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Abstract

ADC testing is often done using sine wave excitation (see e.g. IEEE standard 1241). A sine wave is fitted
to the measured data in least squares sense, and the residuals are analyzed further. In recent papers, it
has been recognized that even more (and more precise) information can be extracted by the solution of the
maximum likelihood equations. This is an improvement to the usual three-parameter and four-parameter
fits. In this paper practical implementation of this algorithm is suggested. Then, theoretical background is
overviewed. Further investigations lead to the statement that the same principle can be extended to any
measurement which uses an excitation signal which can be described with a few parameters. A candidate
for this is an exponential signal, with 3 parameters: e.g. start value, end (steady-state) value, and time
constant. The maximum likelihood (ML) equations yield a solution for these too, more accurate than least
squares (LS) fitting. Reasonable approximations make the ML problem solvable in practice.

1. Introduction

One of the most general principles applied in cal-
ibration is to use high-precision excitation signals
and/or high-precision instrumentation. The error
of the calibration measurement is desired to be by
an order of magnitude smaller than that of the de-
vice under test. However, this is often a too strict
requirement even when a medium-precision analog-
to-digital converter is tested. Therefore, the prob-
lem is usually circumvented in ADC testing by ap-
plying a sine wave as an excitation signal to the
ADC. Although parameters of the sine wave are
still cumbersome to be precisely measured, the ac-
cepted procedure executes a least-squares fit to the
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output of the ADC. The estimated parameters of
the sine wave are then used to evaluate the error
samples and characterize the ADC [1].

This procedure works well, however, it is still not
optimal in the sense that

• least squares is not optimal for treating quan-
tization errors,

• ADC nonlinearities are not properly handled
with the least squares fit,

• eventual overload of the ADC is not modeled
by the customary LS fit,

• sine wave is not the only possibility for the ex-
citation signal,

• the sine wave has an excess weight and im-
proper error form for the samples close to the
peaks.

We are going to tackle a part of these problems in
the following sections.

1.1. Excitation Signal

The sine wave is very popular because it can
be described by a few parameters only (amplitude,

1



phase, frequency and maybe a dc component), fur-
thermore it can be produced with the desired pu-
rity, and its quality is measurable by using a spec-
trum analyzer. Nevertheless, in ADC testing its
probability density function (PDF) is not always
desirable because of the large peaks at its edges:

f(x) =
1

π
√

(A2 − (x − µ)2)
, (1)

where µ− A < x < µ + A and µ is mean value and
A is amplitude of the sine wave.

These peaks correspond to the peaks of the sine
wave which are very flat and therefore around these
the signal does not excite the ADC with a suffi-
cient variation. Moreover, the amplitude range is
strictly limited to (−A, A). A possibility to circum-
vent these difficulties is a systematic overload of the
ADC at both ends. The overloaded samples need
to be neglected in the fit, along with the samples
which, after recovery, represent biased transient re-
covering response of the circuitry due to the previ-
ous overload. This is possible in the LS fit, as well as
in maximum likelihood estimation, to be discussed
below.

An important question is whether the use of a
sine wave is the ultimate solution, or some other
signals are still possible. Here is what is made use
from the properties of the sine wave:

• it can be represented by a few parameters,

• it is rather smooth and excites the ADC at
many amplitudes,

• its local behavior is different from time instant
to time instant,

• the form is precisely defined by 3 parameters,
and eventual changes in the parameters do not
mask usual DNL/INL patterns,

• it can be generated quite simply with small
error,

• usual spectral analysis can be used to supervise
purity of the sine wave,

• its PDF is close to uniform (at least at the
central part),

• its PDF has a known closed form, using the
signal parameters,

• since the test performed at one single fre-
quency, ADC parameters can be described at
given frequency.

According to the above arguments, an attractive
signal form would also be piecewise linear (e.g. tri-
angle wave, generated using a simple integrator)
which corresponds to several requirements above,
except for small error, easy quality check, and
changing behavior. Therefore, a piecewise linear
signal is not really advisable. Instead, a possibil-
ity which allows to fulfill most above criteria is an
exponential signal [7], especially when two expo-
nential signals are applied consecutively in the two
directions [12]. We will see in the following that
this is a valid alternative of the sine wave, and fits
into the same estimation framework.

1.2. Maximum Likelihood Estimation - A Common

Framework

According to the standards, the parameters of the
sine wave are determined from the least squares fit
of the ADC output data [8]. This is a very simple
and robust method, but it certainly does not uti-
lize all information present in the signal. According
to estimation theory, whenever quite general condi-
tions are fulfilled, maximum likelihood estimation
is the "best" in the sense that it is asymptotically
unbiased, and it is asymptotically efficient. It co-
incides with least squares when the samples from
the model (the excitation signal of which the pa-
rameters are determined) are corrupted by additive
white Gaussian observation noise. Least squares
generally also has favorable properties [2], but with-
out the above conditions fulfilled, maximum likeli-
hood outperforms it. Therefore, it is reasonable to
look also at ML at least to see the ultimate perfor-
mance we might want to achieve or approximate.

It is obvious that even in the case of an ideal
quantizer, the observation error due to quantiza-
tion is not Gaussian. Moreover, we need to handle
ADC nonlinearity – this is what we would like to
characterize by the test.

The signal is described in parametric form. Co-
sine and sine functions are used to make the equa-
tion linear in the parameters A, B:

x(t) = A cos(ωt) + B sin(ωt) + C (2)

where ω is the angular frequency and t denotes
time. For a single (falling) exponential, linearity
also holds:

x(t) = (F0 − F∞)e−t/τ + F∞ (3)

where F0 is the maximal of ADC input full scale
range, F∞ is final voltage of the exponential signal.
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Let us denote in the following the parameters of
the signal to be determined by p: p = [A, B, C]T ,
or p = [A, B, C, ω]T , or p = [F0, F∞, τ ]T .

The output of the analog-to-digital converter is
recorded. This has the consequence that the ob-
servations have discrete distribution. Therefore, we
need to formulate the ML criterion in the discrete
domain, using the quantizer characteristic. Before
doing that, we also need to find a way to describe
the uncertainty around the comparison levels. The
usual way to describe this is noise added to the sam-
ple of the input signal before quantization. Thus,
the observed discrete-time signal can be described
as

zk = Q(x(tk) + nk) (4)

where Q denotes the quantizer characteristic (this
is a deterministic function), and nk is a Gaus-
sian noise sample, with zero mean and variance σ:
nk = N(0, σ). By this, we handle the quantization
error properly by Q. Furthermore, somewhat erro-
neous measured samples become compatible with
the model by this: without noise the imperfect sam-
ples would be considered impossible (probability
zero), thus the ML cost function would be degener-
ate and cannot be optimized.

For simplicity, let us denote the vector of
the comparison levels of the quantizer (Tl, l =
1, . . . , M − 1) by T . The number of the possible
ADC outputs is M = 2B.

Now we are ready to formulate the likelihood
function for independent noise samples:

L(p, σ, T ) =
N
∏

k=1

P (zk = sk|p, σ, T ), (5)

where P (.) denotes the probability of the given
event, sk is the actually measured sample at tk,
and | denotes the condition. For a given set of pa-
rameters, the probability P (zk = sk|p, σ, T ) can be
evaluated by integration of the normal distribution
between the corresponding comparison levels. It
cannot be given in a closed form, but numerically
it is treatable. Since (5) can be evaluated, it can
also be maximized via the parameters, and thus the
ML estimates can be obtained. This can be done
for a sine wave [4], [3], or for an exponential signal,
or for a combination of positive-slope and negative-
slope (rising and falling) exponentials:

x1(t) = (F0,1 − F∞,1)e
−t/τ + F∞,1,

F0,1 < F∞,1, for t1,1 ≤ t ≤ t1,2

and

x2(t) = (F0,2 − F∞,2)e
−t/τ + F∞,2,

F0,2 > F∞,2, for t2,1 ≤ t ≤ t2,2.

Notice that τ is the same in the two equations. This
can be exploited in the fit, minimizing (5) [13].

1.2.1. Implementation

The maximum likelihood estimation is calculated
by minimization of a non-linear function (5). Sev-
eral methods can be applied, either using the gra-
dient of the cost function (a version of Levenberg-
Marquardt) or using values of the cost function only
(e.g. Nelder-Mead simplex search). In our pro-
gram, the transition levels were taken from the his-
togram, and the signal parameters were found by
the Nelder-Mead method. This is usually slow, but
for a few parameters as here it was fast enough and
robust.

2. Fast calculations

If the number of bits in the ADC is B, there are
2B −1 comparison levels to be estimated. Thus the
maximization of (5) involves a large number of pa-
rameters. While this is possible in theory, the value
of B is many times limited in practice to about
B = 6-8. This is often less than we need. Moreover,
the likelihood function is a nonlinear function of the
parameters, thus starting values are needed to start
optimizing iteration. Consequently, we need an ef-
fective way to determine the transition levels, or at
least good enough starting values.

In general, histogram test is used to characterize
the differential nonlinearities of the ADC [5]. This
seems to be possible even in our case. The knowl-
edge of the differential nonlinearity is equivalent to
the knowledge of the comparison levels. The his-
togram test is a very robust procedure to obtain
the transition levels. Moreover, in the case of sine
waves, the so-called normalized transition levels can
be calculated without the actual parameters of the
sine wave [5], [6].

Concerning the information on the transition lev-
els, one can argue that the total relevant informa-
tion seems to be present in the histogram, since
this contains number of the samples above and be-
low a certain transition level, and there is no fur-
ther information on these in the digital samples.
At present we cannot rigorously prove but we are
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convinced that the histogram is (at least approxi-
mately) sufficient statistic concerning the transition
levels. If so, transition levels can be determined
separately from the histogram, and more involved
minimization is only necessary to determine the sig-
nal and noise parameters.

However, still there is a problem: the measured
histogram is modified by the PDF of the signal,
thus INL can be evaluated from the histogram only
by using the knowledge of the signal. On the other
hand, the signal parameters (or at least a part of
them) can be estimated from (5) only by knowing
the INL values T . Therefore, only an iterative pro-
cedure is possible. If the following steps converge
(as they do in practical cases), they lead to a rea-
sonable maximizer parameter set:

1. determine the histogram,
2. determine the signal parameters as well as pos-

sible,
3. correct the histogram if it is necessary to

achieve transition levels, using the PDF of the
signal+noise,

4. minimize L by the signal parameters and σ in
(5),

5. if stop criterion does not meet, go to 3 and
continue.

It is worth noting that if a sine wave is applied, and
the noise is not very large (e.g. σ < 2 LSB, see [5]),
in step 3 the transition levels can be directly ob-
tained from the cumulative histogram by the trans-
formation −AX cos(πHc(k)) + C, where Ax is the
amplitude and C is the dc level, see [5], [6], thus
iteration is not necessary. This is a consequence of
the parametric form of the sine wave: its CDF does
not change with changing the frequency ω or the
phase φ.

When determining the signal parameters, the two
cases (sine or exponential) need to be discussed sep-
arately.

2.1. Sine Wave

The starting values can be obtained from an LS
fit to the non-overloaded samples (maybe also ex-
cluding the samples around the peaks, see [8], and
the ones with recovery transients after overload). If
the frequency is known, this is a linear LS problem,
if not, this is nonlinear LS. The starting value for ω

can be determined by using Interpolated FFT [10],
[11]. Starting from the above starting values, the
ML optimizer can be found.

An alternative possibility is to make a least
squares fit to the measured histogram. Start from
the above values and fit (1) to the histogram in
LS sense, numerically. This is certainly faster than
the above ML method, however, if σ is not very
small, this needs numerical adjustment of the PDF
to make a proper fit, since the signal PDF needs to
be convolved first with the noise PDF. Moreover,
although LS fit seems to be "logical", there is no
guarantee how well it will perform compared to the
theoretically optimal maximum likelihood estimate.

2.2. Exponential Signal

The time constant is the only parameter which
nonlinearly appears in the likelihood function. As
we will see later (e.g. (9) and (10)), knowledge of
the end value F∞ allows simple determination of τ ,
thus F∞ can also be determined first. This offers
an alternative (but equivalent) calculation.

The starting value of τ can be determined in a
few simple ways.

2.2.1. Calculation from Samples

Take 4 equidistant samples at t1 ≤ t2 ≤ t3 <

t4, respectively, which are reasonably apart from
each other, and t2 − t1 = t4 − t3 = ∆t. From
the corresponding samples (see (3)), simple algebra
gives

τ̂ = (t3 − t1)
1

ln
(

x2−x1

x4−x3

) . (6)

For a double exponential, this can be done for both
parts and the results can be averaged.

This is an elementary solution, however, it is sen-
sitive to noise, since only 4 samples are used. The
effect of the noise can be decreased by averaging
several estimates by shifting the time instants, e.g.
like:

τ̂ =
1

K

K−1
∑

n=0

Td
1

ln
(

xtn+∆t−xtn

xtn+∆t+T
d
−xtn+T

d

) . (7)

Knowing the time constant, the samples can be fit-
ted by using linear LS (see (3)), and the value of
the time constant can be refined by using nonlinear
LS.

2.2.2. Calculation from the histogram

An alternative solution can be built on the form
of the CDF. Since the cumulative histogram is the
running sum of the regular (code) histogram, its
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values contain the sum of the histogram values,
left from the actual point, thus these are averages.
Therefore, samples of the CDF can be used for rea-
sonable calculations. E.g. for a negative slope, one
can calculate:

F (x) =

∫ x

−∞

f(z)dz =

∫ x

xmin

Ctr

z − F∞

dz

= [Ctr ln(z − F∞)]xxmin

= Ctr(ln(x − F∞) − ln(xmin − F∞)) (8)

for xmin ≤ x ≤ xmax. Ctr can be calculated from
the condition F (xmax) = 1:

Ctr =
1

ln(xmax − F∞) − ln(xmin − F∞)

F (x) =
ln(x − F∞) − ln(xmin − F∞)

ln(xmax − F∞) − ln(xmin − F∞)
. (9)

F (xmin) clearly equals 0. The only unknown is F∞

which can be numerically determined e.g. from the
equation F (x1) = P1, where P1 can be chosen e.g.
P1 = 0.5, and the corresponding value of x1 is taken
from the cumulative histogram.

The solution can be made even more accurate by
fitting (9) to the histogram in LS sense [9]. How-
ever, the "best" (albeit slower) solution is to return
for the last refinement to the time samples, and
solve the ML problem. The starting value of τ can
be calculated for this as [9]

τ = Ctrt1, (10)

where t1 is the observation length from which the
histogram is obtained. Since Ctr is a function of
F∞, see (9), determinations of F∞ and τ are essen-
tially equivalent.

This is again a question of sufficient statistics:
the histogram contains somewhat less information
with respect to the signal parameters than the sam-
ples themselves, thus it can be expected that the
ML solution is somewhat more accurate than LS fit
of the PDF to the histogram.

3. Numerical results

This section is devoted to present the numerical
results obtained by running the method introduced.
First, a simulation result is presented to illustrate
the improved accuracy of the suggested method.
After this, measured data are used as input of the
algorithm.

3.1. Simulated Data

A sine wave is generated with amplitude 2.021 V,
dc level 0V and frequency f = 23 Hz, fs = 1 kHz.
N = 512000 samples are generated. The ADC has
12 bits, with input range ±2.0 V. The INL of the
ADC is set to the pattern shown in Figure 1. In
Figure 2 the calculated normalized histogram of the
ADC is plotted.
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Figure 1: INL of the simulated ADC as a function of the
transition level vector. The presented pattern is repeated in
the whole domain.
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Figure 2: Normalized histogram of the ADC output data.

In the case of least squares (LS) fitting the er-
ror of the amplitude estimation is Aest − A =
−2.8131 LSB, and the dc error is −0.0875 LSB.
The amplitude error of the presented method is
Aest−A = −0.0072 LSB and dc error is −0.023 LSB.
Both errors are significantly decreased by using the
maximum likelihood (ML) method.

3.2. 12-bit ADC, exponential excitation

The second example uses measured data in which
exponential excitation signal is applied. A 12-bit
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Figure 3: Exponential excitation signal. It contains alter-
nating falling and rising parts.
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Figure 4: Estimated INL of the ADC using exponential sig-
nal as excitation.

AD converter collected M = 1000000 samples (fs =
10 kHz). Measuring device was a multi-function
board by National Instruments: NI USB-6008. Part
of the measured signal is plotted in Figure 3. Fre-
quency of the excitation signal was 10.123 Hz. In-
put range of ADC was [−1, 1] V (−1 V represented
by code 0, 1 V represented by code 4095).

Following the algorithm in [13] fitting the his-
togram results in F∞,f = −1.0649 V (Bf =
−132.92) and F∞,r = 1.078 V (Br = 4258.82). The
estimated INL can be seen in Figure 4.

LS fitting of parametric model in time domain
and using the estimated INL values minimization
of the ML cost function were performed. Numeri-
cal outputs are summarized in Table 1. In the es-
timation of F0,r the ML solution contains a small
improvement.

Alg. F0,f F∞,f τf σf

LS 4113.24 -132.58 110.97 -
1.01 V -1.06 V 0.011 s

ML 4113.18 -132.25 110.93 3.69
1.01 V -1.06 V 0.011 s 0.0018 V

Alg. F0,r F∞,r τr σr

LS -19.04 4257.79 110.98 -
-1.01 V 1.0795 V 0.011 s

ML -19.95 4256.4 110.93 4.53
-1.01 V 1.08 V 0.011 s 0.0022 V

Table 1: Outputs of different algorithms for estimating rising
and falling parts of exponential signal. ADC (12 bits) with
input range [-1,1]V, fs =10 kHz, input period: 10.123 Hz.

3.3. 8-bit ADC, Exponential and Sine Wave Exci-

tations

In the next examples measurements reported
were done using an 8-bit converter. First, a sine
wave as excitation was applied, then using the same
converter an exponential signal was applied at the
input of ADC. The presented methods were evalu-
ated and finally results were plotted.
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Figure 5: Measured INL of the 8-bit ADC by using of sine
wave.

Parameters of the sine wave were estimated by
using both the LS and ML methods. The result are
summarized in Table 2.

Results of estimating of dc level are almost the
same, but amplitude estimators are different.

The same AD converter was tested by using ex-
ponential signal as excitation. The INL calcu-
lated by the method proposed in [13] (Bf=-263.267
Br=524.914). As one can see there is small differ-
ence between the estimated INL’s in Figures 5 and
6, respectively.
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Alg. amplitude dc level σ

LS 133.94 -0.934 -
1.0547 V -0.0074 V

ML 135.83 -1.0054 0.1165
1.0695 V -0.0079 V 0.00092 V

Table 2: Outputs of different algorithms for estimating pa-
rameters of the sine wave signal. ADC (8 bits) with input
range [-1,1]V, fs =811 Hz, input period: 11.111 Hz.
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Figure 6: Measured INL of the 8-bit ADC by using of expo-
nential signal.

Both LS and ML estimations were calculated for
falling and rising parts of the exponential signals.
Results are summarized in Table 3. Because of
the small σ difference between outputs of the least
squares fit and the maximum likelihood estimator
is also small.

4. Conclusions

In this paper it is shown how it is possible to
effectively extract all information from the ADC
response to sinusoidal or exponential excitation test
signals. The results can be improved with respect to
the least squares fit. Thus, by using the maximum
likelihood principle, ADC testing can be made more
accurate. Using fast algorithms the result can even
be obtained in a quick way.
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