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Abstract – A new definition is proposed for the effective
number of bits of an ADC.  This definition removes the
variation in the calculated effective bits when the
amplitude and offset of the sinewave test signal is slightly
varied.  This variation is most pronounced when test
signals with amplitudes of a small number of code bin
widths are applied to  very low noise ADC's.  The
effectiveness of the proposed definition is compared with
that of other proposed definitions over a range of signal
amplitudes and noise levels.
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INTRODUCTION

A fundamental technique for assessing the accuracy of
analog to digital converters (ADC's) is to apply a sinewave
signal to the input of the device under test, calculate the
rms deviation, erms, between a sinewave fitted to the data
and the data itself, and calculate other performance
measures, such as signal-to-noise-and-distortion (SINAD)
ratio and effective number of bits from the rms deviation.
An important element of the performance evaluation
involves the comparison of the rms deviation with its ideal
value.

The two IEEE standards (i.e., IEEE Stds 1057-1994 and
1241-2000) that cover such evaluations [1,2] assume that
the ideal rms deviation is given by Q / 12 , where Q is
the average code bin width of the ADC.  It is well known
[3, 4] that for sinewave inputs this is only an
approximation and that the approximation error becomes
noticeable if the ADC has six or less bits or if the
amplitude of the input signal is very small.

The definition for effective number of bits (ENOB) in the
IEEE standards is given by

ENOB = log 2
FEIrms

Qerms

 

  
 

  = log 2
F

12erms

 

  
 

  ,                     (1)

where F is the full-scale range of the ADC, Q is the
average code bin width and EIrms = Q 12  is the nominal
ideal rms error. The nominal ideal rms error is based on
the assumption that the quantization error has a uniform
distribution, while for a sinewave the quantization error
will be a value eIrms, which will depend on the offset and
amplitude of the sinewave input signal.  The calculated
ENOB for an ideal ADC will then be

ENOBIdeal = log2
FEIrms

QeIrms

 

  
 

  = N − log2
eIrms

EIrms

 

  
 

  ,            (2)

where N is the number of bits in the ADC.  Thus, for an
ideal ADC, one in which the only error is quantization
error, the calculated ENOB will vary with small changes in
the input signal--giving a misleading indication of ADC
performance.

To remedy this situation Hejn, Pacut and Kramarski
(HPK) [4] proposed the new definition of effective bits
given by

ENOBHPK = log2
FeIrms

Qerms

 

  
 

  ,                                            (3)

in which EIrms has been replaced by eIrms. When testing an
ideal ADC we obtain ENOBHPK = N, as desired.  However,
if the error is dominated by sources other than
quantization error, as is the case for most commercial
ADC's, the IEEE standard definition of ENOB will give a
result that is independent of small changes in signal
amplitude and offset, while ENOBHPK varies substantially
with the signal.



We propose a new definition of ENOB, called the
standardized effective number of bits -- ENOBS , which
also produces the correct value for an ideal ADC for any
sinewave offset and amplitude and gives more accurate
results than the HPK method with moderate noise. We
give simple procedures for calculating ENOBS and
compare the results of the three definitions in a
meaningful variety of situations.

Variation of IEEE Standard ENOB with signal
amplitude and offset
We consider an ideal ADC with no errors other than
quantization error.  In this situation we would want the
number of effective bits to be the actual number of bits of
the ADC, independent of the input signal.  The rms error
for a sinewave signal deviates from the ideal value of
Q / 12 , because the distribution of errors when sampling
a sinewave differs from a uniform distribution.  Sinewaves
are sampled more frequently near the peaks than near the
zero crossings.  Hence, sinewaves with peaks near the
centers of code bins (where the error is minimum) will
have a smaller rms error than the ideal, while sinewaves
with peaks near the edges of code bins (where the error is
maximum) will have a larger rms error than the ideal.

This variation in rms error with small changes in sinewave
offset and amplitude leads to a change in the number of
effective bits.  We wish to quantify the variation in the
number of effective bits due to this phenomenon.  For a
signal with amplitude a and offset d, let

ENOBmax (a, d) =

N − min log2
eIrms( ′ a , ′ d )

EIrms

 
  

 
  :

a − Q / 2 ≤ ′ a ≤ a + Q / 2

d − Q / 2 ≤ ′ d ≤ d + Q / 2

 
 
 

  

 
 
 

  
,

   (4)

where eIrms (a, d)  is the ideal rms error for signals with
amplitude a and offset d.  The expression min{x:y}means
the minimum value of x subject to the constraints given in
y;  an analogous meaning applies to max{x:y}.  The
quantity, ENOBmax is the maximum number of effective
bits for any signal with amplitude and offset near a and d.
We similarly define

ENOBmin (a, d ) =

N − max log2
eIrms( ′ a , ′ d )

E Irms

 
  

 
  :

a − Q / 2 ≤ ′ a ≤ a + Q / 2

d − Q / 2 ≤ ′ d ≤ d + Q / 2

 
 
 

  

 
 
 

  
.

   (5)

We have found that the maximum and minimum always
occur at two different values for the offset and that the
maximum and minimum at these two values of offset are
always the same.  The two values for offset are: the value

that puts the zero crossing of the sinewave at the center of
a code bin, and the value that puts the zero crossing of the
sinewave at the edge of a code bin.  This is not surprising,
because with these two offsets the positive and negative
peaks of the sinewave have their maximum (or minimum)
error for the same amplitude. In our evaluations we have
fixed the offset so that the zero crossing of the sinewave is
at the center of a code bin and varied only the amplitude.

Note that in (4) and (5) the difference between the
maximum and minimum ENOB and the actual number of
bits is independent of N, the number of bits.  It depends
only on the amplitude of the signal in code bin widths.
Figure 1 shows the error in the ENOB as a function of the
signal amplitude.  For small signals this is noticeable but,
in most applications, not significant.  A change of 0.1 in
the value of ENOB corresponds to a seven per cent
deviation of the rms error from its nominal value.

Each figure has two parts.  The first part shows the error
for signal amplitudes less than 32 code bin widths.  The
second part shows the error for amplitudes up to 128 code
bin widths (256 peak-to-peak.)  The second part is shown
with a compressed scale to better display the results at
large amplitudes.  The first part is shown at a scale that
includes the larger error at an amplitude of one code bin
width.

Details of how the calculations were performed and the
reason for the spread in ENOB for large amplitudes (near
128) will be covered later.

Variation of HPK ENOB with signal amplitude
For an ideal ADC there will be no error in the ENOB
calculated by the HPK method.  The denominator in the
argument of the logarithm in (4) and (5) is replaced with
eIrms with this definition, making the logarithm zero.
However, if there are errors other than the quantization
error the situation is different.

Figure 2 shows the error in the HPK ENOB when random
noise has been added.  The amount of random noise is

15 12Q , the amount sufficient to reduce the number of
effective bits by two.  This is a reasonable amount of noise
for a commercial high-speed ADC.  The error curves in
Figure 2 are almost identical to those in Figure 1.  Thus,
the errors for the HPK definition are essentially the same
as those for the IEEE standard definition, but they occur in
a different situation.



Figure 1. The minimum and maximum ENOB (relative to
the actual ENOB) and the difference between the two as a
function of signal amplitude.  The minimum and maximum
are calculated for all signal amplitudes within one-half
code bin width of the value specified on the horizontal
axis.

Figure 2. The minimum and maximum ENOB (relative to
the actual ENOB, using the HPK definition) and the
difference between the two as a function of signal
amplitude.  The minimum and maximum are calculated for
all signal amplitudes within one-half code bin width of the
value specified on the horizontal axis.  Results are for an
ADC with sufficient noise to reduce the ENOB by two.
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PROPOSED NEW DEFINITION FOR ENOB

We want a definition of ENOB that gives the expected
answer and depends only slightly on the amplitude and
offset of the signal.  For both of the previously discussed
definitions the error in ENOB was caused by the
difference between eIrms, the ideal rms error for the specific
signal, and EIrms, the ideal rms error under the assumption
of uniformly distributed error.  To take this difference into
account we introduce the quantity

eCrms = erms
2 − eIrms

2 ,                                                      (6)

the corrected rms error. This is an estimate of the rms
error that is in addition to the quantization error.  This
estimate is valid if the additional error is uncorrelated with
the quantization error, a reasonable assumption. We next
introduce the standardized rms error given by

eSrms = eCrms
2 +Q

2
/12 = erms

2 −eIrms
2 + Q

2
/12 .            (7)

This is an estimate of the rms error under the condition of
uniformly distributed quantization error.  We define the
standardized effective number of bits, ENOBS, by
replacing erms in (1) with eSrms..  Here are several
equivalent expressions for this.

ENOBS = log2
FEIrms

QeSrms

 

  
 

  = log2
F

12eSrms

 

  
 

  =

    N − log2
eSrms

EIrms

 

  
 

  = N −
1
2

log2
erms

2 + EIrms
2 − eIrms

2

EIrms
2

 

  
 

  

        (8)

For an ideal ADC, one for which erms
2 = eIrms

2 , we can see
from the last expression in (8) ENOBS = N, independent of
the input signal.  The formula reduces to the same one as
the HPK definition in this case.  For the situation in which
random noise dominates, the term EIrms

2 − eIrms
2  can be

neglected compared to erms
2 , so the expression reduces to

that in the IEEE standard definition.  The situation for
intermediate cases will be established by simulation.

Calculation of eIrms

Use of the proposed definition of ENOB requires
calculation of eIrms, the ideal rms error for the particular
amplitude and offset of the sinewave used for the
measurement.  Reference [4] gives a complicated
approach to calculate an approximation.  We give a simple
approach with fewer sources of error.

The approach given here assumes that the input data to the
sine-fit procedure is the integer output of the ADC.  Let
f(t) be the fitted sinewave, obtained by any appropriate
method.  Then the estimate is given by

eIrms
2 =

1
M

( f (ti ) − round(
i =1

M

∑ f (ti ))
2

,                               (9)

where round is the function that rounds to the nearest
integer, and M is the number of samples in the record.
This is the estimate used for the simulations.

COMPARISON RESULTS

Simulation Computations
All simulations used one cycle of a sinewave sampled at
32 768 uniformly spaced times.  The ENOB was
calculated  using the 3-parameter  sine fit [1,2].  An ADC
with a Q of 1 was used, giving integer signal output
values.  The results for error in ENOB are given for integer
values of sinewave amplitude (peak amplitudes, not peak-
to-peak.)  For each integer value, a, of sinewave
amplitude, 51 simulations were performed for amplitudes
between a - 1/2 and a + 1/2 with an interval between
amplitudes of 0.02.  For each of the simulations the ENOB
was calculated.  The results shown in the fugures which
follow are the differences between the maximum and the
minimum of these 51 values of ENOB.

Random noise was added to the signals before
quantization. The noise was zero mean normally
distributed white noise.  Three different noise standard
deviations were used: σ = 1/ 12 , giving a loss of one-
half effective bit; σ = 1/ 2, giving a loss of one effective

bit; and σ = 15 12 , giving a loss of two effective bits.
The statement that a quantity of random noise gives a loss
of p effective bits means that an ideal ADC with N bits
and that quantity of random noise will have an ENOB if N
- p.

A different random noise sequence was used for each of
the 51 simulations for each amplitude.  Thus the variation
in ENOB will contain the statistical fluctuations.  The
expected size of these fluctuations will be discussed next.

If the main contribution to the error is normally distributed
random noise, the ENOB  will be a random variable with
standard deviation,

σE =
1

ln(2) 2M
≅

1.02
M

,                                              (10)



where M is the number of samples in a record.  The value
of this is 0.0056 for the record size we have used.  The
expected value for the maximum minus the minimum of
51 values is 4.4σE = 0.025.  This is the minimum
variation we would expect to observe in the ENOB.

Description of Figures

Figure 3 shows the variation in ENOB using the IEEE
standard definition.  The upper curve is for an ideal ADC
(zero lost bits).  The next curve below is for one-half lost
bit.  The curves for one and two lost bits lie on top of each
other and are at the level expected due to statistical
variation alone.

Figure 4 shows the results for the HPK definition.  The
two overlaying curves are for one and two lost bits.  The
next curve down is for one-half lost bit.  The curve for
zero lost bits would be identically zero and is not shown.
The curve for one-half lost bit is slightly worse than the
corresponding curve for the IEEE standard definition.

Figure 5 shows the results for the proposed definition.
The highest curve is for one lost bit.  The next curve down
is for one-half lost bit, and the lowest curve is for two lost
bits. The curve for zero lost bits would be identically zero
and is not shown.  The data shows that the proposed
definition is uniformly better than the HPK definition.  For
one or more lost bits, the IEEE standard definition is
clearly the best.  For one-half lost bit the proposed
definition performs slightly better than the IEEE standard
definition.

The net result of this is that for an ADC with one-half  or
more lost bits the IEEE standard definition gives the most
accurate results.  For low-noise ADC's (less than one-half
lost bits) the proposed definition gives the most repeatable
results with respect to variations in signal amplitude and
offset.

CONCLUSIONS

A modified definition of ENOB was presented which
partially solves the problem of the calculated ENOB being
sensitive to small changes in the sinewave amplitude and
offset.  The accuracy of the proposed definition was
compared to other definitions.  It was found that for
ADC's with one-half or more lost bits due to noise, the
IEEE standard definition performs best.  For low noise
ADC's, those with one-half or less lost bits, the proposed
definition works best.  The HPK method gives the same
result as the proposed method for the noise-free case, but
its performance diminishes as noise is added.

Figure 3. The variation in ENOB using the IEEE standard
definition.  The upper curve is for an ideal ADC (zero lost
bits).  The next curve below is for one-half lost bit.  The
curves for one and two lost bits lie on top of each other
and are at the level expected due to statistical variation
alone.
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Figure 4. Results for the HPK definition.  The two
overlaying curves are for one and two lost bits.  The next
curve down is for one-half lost bit.  The curve for zero lost
bits would be identically zero and is not shown.  The curve
for one-half lost bit is slightly worse than the
corresponding curve for the IEEE standard definition.

Figure 5. Results for the proposed definition.  The highest
curve is for one lost bit.  The next curve down is for one-
half lost bit, and the lowest curve is for two lost bits. The
curve for zero lost bits would be identically zero and is not
shown.
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