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G. Conclusion
At the end of this procedure we retrieve as the best model the mb 32 model that uses a sec-
ond-order plant model and a first order noise model. This model is slightly better than the ini-
tial m3 model. This is mainly due to the more flexible model structure that allowed the plant
and noise models to be decoupled. The retrieved model structure corresponds also with the
exact models that were used to generate the simulation data.

4.7 FREQUENCY DOMAIN IDENTIFICATION USING THE
TOOLBOX FDIDENT

The goal of this exercise is to illustrate more advanced aspects of the identification pro-
cedure using the frequency domain identification toolbox FDIDENT (Kolldr, 1994). This
toolbox is completely directed to the use of nonparametric noise models. A full identification
run will be made, starting from the raw data to a final model. Some model selection tools and
model tests will be discussed in more detail. Here we illustrate the use of periodic excitation
signals. We refer the reader to Exercise 74 to deal with non-periodic excitations.

Exercise 76 (Using the frequency domain identification toolbox FDIDENT)
Goal: Make a complete identification run using the FDIDENT toolbox. The same system as
in Exercise 75 is identified, but this time using a periodic excitation.

m Generate the system Gy :
[b0,a0] = chebyl(2,10,2*%0.25);b0(2) = b0(2)*1.3;

s Define the noise generating filter:
[bNoise, aNoise] = butter(l,2*0.2);
bNoise = bNoise+0.l1l*aNoise;

m Generate a zero mean random phase multisine with a flat amplitude exciting the
spectral lines:
Lines = [1:NPer/3].
Scale the rms value to be equal to 1. Use a period length N = 1024, and generate
M = 7+ 1 periods. The first period is used to eliminate all transient effects in the
simulations ( Ny, = 1024 ).

m Generate y,, v(t): y(t) = Gy(@)ug + v(t) with v(#) = 0.1G . (@e(?) filtered white
noise e(?) ~ N(0, 1) . Eliminate the first Ny, data points.

m Generate a time domain object that can be imported by FDIDENT, normalizing the
sample frequency equal to 1:
ExpData = tiddata(y(:),ul0(:),1);

n Start the GUI of FDIDENT (type fdident in the command window) and follow
the menu in the GUI as explained below.

Observations The successive windows of the GUI are shown and shortly discussed.

H. Main window
The main window allows the data to be imported in the GUI, using either time or frequency
domain data. Double click the ‘Read Time Domain Data’ to open the data importing window.

I. Importing and preprocessing the data
read time domain data
In a series of successive steps (see Figure 4-31), the data are

m loaded into the GUI (Get Data),
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Figure 4-30  Opening window GUI-FDIDENT.
m the successive periods are separated (Segmentation),
s and converted to the frequency domain (Con. to Freq).

w A first possibility to select the frequencies of interest is offered (Freq Select).
The corresponding windows are shown.
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Figure 4-31 Opening window GUI-FDIDENT.

(i) Get the data: The data object ExpData that was created in the m-file is loaded.
(ii) Segmentation: Put period lengthto 1024 and click Apply Periods.

(iii) Convert to frequency domain: The frequency domain results are shown. The user can se-
lect, for example, the FRF, the input—output Fourier coefficients, etc., by making the appro-
priate choice under the Type of Figure instruction.

(iv) Frequency selection: In this window a first selection of the active frequencies to be used
in the identification process can be used. We postpone in this exercise this choice, and se-
lect all frequencies in this step. Notice that the system was not excited above 0.33
Hz.

At the end of these 4 substeps, the Read Time Domain Data block is highlighted indicating
that the data are ready to be processed in the next block of the main menu.
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Figure 4-32 Load the time domain object ExpData.
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Figure 4-33 Frequency selection: all frequencies selected. The FRF is shown.
Notice that above 3.3 Hz, no excitation was present which is indicated in
the plot by the straight line.

J. Nonparametric noise analysis
variances and averaging
In this block, the data are averaged over the periods: the sample mean and sample variance
are calculated. We advice to make the final frequency selection in this block in the window
where the input and output data are shown.

In this window, it is very easy to select the excited frequency lines in the input window,
using the frequency selection button. Selection of the not excited frequencies would
not affect the MLE, but it would become more difficult to generate good initial estimates of
the system parameters to start the nonlinear search.

Once the frequencies are selected, we are ready to start the identification step, as is visible in
the main menu.

K. Parametric identification step

Estimate plant Model

or

Computer Aided Model Scan
All the information is now available to start the parametric model estimation step. In the tool-
box, the sample maximum likelihood (SMLE) is used, minimizing the cost function (4-33).
First a series of simplified cost functions is minimized to generate starting values (hidden for
the user). The SMLE cost function for each of these parameters is calculated, and the best re-
sult (lowest cost function) is retained to start the nonlinear search. The user can select a single
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Figure 4-34 The time domain data are imported and transformed to the frequency domain.
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Figure 4-35 Sample mean and sample variances of the input and the output calculated in the
nonparametric preprocessing. Notice that the noise level for the input is 300 dB
below the actual input. This is the MATLAB® calculation precision,
corresponding to 15 digits (20 dB/digit).

model, or a whole bunch of models with different orders can be scanned. The last option is
chosen in this exercise because we will illustrate also the model selection procedures. Open-
ing the Computer Aided Model Scan offers a number of user choices (see Figure 4-
37). In this window, the user has to select the nature of the model (for example discrete or
continuous time), the orders to be scanned (a selection - deselection tool is available). The
discussion of the other optional choices is out of the scope of this book, and the user is re-
ferred to the help functions of the GUI. The results are accessible in the Evaluate or
Compare Plant Models window.

Some of the available results are discussed in the next section.

L. Evaluation of the estimated models
Evaluate or Compare Plant Models window

(i) Comparing the estimated models

Once the estimates are available, it is tempting to select as “best” model the one corre-
sponding to the lowest cost function value, but it will be shown that this is not the best or even
a good strategy (see also Exercise 11 in Chapter 1).
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Figure 4-36 The nonparametric preprocessing step is finished. The data are ready to start the
parametric identification step.
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Figure 4-37 Preparation for the computer-aided model scan. The user has to select
- continuous or discrete time model,
- selected set of model orders to be scanned.

In this run, the lowest cost function was obtained for the model 5/5 (5 zeros, 5 poles).
One could expect that the model 6/6 would do better than the 5/5 model, because the latter is
a subset of the 6/6 class of models. Since the cost function for the 6/6 model is larger than
that of the 5/5 model, it shows that the program got stuck in a local minimum for the 6/6.

Notice that the observed cost functions are close to the theoretical expected value
(number of frequencies - ny/2, with ny the number of free parameters in the model, for ex-
ample for a 2/2 model, ng = 5 (the model is invariant with respect to a scaling of all param-
eters). This is an indication that the models are reasonable, the remaining residuals can be ex-
plained by statistical properties of the noise. In the value of the cost function, there is no
evidence of the presence of model errors. A cost function that is much larger than the theoret-
ical value, is a strong indication of model errors. A cost function that is significantly smaller
than the theoretic value is an indication for a wrong nonparametric noise model (e.g., the
presence of a correlation of the noise over the frequencies).

In Figure 4-39, the 2/2 model is compared to the 5/5 one. The FRF and the amplitude of
the complex errors |G(ja)k) -G(jo, é)| is shown. These plots indicate that the behavior is
quite similar. This points in the direction that 5/5 may be a too complex model for the data.

(ii) Selecting the best model using a model selection tool

In Chapter 1, Exercise 11, we learned that it is not always a good idea to choose the
model corresponding to the lowest cost function. This can result in a higher model variability
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Figure 4-38 Evaluation and comparison of the estimated models: Evaluate or
Compare Plant Models window.
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Figure 4-39 Evaluate or Compare Plant Models window
TF Magnitude + Erros isselected

due to an increased noise sensitivity of complex models (see Exercise 10). In the previous
section it was observed that 5/5 may be too complex. In order to make a better choice, model
selection tools are developed that balance the model complexity versus the model variability
by adding a penalty factor for the complexity to the cost function (4-33) (see also Excercise
11). The Akaike information criterion (AIC) or the minimum description length (MDL) are
two popular tools that start from the weighted least squares cost function V:

Vaic = V(l + %’), VvpL = V(l +%. (4-42)

It can be seen from (4-42) that for the same value of the cost function V, a more complex
model results in a higher AIC or MDL criterion. In Figure 4-40, the MDL criterion selects the
2/2 model as the best one.

Wt in st #1 hiads Pt in 21 Madel Pt in 42

e [ 3 e e
I EE 7 :
[ Set 21 Best Modsl 0 | Set #1 Mok): sz?
{5Feb 08 155510 | A5-Feb-a005 155510
Dottt 271 | Damsin 271 -
Delay: & samplas ] DCilery; [ zamples
Cost: 4327 theior: 3884 | Cost 430 7, theor: 188 4 "
WO 450 8 [ WD 4B B it
Aksba 8404 oAkake d4Dd |
Wiasn model strar 0.01500 | Wean mods) errar: 0.01503 el ! g
P———
+1 | Cross Dats | Concel
i Cloge

= 7 =

Figure 4-40 Evaluate or Compare Plant Models window
TF Magnitude + Errors is selected; MDL criterion is selected
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(iii) Residual analysis

The residuals are that part of the data that the model could not reproduce. Since we
have access in the frequency domain to good estimates of the FRF G(jw,), a lot of informa-
tion can be gained by analyzing the residuals between the measured and modeled FRF:

G(joy - G(jo, 8) ‘

enk) = 60(k)

(4-43)

If no model errors are left, €, should be white (Gaussian) noise. This is no longer so if some
dynamics are missed (under modeling). Since these model errors have a smooth behavior, a
correlation becomes visible that can be detected in a correlation test. Notice that this test does
not protect against overmodeling, only under-modelling is detected. In Figure 4-41, the corre-
lation analysis is shown for the 2/2 model where no statistical significant correlation is visi-
ble. Also the 1/2 model is analyzed, and here it is obvious that the residuals are strongly
correlated, which is a very strong indication for model errors. This is also confirmed by the
much larger cost function of this model.

(iv) Pole-zero cancellation

What happens with the extra poles-zeros of the 5/5 model if a 2/2 model does fit the
data well? Figure 4-42 shows the answer to that question: the 3 additional poles are canceled
by the 3 additional zeros in pole-zero pairs that almost completely coincide. In order to be
sure that within the uncertainty bounds the pole and zero coincide, a statistical test would be
needed, keeping also in mind that often a strong correlation between these poles and zeros is
present. However, if the pole-zero plot shows very close pole/zero pairs, then these are good
candidates to be eliminated in an order reduction step without affecting the quality of the esti-
mated model.

The presence of these pole/zero pairs affects also the behavior of the uncertainty of the
model, which is visualized in the next section.

(v) Cloud of models
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Figure 4-41 Evaluation and comparison of the estimated models: Evaluate or
Plant Models window; correlation analysis is selected.



136

Chapter 4 B Identification of Linear Dynamic Systems

Mosiats in set #1 Mol Piat iy #1 Model Flat i #2
TR " PN
i | i |
[ a | { Lo P
/ /
S S
1 ) .E'. 1 4 - U 1 k4
rterien oet Fen = & [poieszeros 4
Sel# Besthadel 56 | Sen#t Modeh o =] |
Y5 Feb 008 1558 47 {5:Feb. 208155510 =) |
qunu_aru.z"_.i‘umm Domaire %1 | 0 !
Deiay! D sampes  Detay 0 semples 1
Tost 4236 theor 3848 iCogt 4337 thear: 398 4 £ i
Wb 4782 L 4B 6 = ;
Akuike: 4365 Aikalke: 440 4 . 8
“Weon madel error 001456 - Mean modsl esror: 001503 E‘:‘:,' “Mean model eror 001458 |
| Cross Dala Cancal ]
Cloza §

|“_‘.‘i‘"’.' T IS R g

Figure 4-42 Evaluation and comparison of the estimated models:

Evaluate or Compare Plant Models window
pole-zero cancellation isselected.
To get an idea of the variability of the model, many possibilities exist. Before we have
seen that uncertainty bounds can be generated (see Exercise 69). An alternative is to draw a
cloud of models. From the estimated model parameters and covariance matrix, a series of
model parameters are generated within the 95% uncertainty bounds, and the corresponding
FRF is drawn for each of these. This results in a “cloud of models” that gives a very good vi-
sual impression about the noise sensitivity of the estimated FRF (or the poles and zeros). Be-
cause this approach relies less on intermediate realizations, it can give a more realistic im-
pression of the system properties. In Figure 4-43, the cloud of models is shown for the 2/2
and the 6/6 model. It can be seen that the cloud of the 6/6 model is thicker than that of the 2/2
cloud. Also spikes can be seen in the 6/6 cloud, which is a very typical phenomenon that indi-

cates the presence of coinciding pole/zero pairs, and hence a particular indication of over-
modeling.
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Figure 4-43 Evaluation and comparison of the estimated models: Evaluate or Compare
Plant Models window; Cloud of Models is selected.





