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In some correlators vernier sampling /two
samplers having slightly different sampling
intervals/ is used to increase time resolution.
The paper suggests a direct method with about
the efficiency of the FFT for processing the
vernier samplcd data to obtain the power density
spectrum. By this the bandwidth of a micro-
processor-controlled spectrum analyzer can be
increased to its 10 to 50 fold. The paper
derives the formulae of the computing algorithm,
analyses the time and spectral window functions,
and deals with the variance and distortion of
the spectral estimator. The algorithm requires a
somewhat more complex program and a controller
capable of vernier sampling - neither of these
increases greatly the price of the analyzer.
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1. INTRODUCTION

Nowadays Fourier analysis at audio or lower freguencies is
generally performed by means of digital analyzers. Becausec of
the efficiency of the FFT algorithm /3/ digital analyzers are
often based on FFT processors. However, in Fourier analyzers
several-bit A/D converters are used in order to decrease
variance and distortion, and the A/D converters of moderate
price set the limit of the bandwidth to 25-40 KkHz in the case
of uniform sampling. Since random sampling methods are
generally less effective as compared with FFT, only special
deterministic sampling strategies, e.g. vernier sampling
/Fig.1/ give the possibility of increasing the bandwidth
without using high-speed A/D converters. An efficient
algorithm for directly computing power density spectrum from
vernier sampled data can greatly increase the performance of
the '"vernier'" analyzers.
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2. DEVELOPING THE ALGORITHM

Let us consider the two series of data in Fig.2. The signals
x/t/ and y/t/ are sampled in /p+1l/q and pq points respectively.
The A/D conversion time can not be greater than the time
resolution:
P

tAD £ pAt.
In the case of uniform sampling this would limit frequency
bandwidth to

1
2t

AD”

Considering the case of Fig.2 it can be easily stated that the
correlation function

ny(T) = E{g(t)y(t+?)}
can be estimated from the two series in the kAt points

/k=0,1,-1,2.../, that is, the time resolution (At) allows a
frequency bandwidth of

L
2At

Let us remember now the direct Fourier Transform /DRFT/ method:

S (kAf) = é% X(KAD) Y (kAf) ,

and try to find a similar formula. Let us introduce the
following notations:

R(k)
Af =

4

R(kAt) s(k) & s(kaf)

1 1 .
T = m Xi 4] X(lAt)

Q = qp(p+ﬂ M = q(p+l) N = gp

L-1 - f)wﬁ.l_
XL(k) = E X, e “ /L is the sequence length/
i=0

We prove in the following that

S(k) - &t Zy(KYV (k) /k=0...Q-1/

qQ /1/

is an estimator for S(K}.
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E{S(k)}

M-1 . ek N-1 kn
jon— ~jom==
= A% E{ zme M E vne N =
m:O n:o
M-1 . kmp N-1 _owkn(p+1)
= Ati ES X erﬂ Q y I'e3 JZlT Q =
q 1 mp : n{p+1) -
m=0 n=0
At M-1 N-1 ] _jgﬂk[n(pal)—mp]
" a Z 5 - {meyn(p+l)}e -
m= Nn=
o1 ne _jgﬁk[h(pél)—mp]
=3 E E ny(n[p+l]—mp)e At, /2/
m=0 n=0

Eq.2 clearly shows that the expected value of §(k) is a
weighted Fourier transform of the correlation function. The
weighting function /time window, w(t)/ is normalized: from
Fig.2 it can be seen that the argument (p[p+1]-mp) is exactly
in q cases equal to zero, so dividing by q w(0)=1i. w(t) is
treated in detail in Sect.4.

Summing up the above statements, the algorithm consists of the
following main steps:
- computation of the {Zk} and {Vk} discrete Fourier transformed

series /O<k<«M and O€k<N respectively/;

- computation of the power density spectrum estimator

At_fv

§ (kar) = Vo

for the values 0£ke«Q. For the values k»M or k»N we make use
of the fact that

Z and V

k = Zk(modm) k = Vi (modn) "

Here k(modM) denctes the remainder when dividing k by M.

- Repeating the foregoing steps and forming a mean value in
order to decrease the variance.
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3. SPEED OF THE ALGORITHM

The run time of an algorithm is often supposed to be
proportional to the number of multiplications. In this section
the suggested algorithm is compared with the algorithm used in
indirect spectrum analysis by comparing the numbers of
multiplications. Although both M and N cannot be the power of
2 at the same time, an FFT can be executed on prime number
base /4/, or the Winograd Fourier transform /5,6/ can be used.
SO one can expect that the speed increase is about the same as
between direct and indirect Fourier analysis.

Examples of comparison /values of pP,q,M,N and Q/ are listed in
Table 1. These numbers are chosen in such a way that the prime
factors of M,N,Q are possibly small.

p or q M=q(p+1) N=gp Q=qp(p+1)
frequency limit
multiplier

2 2
23_g 2416 | 2% 32-144 27108 27.3%.1152

3.5=15 23_g 27128 |23 3.52120 | 27 3.5-1920

Table 1 Examples of constants

FFor simplicity, let the number of complex multiplications be

approximated by NlogQN in an FIFT algorithm of N elements even

if N is not a power &6f 2. One complex multiplication is

¢quivalent to four real multiplications.

a./ To compute the correlation function estimator, the number
of rcal multiplications required is MN. The transform
exeécutes QlogpQ complex multiplications.

b./ In the suggested algorithm the transforms require
MlogDM + NlogQN complex multiplications, and further Q

complex multiplications are neceded to compute the power
density spectrum estimator.

Table 2 lists the numbers of real multiplications for the two
algorithms and the two examples. The suggested algorithm is of
similar efficiency as the Cooley-Tukey aligorithm, corresponding

Lo expectations.
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M N Q Indirect alg. Suggested alg.

144 1128 1152 6,5-104 1,2-104

128 {120 | 1920 8,4-104 1,4'104

Table 2 The number of real multiplications

4. DISTORTION

In order to obtain an expression for the distortion, the window
function should be investigated. Considering Eq.2 and Fig.2 it
can be stated that the value of q-w(kAt) is equal to the
number of occurrences of the [x(sAt), y(sat+kat)] pairs. The
shape of q-w(kat) can visually be obtained from Fig.2 /Fig.3/.

In g-wkat) a step function dominates /Fig.3b/, and an additional
ripple function /with vatues of 0 and i/ can be observed. For
the values of w(kat) the following inequalities hold:

K k
| — ~1 £ . kKAt < | —_—_—— 0<k <« 3
where [x] denotes the integer part of x.

The step function /ws/ can be expressed as:

T
T, = p{p+1) At = 3

wTw(t) = &(t+7 )-E(-T))
0 if t<0;
)=
1 if t20
q-1
w () = % we o (). /4)
i=1 W

The values of the window function can be computed analytically
as follows. The value of q-w{kAt) equals the number of the
corresponding x,y pairs, that is, the number of solutions of
the following Diophantine equation /2/:

k = n{(p+1y-mp , O € m<&q(p+l), O € n<aqgp. /5/
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To solve the equation, it has to be transformed:

m = n{p+1)- k n o+ n-k . 6/

p p

Here 235 must be integer. Consequently:

n = k(modp) + rp , Ofreq . /7/
Substituting Eq.7 into EqQ.6:
m = k(modp) + rp + r - [%] = r(p+l)+ t /8/

where t = k(modp)—[%].

For a given kK and p exactly g values of m can be computed
/see the inequality for r in Eq.7/. Solutions are those
values of m, fer which the inequality in Eg.5 holds. '
The number of solutions is obviously equal to the length of
the intersecting part of the two sections in Fig.4.

Considering the distortion, in most cases the ripple
function can be neglected and the window function can be
approximated by the Bartlett window. So the distortion is
about the same as by the DRFT:

E{S (O} =w(f)x s(£) mw (£) = s(r).

The Fourier transform of the window and of the step function
with the parameters given in the example are plotted in Fig.5.

5. VARIANCE

-

It is shown in Section 2 and Zection 4 that thc algorithm is

in close relationship with the direct Fourier Transfoirm /DRFT/
method. For stochastic signals DRFT has 100% variance /1/.
Considering that we torm the product of two Fourier transformed
series as well, the variance is also approximately 100% in our
case.

For deterministic signals /e.g. sine wave/ DRFT has rather
small variance /caused by the unknown phase/. Investigating
our algorithm we have found that this case has some special
variance problems. An example is shown in Fig.6.

A sine wave ol 3Hz is measured with parameters t=0,05s , p=4,
gq=3. The sampling rates are correspondently 4Hz and 5Hz.
On Fig.6 {Zk} and {Vks are drawn; the repeated spectra

caused by small sampling rates can be obscrved. It can be
noticed that the peaks coincide not only at 3Hz but at 7Hz as

192



well. Since the phase of the product at 7Hz rotates when fhe
phase of the sine wave is shifted, the mean is zero as
expected, but the variance is great: the relative variance is
in this case infinite. This means that the "vernier spectra
should be averaged to aveid false peaks. On the other hand,
this is not a very awkward requirement: when measuring spoectra
at higher frequencics the required rocord length for one
estimate is relatively short.

The situation shown for deterministic signals can naturaliy
occur in the case o stochastic signals as well. So the
variance at certain frequencies can be increased because

of other spectrum peaks.

7 . SUMMARY

The theoretical basis for directly computing the power

density spectrum from vernier sampled data is explained. Tho
suggested algorithm has a similar efticiency as FFT. The vindos
function, distortion and variance are treated in detail.,
Further work is needed to thoroughly investigate the variance
and the points of view for choosing p and q, and :io prove

the advantages ot the algorithm in practice.
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