis of the calibration algorithm. The calibration
algorithm is discussed in details, and the error budget is analysed. A simulator was
also written to verify the theory.
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1 INTRODUCTION
The simple and popular method for converting a digital number into a quantified analog signal is

based on R-2R ladder networks. The benefits of these ladders are the relatively good resolution and
the very simple structure, which makes them easy to realize. There are at least three different version
of the basic ladder: voltage-output, current-output (sometimes also called inverse) (Fig. 1.) and
Cutkosky-divider (Fig. 2.).
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Figure 1.  Inverse ladder
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Figure 2.  Cutkosky-ladder



The first two variants are well known, but not the last one. The Cutkosky-divider is a modified R-2R
ladder in order to make it easy to calibrate [2]. It is often used in national standards laboratories and in
other applications, where extremely high precision is needed [4, 5, 6]. Since the first publication of the
divider by R. D. Cutkosky in 1978, its parameters, benefits and drawbacks have been analyzed in
details by many authors. To illustrate the possibilities of this special ladder, there are realized ladders
up to a resolution of 25 bits [5]. The calibration method of the divider invented by Cutkosky [2], is an
application of the classical Gauss method.

2 DESCRIPTION OF THE INVERSE R-2R LADDER
The analysis of the ladder is simple in the ideal case. However, the general description of the

ladder with small variations of the resistances around their nominal value is a more complex task.
Even for a 3-bit ladder it is hard to give the relation of the input and the output analytically. For the
calibration of the ladder, a new description is needed, which makes the further analysis easier.

The solution can be found in a special R-2R ladder invented by Cutkosky. Although from the first
sight it seems to be completely different from the inverse ladder, the generalization of Cutkosky’s
results can solve the problems. The Cutkosky ladder uses the general R-2R ladder structure (2R input
resistance is seen from each divider stage) with a modified switching conception. Cutkosky described
the ladder in a completely unusual way. He defined new variables, which characterizes the goodness
of the voltage divider stages.
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In the case of a 1-bit Cutkosky-ladder – which is one resistance divider – Eq. 1., 2. show the

description. The resistor values R1, R2 are transformed to variable ε, and therefore the number of
parameters is halved. The N-bit ladder consists of cascaded 1-bit dividers, so the algorithm can be
easily applied to an N-bit ladder (for the exact analysis of the Cutkosky ladder see [2]).

Now Cutkosky’s description should be applied to an inverse ladder. The main difference between
the Cutkosky-divider and the current-output ladder is that the Cutkosky-divider is a voltage divider, and
the current-output ladder is a current divider network. The signal, which is carrying the information, is
the magnitude of current in the inverse ladder. These two ladders are dual networks from this point of
view. Therefore, the presented description must be modified to cascaded current dividers. This means
only changing some of the indexes and polarities as it can be seen for a 1-bit inverse ladder in Eq. 3.,
4. :
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After this short introduction which showed the idea of the new description, an N-bit inverse ladder
will be discussed in details. The ladder is partitioned to N current divider. For the k-th divider the input

current ''
kI , the divided current that is the input of the next divider is ''

1+kI , and divided current which

can be switched to the output is '
kI  (Fig. 3.).
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Figure 3.  Inverse ladder as cascaded current dividers



The relation between these variables is using the new εk variable rather than the resistances is

determined by the simple current dividing rule, if εk defined as
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Let’s calculate currents ''
1+kI  and '

kI  as a function of εk terms, and the result is:
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From k=1 to N the output current is the sum of '
kk IS  terms:
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The result is a new description, in which the static errors are represented by the εk terms. The
uncertainty of the bits increases going from the MSB to the LSB.

3 CALIBRATION
Equation 10. describes the behaviour of an inverse ladder with any resistor values, even for non R-

2R relations. The resistor values are hidden in the εk terms but it doesn’t make any change. These
terms represent the errors of the dividers, and in the ideal case their value is zero. To calibrate the

ladder, the εk terms must be measured somehow, and then a correction factor can be computed for
each bit and therefore for any code (Eq. 11.).
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The determination of the εk terms is critical from the point of calibration. It would be possible to

measure the output current ( '
kI ) of each divider stage step by step. However, in this case currents

from INI12−  to IN
N I−2  should be measured, what would make it practically impossible to realise,

because there is no instrument available with such a wide dynamic range. Fortunately, there is

another solution. The current dividers produce two approximately equivalent currents, '
kI  and ''

1+kI .

The difference of '
kI  and ''

1+kI  equals to
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if the second order terms of εk are neglected. As it can be seen from the difference of the two

measured currents, the unknown εk could be easily determined. Because of the subtraction, it is
possible to use the so-called difference method. It means that if the same current offset is used during
the two measurements (M1, M2 in Eq. 13.), the difference will not change, but the absolute value of the
measurements will be in a smaller range:



( ) ( )∆ k k k
offset

k k
offset

k kM M I I I I I I= − = − − − = −+ +1 2 1 1
' '' ' '' (13)

The offset current must be chosen nominally equal to '
kI  or ''

1+kI , and then the signal being

measured is
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The first measurement is made with all switches OFF except the k-th one. In this case the output

current is '
kI . After that the current ''

1+kI  should be measured, what is not so simple. However, if an

auxiliary switch is inserted in the ladder (see SN+1 in Fig. 3.), the required current can be measured

with all switches from k+1 to N+1 with position ON. The output current will be ''
1+kI  with this binary

code.
The hereby-described results correlate with Cutkosky’s calibration method. The previous

mentioned expression for ∆k is the same as for the Cutkosky ladder [2]. Although the inverse ladder
and the Cutkosky ladder seem to be very different for the first view, they are really similar to each
other. The Cutkosky ladder contains cascaded voltage dividers with voltage input and output signals,
and the inverse ladder contains cascaded current dividers with current input and output signals. In
most cases, the inverse ladder is used with voltage input, which is converted to current by the input
resistance of the ladder, and the output current is also commonly converted to an output voltage by a
simple C/V converter. So it can be said, that these networks show duality properties for some point of
view.

4 ERROR BUDGET OF THE CALIBRATION ALGORITHM
The further analysis of the ladder needs a carefully considered error budget. Some of the error

sources are technology-dependent, and it must be kept in mind when dealing with error sources.

Ø The main error source is the tolerance of the resistors. Before any other examinations, this
cardinal error must be studied. However, it is quite simple with the new description. The

resistances are hidden in the εk terms, as it was mentioned earlier (Eq. X.). During the analysis,
it was never supposed that there is a certain relation between the value of the resistors – 2N
different variables were used instead – and therefore, the description is valid for any
combination of the resistances. So the inaccuracy of the resistors can be neglected with respect
to the measurement device (see later).

Ø Another error source is the non-ideal behaviour of the switches. The analysis is limited only for
DC signals this time. Before analysing the effects of a real switch, it must be mentioned that the
analysis is not finished yet, because the proper model of an integrated switch depends on the
technology. Further examinations are planned with co-operation of IC manufacturers to map the
error sources.  Figure 4. shows the model of an analog switch:
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Figure 4.  Model of an analog switch



• The effect of RON is corrected, if the switches have the same RON for each channel.
Practically, it is not true, so separate this resistance to a ‘typical’ part – which is the same for
each channel – and to a ‘deviation’ one – which represents the variation of RON for the
channels. Then the typical part is corrected, because it can be interpreted as a part of the
R1k resistances. The deviation part can not be corrected, and represents an error source,
which will remain after the calibration.

• Leakage currents are a critical problem of the calibration. There are ON and OFF leakage
currents, which are different. This part of the error budget has not been properly analyzed,
because the lack of the correct model of an integrated switch. Some questions, which
therefore could not been answered yet:

à can the leakage currents be simple added or there is a correlation between them
à are they level dependent
à the effect of feed-through

Ø The measurement device has finite accuracy, adding another error source. The equations
considering the accuracy of the meter (worst case calulations):
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Expressing the measured εk and substituting it to Eq. 11.:
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It means that the inaccuracies of the ladder caused by the resistor tolerances are corrected by a
factor of the instrument accuracy.

5 CONCLUSIONS
The paper presented a new description for current-output R-2R ladders. The new description

based on the former work of Cutkosky, implementing it to the inverse ladder. The main benefit of the
new description is that the further analysis of the ladder is simpler. The calibration of the ladder based
on the new results, and only slight changes should be made (an auxiliary switch) to realise it. The
analysis of the calibration procedure is not finished yet. As it was mentioned, the study of the error
budget remained a research topic. The Cutkosky ladder uses three precision switches for each bit but
the current-output ladder needs one switch per bit and an auxiliary one for the calibration. This
reduction in the number of the switches can be an interesting feature of the inverse ladder.

  The calibration may be used both in the case of a DAC or an MDAC which are based on R-2R
ladders.
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