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Abstract. The demands of statistical investigations in measurements inspired the remarkable 
development of probabilistic methods [1]. However, the probability theory didn’t prove to be fully 
adequate for all types of uncertainty. Probability theory is excellent if the ambiguity is to be modelled, 
but its attempts to describe vagueness is quite inconsistent with common sense [2]. Fuzzy theorists 
have often argued that a major motive behind the theory of fuzzy sets has been the treatment of 
uncertainty. In particular way, it’s well accepted that a measurement result (no matter what kind of 
instruments we are using in our process) is just a number which is only known to lie within an interval, 
and this is the reason for which fuzzy sets can be successfully applied [3]. To consider both systematic 
and random effect of measurement operation, in agreement with [4], we have chosen to use Random 
Fuzzy Variables, proposing to describe the correlation or interaction of repeated measurements by 
triangular norm based arithmetics. 

 
I. Introduction 

 
The approach followed by the ISO Guide to evaluate measurement uncertainty is basically a 

statistical approach where the uncertainty is defined as “a parameter, associated with the result of a 
measurement, that characterizes the dispersion of the values that could reasonably be attributed to the 
measurand” [1]. In [3] the authors have proposed to described extended uncertainty as α-cut and use 
fuzzy arithmetic based on extension principle of Zadeh to evaluate the uncertainty propagation. We 
have also seen this is a good method to describe systematic effects, but not random ones. In [4] was 
proposed a more effective way to estimate measurement uncertainty in terms of Random Fuzzy 
Variables. But contrary to the classical statistical methods, there is no unique statistical theory on 
random fuzzy variables. Therefore we propose the t-norm based arithmetics to describe both random 
and systematic effects on the distribution of measurement results. In statistical approach, the effect of 
reduction of uncertainty by averaging of series data is a result of assumption that measurements are 
statistically independent events [5], but when this condition is no more applicable we have to define the 
right correlation existing. Expression of measurement uncertainty in a random-fuzzy model is the 
interval with a level of confidence of 1-α (α-cuts), such as (see fig.1): 
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II. Comparison of t-norms 
 

From a statistical point of view, once measurement results are obtained, we have to choose the 
estimator of measurand, which is generally the average operator. 

So in a probabilistic model we’d average some random variables to get another random variable. It’s 
density function depends on density functions of single input variables (measurement results) and on 
correlation between measurement acts.  

Now for random fuzzy model, if A1 and A2 are  two measurement fuzzy results (that’s to say that 
their own associated uncertainty are expressed in terms of α-cuts), the indirect measurement algorithm 
performs the output which is a function “g” of A1 and A2, Z=g(A1,A2). Evaluation of uncertainty of Z 
requires a join membership function (taking into account correlations between random contributions to 
uncertainty) which is defined when a t-norm indicates the principle of joining variables: 

 
 [ ])(aA),(aAT)a,(aµ 221121A,A 21

=  (2)  
 

 

mailto:decapua@unirc.it
mailto:emilia.romeo@unirc.it


µz(z)
1,0

α2
α3

α1

J(α1) J(α2)
J(α3)

SZ 

0,2

0,4

0,8

0,6

z
0,40 0,700,600,50

µz(z)
1,0

α2
α3

α1

J(α1) J(α2)
J(α3)

SZ 

0,2

0,4

0,8

0,6

z
0,40 0,700,600,50

Fig. 1: Example of a membership function with α-cuts marked. 
 
 
so that the membership function µZ(z) is simply (extension principle): 
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Our purpose is to compare several t-norms, as Yager, Dombi, Frank, and Algebraic t-norm. 
 
 

III. Uncertainty of a measurement result 
 

As in [5] measured data { } is expressed as a vector of fuzzy intervals. To have our result, N 
measurement are performed; they furnish a vector of pure real numbers. If we use a DSP-based 
instrument, each “pure” result is affected from uncertainty: the measurement algorithm it performs  
represents the indirect measurement result which is a function of the previous ones. So we can define 
an interval built around the ‘one point’ estimation, in which there is a given  probability for this interval 
to contain the ‘real’ value. 

N
ix

In [3] we have observed the general shape of the resulting possibility distributions, once our fuzzy 
expression has been applied on symmetric probability distributions (Gaussian law, Laplace law, 
triangular law, uniform law), called the optimal possibility distribution. The authors suggests  this 
shape is not easy to handle and a parameterized one would be more interesting: the pseudo triangular 
possibility distribution. 

The pseudo triangular possibility distribution (tpd) is a piece-wise linear approximation of the 
optimal possibility distribution, completely determined when some parameters are known. The 
truncated triangular uncertainty expression has been applied on the four most encountered unimodal 
and symmetric probability laws, of mean value and standard deviation. 

For the uniform and triangular law, the fuzzy tpd is such that 1)(xµA ii =  (in the sense that Ai is 
built in such way that xi belongs it with the maximum possibility) for xi is chosen equal to the mean 
value of the interval (the measured pure value). As these are two bounded law, no further 
approximations are required. Now what can we say about the measurement results when data at our 
disposal  just only consist in a vector of “pure” numbers (generally distributed with gaussian law)? For 
unbounded laws, an approximation is needed to correctly choose the required parameters (as we can 
see on Table 2 of [3]). 

Every result of measurement xi is transformed into a fuzzy set Ai and so in terms of membership 
functions and to determine them we can go on as follows: 

however we take a x which is out of the real interval [ ]maxmin , xx  (where xmin is the minimum 
measured data and xmax the maximum one),  . 0(x)µAi =

Nevertheless, we may also have to determine the systematic effects on the measurement results; as it 
is intrinsic of the concept of systematic effect, it always appears with the same ‘impact’ during the 
execution of all the tests. The ith result is such that  (‘s’ and ‘a’ are respectively related to 

systematic and random effects on the measurement results, while  represents for us the true value, 
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*
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and therefore it is unknown). At this point if the systematic effects on the measurement results is 
considered to be contained in [0, δ], and the true mesurand value should be stay between  and xδ−ix i 
with the maximum possibility (remember that δ has got its own sign). Now let’s define the ith fuzzy set 
as follows: 

[ ]maxmin ,)( xxASupp i δ−=  
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Ai is a trapezoid interval So if we have chosen the averaging operation ET for the  fuzzy interval 
series  as an estimator of measurand, in agreement with the Guide, we have to apply extended 
addition and multiplication based on t-norm.  
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IV. Fuzzy Intersections: t-norms 
 

The intersection of two fuzzy sets, A and B, is specified by a binary operation on the unit interval. 
For each element x of the universal set, this function takes as its arguments the memberships of x in the 
fuzzy sets A and B, and yields the membership grade of the element in the set constituting the 
intersection of A and B.   

A "fuzzy intersection/t-norm" i is a binary operation that satisfies at least the following axioms for 
all a, b and d in the range [0,1].  

Axiom i1:  i(a,1) = a    (boundary condition) 
Axiom i2:  b <= d implies i(a,b) <= i(a,d)    (monotonicity) 
Axiom i3:  i(a,b) = i(b,a)   (commutativity) 
Axiom i4:  i(a,i(b,d)) = i(i(a,b),d)   (associativity) 
 
Lets call these four axioms the "axiomatic skeleton for fuzzy intersections/t-norms".  It is often 

desirable to restrict the class of fuzzy intersections (t-norms) by considering additional requirements. 
Three of the most important are:  

Axiom i5:  i is a continuous function    (continuity) 
Axiom i6:  i(a,a) < a    (subidempotency, weaker than "idempotency", the requirement that i(a,a)=a) 
Axiom i7:  a1 < a2 and b1 < b2 implies i(a1,b1) < i(a2,b2)  (strict monotonicity) 
 

Some Classes of Fuzzy Intersections (t-norms)  
 

The fuzzy literature contains many examples of t-norms, which are a generalization of (classical) set 
intersection. All of these t-norms are (as far as we know) single valued. To be precise: given a set X, a 
t-norm is a binary function satisfying certain properties. Hence, given two elements of X, call them x, 
y, then T (x, y) is also an element of X. Note that this is also true in the context of interval-valued fuzzy 
sets, fuzzy sets of type 2 and other variants. For example, a t-norm which operates on interval-valued 
fuzzy sets combines two intervals to produce one interval.  

The following are examples of some t-norms that are frequently used as fuzzy intersections (each 
defined for all a,b in [0,1]) and which satisfy the last three axioms. 

 
Standard intersection:                                         i(a,b) = min(a,b)                                             (4) 
Algebraic product:                                              i(a,b) = ab                                                       (5) 
Bounded difference (Lukasiewicz’s t-Norm):    i(a,b) = max(0,a+b-1)                                    (6) 
Dombi’s t-Norm: 
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Hamacher’s t-Norm:  
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Yager ’s t-Norm:  
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In the Dombi case [6],  increasing the parameter p will increase the emphasis on the smaller membership 

value so that, for example, one could emphasize a line of reasoning that considered less likely possibilities. 
In [7-8] we see some well known continuous t-norms, as the minimum operator TM, the algebraic 

product TP, and the Lukasiewicz t-norm TL and some results on the addition of fuzzy intervals are 
compared. TM is the strongest (greatest) t-norm, defined as  TM (x,y)=min (x,y).  TW is the weakest 
(smallest) t-norm: 
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A t-norm is called Archimedean if and only if it’s subidempotent , so TM  is clearly not 

Archimedean. Continuous Archimedean t-norms can be divided in two classes: strict t-norms (strictly 
increasing norms) and nilpotent t-norms. The algebraic is a strict t-norm, and so Frank’s, Hamacher’s 
and Dombi’s are.  From a Corollary described in [8] we know that for the addition based on the 
minimum operator, the resulting spreads are the sums of  incoming spreads, while for the addition 
based on the weakest t-norm the resulting spreads are the greatest of the incoming spreads. The 
following inequality holds: 
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Moreover, for any triangular norm T: 
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Now let  T1 and T2 be two t-norms such that: 
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than for any fuzzy quantity A and B the T-sum of these fuzzy intervals is : 
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Note that for the addition based on the minimum operator TM , the resulting spreads are the sums of 

the incoming spreads (greatest spreads), while for the addition based on the weakest t-norm the 
resulting spreads are the greatest of the incoming spreads (smallest spreads). 

If we can describe the model about phenomena weighing upon each measurement result obtained by 
a DSP-based instrument, a meaningful choice in terms of t-norms may be made. Nevertheless, this is a 
quite complex approach, so to make the right choice a trade-off is necessary. First of all we know that 
increasing the uncertainty interval we reduce an eventual risk in decision making, but costs are so 
arising. It’ obvious that the exact contrary occurs when uncertainty spreads (see [6]) are too narrow. 
Another important parameter is simplicity in data processing, because a measurement instrument 
should be able to yield rapidly measurement uncertainty on a measurement result. 

So if we refer to Yager t-norm we note that it is very simple to apply, but perhaps this approach 
supposes a strong correlation among different measurement results. To avoid this inconvenient we have 
so proposed the use of Dombi, but the algorithm of computation has got an high complexity in general 
cases.  

We know from theory about fuzzy connectivity that new triangular norms can be constructed starting 
from the ones already known. An idea may be to combine the easiness in computation of min operator 
and the capacity of Dombi.  

  
 



 
V. Conclusions 

 
In this paper we have proposed the comparison of triangular norms to define the arithmetic on fuzzy 

intervals, according to describe both systematic and random effects on the distribution of measurement 
results. This approach has the purpose to obtain measurements results which can be considered 
compatible with ISO Guide method ones. 
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