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Abstract: For quality control in the case of workpieces measured by CMM both a
sufficient number and location of measuring points and the correct evaluation for
determining the minimum deviations of size, position and form for the entire
workpiece guaranties economic manufacturing. The idea to fulfil this general
objective function opens a new set of tasks besides of the well known data fitting for
individual features. The paper deals with new solutions for data fitting of compound
features with partly different tolerances oriented on the minimum zone objective
function.
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1 INTRODUCTION
The co-ordinate measuring technique has grown up to an important tool for geometric quality

control in automotive and machine building industry, in plastics forming etc. The growing functionality
of the mechanical parts and higher requirements to the accuracy by smaller tolerances are leading to
measuring and evaluation strategies for determining geometrical deviations and out of tolerances of
geometric workpiece features without any errors. The certain determination of size, form and
positional parameters out of tolerance requires co-ordinate measuring machines (CMM) with
uncertainty less than 20% of the tolerance to be checked, measuring strategies for a sufficient number
and optimised position of measuring points as well as powerful software and evaluation routines
according to the given rules.
The quality decision for checked workpieces will be wrong if the evaluation routines are insufficient or
wrong as following:

• If form deviations of any geometric element are not calculated according to the minimum zone
principle as defined in standard ISO 1101.

• If the dependence between form deviation, size and positional deviation as well as the
influence of workpiece misalignment are neglected and consequently the positional deviations
are calculated in too large;

• If the co-ordinate system optimisation for profile testing does not consider the different
tolerances of the individual profile parts the evaluation will not show the minimum of form
deviation.

Thus it follows that for quality control also in the case of workpieces measured by CMM with
sufficient number and location of measuring points only the correct evaluation for determining the
minimum deviations of size, position and form for the entire workpiece guaranties economic
manufacturing. The idea to fulfil this general objective function opens a new set of tasks besides of the
well known data fitting for individual features. The paper deals with new solutions for data fitting of
compound features with partly different tolerances oriented on the minimum zone objective function.

2 DATA FITTING ACCORDING TO THE MINIMUM ZONE PRINCIPLE
The common way for parameterisation of geometric elements in co-ordinate measuring technique

are based on data fitting algorithms according to the least squares principle (Gaussian). Geometric
elements hereby are usually single features such as straight line, plane, cylinder, cone, sphere etc.,
compound features such as polygons consisting of a set of straight lines, multi-cylinders, profiles of
connected arcs, free form profiles or sculptured surfaces as well as patterns of features such as bores
of flanges etc.. The parameterisation of geometric elements by data fitting according to least squares
method as well as minimum zone principle has to satisfy the important condition of orthogonal
distance regression (ODR). Thus the residua to be minimised have to be calculated perpendicular to



the best fitting feature [1]. Especially for least squares parameterisation a lot of solutions and
algorithms are well known [13, 17].

Besides of the least squares solutions the data evaluation by best-fit algorithms according to the
minimum zone principle (Chebyshev) as so called MiniMax problems are becoming more and more
important. One of the fundamental tasks is the calculation of form deviation of geometric elements
according to ISO 1101 [2]. The parameters of the geometric element are to be determined in such a
way that the orthogonal form deviation becomes a minimum. There exist only a few publications and
solutions for ODR MiniMax solutions until now [1, 14, 15, 18] and the solutions and algorithms differ
reasonably between the individual geometric elements. This is also the reason why the minimum zone
approximation in CMM is restricted only on simple geometric elements and not very common in CMM.
But there are also very serious accuracy problems of minimum zone fitting because of its sensitivity for
data point errors. If the data set to be fit contains random errors (usually in case of scanning points) or
any outliers these wrong points will determine the final solution. Thus the data point validation is a very
important step in advance of the the minimum zone fitting procedure. The data validation should
comprise two steps as following:

• Elimination of outliers by means of common methods. If a large number of points have been
measured a few points may be deleted. But there have to be used algorithms which do not
delete valid points describing local form deviation.

• Low pass filtering in order to decrease local random errors. The filtering procedure must also
work as an ODR filter with cut off length according to the properties of the random errors as
they are common in the case of CMM with scanning control.

The most serious disadvantage of common minimum zone algorithms is the fact that they are
working with constant zone width for the whole data set or geometric element. As described above the
evaluation of measuring data of real workpieces require algorithms for different zone width defined by
the individual tolerances for compound features.

The figure 1 shows this problem in a simple example for profile testing of an edge consisting of two
straight lines. The comparison of the measured points with the given tolerance zones often leads to a
situation described in fig. 1a: While the tolerance zone of the horizontal section of the profile is not fully
used in the other section there are points out of tolerance. The consequence is a wrong decision
about the product quality.

The tolerance fit as the minimax solution with defined zone width avoids this problem (fig. 1b). The
tolerances are considered by the bestfit algorithm and the position of the measured points with respect
to the nominal profile are optimized under consideration of the distances fi and their tolerances.
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Figure 1a.  Measured profile and nominal profile        Figure 1b.  Profile with tolerance fit

3 ALGORITHMS AND MATHEMATICAL SOLUTION FOR TOLERANCE FIT

3.1 Principle of tolerance fit solution for geometric elements
For parameterisation of geometric elements from measuring data according to the tolerance fit

principle problem a number of methods and algorithms are available. The following methods are
especially oriented on this task.

1. The weighed least squares method [9] with the objective function
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with Tj Tolerance of the feature j
fij deviation of point i of feature j

2. The fixed tolerance fit solution [12] according to the objective function
( ) MinTfMax jij ⇒−

In this case the measuring points are fitted inside of the defined tolerance zones.

3. The proportional tolerance fit [10] according to the objective function
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The first method is well known, very easy to handle and also very robust [9]. But it is only a good
approximation of the tolerance fit problem. The latter ones have been developed by the authors and
they are part of powerful CMM software packages.

3.2 The proportional tolerance fit method
The basic step for data fitting and parameterisation of geometric elements is to find the analytic

representation by an equation suited for ODR. A simple representation is the implicit equation (1)
0),,,;,,( 21 =maaazyxF K (1)

with x, y, z spatial co-ordinates
a1, .. am parameters of the geometric element

1)( =Fgrad scaling condition.

Real measuring points (xi, yi, zi) do not satisfy this equation and a residuum f is left
0),,,;,,( 21 ≠= miiii aaazyxFf K (2)

The objective function for data fitting according to the common minimum zone principle is defined as
following
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In order to consider different tolerance zone width of the simple or compound geometric element the
residuum must be weighted by means of a weighing factor as tolerance Ti related to a mean or
standard tolerance T0 and it follows
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The non-linear equation (4) may be solved on the common way by linearisation and optimisation of the
unknown parameters a1 .. am.
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with J as the Jacobian matrix of the feature equation (1) for estimated parameters ma .. a ~~
1 .

If we assume the variable Φ as half of the actual zone width it follows constraints from the corrected
residuum for each measuring point Pi (i=1 .. n)

Φ≤∆+ aJiif (6)

or in explicit form for the upper and lower tolerance limit the following constraints
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For the whole set of measuring points it follows finally a linear system of constraints
It must be solved for all measuring points Pi (i=1 .. n) simultaneously by linear programming with the
objective function Min⇒Φ  for the following linear system perhaps as Simplex table for solving by the
well known Simplex method for variables with unconstrained sign
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with



A Jacobien Matrix for all points (n equations),
t normalised tolerance vector
f vector of the residua
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The solution of the linear system by gives the parameter correction vector ∆a
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In the case of a non-linear fitting problem the parameters have to be calculated iteratively
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until the weighed corrections a small compared with a given limit ε (e. g. 0.1 µm).
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The weighing facors gi must be chosen in such a way that all weighed part are of the same dimension.
The solution for the tolerance fitting factor Φ shows whether the points are inside of the defined
tolerance zones.
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As result of the tolerance fit solution as described above the measuring points of the individual parts of
the geometric element lie inside of the tolerance range Ti. Thus the solution does work like a
geometric element with rubber tolerances witch do trim down proportional until the reduced limits
touches the least possible number of points (usually as the number of parameters).

3.3 The fixed tolerance fit method
The principle of this solution shall be described for a free form profile with the following initial situation:

• The nominal surface / profile is presented by (CAD-) points. Between the points it is to be
interpolated by planes (surface) or lines (profile). The nominal surface is divided into patches
and for every patch j is given a symmetrical tolerance Tj.

• The actual surface / profile is presented by measured points.
• The nominal surface and the measured points are given in one workpiece coordinate system

defined by datum elements. If it is not so an initial transformation must be done, see [12].
• It is evaluated the foot point of every measured point with respect to the nominal surface.

Now the tolerance fit leads to the evalution of a coordinate transformation of the measured points with
respect to the nominal surface in such a way that after this transformation all points lie inside the
tolerances or (if this cannot be realised) the distance of outliers is minimised. This method uses the
orthogonal distance between every point and its foot point shown in figure 2.
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Figure 2.  The orthogonal distance a between transformed measured point and its foot point.

In fig. 2  mean:
xw, yw, zw: axis of the workpiece coordinate system



xij(t) coordinates of the measured point i at the patch j of the surface after the transformation
Tt ),,,,,( zyxzyx ttt ααα= (12)

 with zyx ttt ,, as translation parameters and zyx ααα ,,  as rotation parameters.

xijF coordinates of the foot point of the measured point i on patch j before / after the
transformation,

n  normal vector.

Then the distances fij(t) which will be minimized can be described by
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The consideration of the tolerances Tj leads to the minimax problem:
!))((max

,...,1
,...,1

MinTf jij

mj
ni

→−
=
=

t (14)

which is equivalent to:

0)(

!

≤−−
→

dTf

Mind

jij t
(15)

This problem (15) is a problem of nonlinear programming. It can be solved iteratively [5,7]. The
parameter d of the solution includes the information about the whole surface/profile:
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4. APPLICATION OF TOLERANCE FIT FOR TESTING OF BORE PATTERNS
AND PROFILES

4.1 Fit of bore pattern as an example of a  2D ODR-Problem
Testing of positional tolerances of bore pattern is one of quality testing tasks to be solved by the

tolerance fit method linked to co-ordinate transformation in order to fit the positional deviations into the
defined tolerance areas for the feature positions.
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Figure 3.  Fit of bore pattern with different geometric elements



Fig. 3 shows an example for bore pattern with different geometric elements and different positional
tolerances. The individual features are measured by means of CMM and calculated by common best
fit routines (least squares or minimum zone). The problem is to check the feature position in
comparison with the defined tolerance areas by the tolerance fit method. Therefor the translation and
rotation of the workpiece co-ordinate system is to be optimised.

The task is to fit points (feature midpoints) into the defined tolerance areas as there are the
following types.

• Circular tolerance areas for positional tolerances according to ISO 1101;
• Rectangular tolerance areas with defined angular orientation
• Slot tolerances as one-dimensional tolerance with defined orientation.

In order to get linear constraints for the tolerance areas even for the circular tolerance field it must be
substituted by a regular polygon perhaps with 8 or 12 sides as shown.

For the tolerance fit as described above each straight boundary line gives a constraint for the linear
system for optimisation of the transformation parameters. Depending of the number and types of
tolerance fields the total number of constraints is (in case of an 8-sided polygon for circular tolerance
fields)

krs nnnN 842 ++= (16)

with ns, nr, nk as the number of slot, rectangular and circular tolerance fields. The linear system can be
solved by the common Simplex method for sign-unconstrained variables and gives the solution for the
optimised transformation parameters as well as for the tolerance fitting factor Φ . The following fig. 4
shows the result of the tolerance fit problem for a bore pattern of a flange. The tolerance areas in
nominal position, the optimised real position of the features as well as the reduced deviation areas
used proportional to the given tolerance fields are shown.
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Figure 4.  Bestfit of bore pattern of a flange

4.2 Tolerance fit of a profile
The fixed tolerance fit method is an integrated part of the software WinWerth of Werth Messtechnik

Gießen [20]. It is demonstrated in fig 5 to check the profile of a washer part.
Fig. 5a shows the nominal profile with the tolerance requirements. The function of the parts leads

to different tolerances of profile sections.
The actual part was scanned in any position with an optical CMM and fig. 5b contains the coordinates
of the scanned points (more than 4.000 points).

The comparision of the actual points an the nominal profile is demonstrated in fig 5c. It is easily to
see that a lot of profile sections are outside of the required tolerances, especially at the profile section
with the higher tolerance tolerance requirements.
The situation after using the tolerance fit method gives fig 5d. The outliers are minimized to some
small sections. Left down one can see the resulting added co-ordinate transformation with respect to
the nominal actual comparision only (rotation αz=3,0898°, transformations tx=0.046 mm and
 ty=-0.034 mm).
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Figure 5.  Tolerance fit of a profile [20]

5 SUMMARY
The paper describes the tolerance fit method as a modification of the minimum zone best fit. Two

new solutions for tolerance fit of geometric elements according to defined tolerance zones are
discussed.
Both methods discussed here uses optimisation algorithms in connection with smoothing algorithms
and elimination of outliers, but these are well known procedures of evaluation of geometrical
measurements.

The tolerance fit is a powerful software tool of coordinate measuring machines to assure the quality
of geometric elements and sculptured surfaces and profiles. It checks the workpiece geometry under
consideration of the required tolerances and avoids wrong quality decisions and unnecessary rework.
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