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Abstract - Receantly, much excitement has been caused in
the EUPAS group by the evaluation of the IEEE 1241 daft
standard. This draft contains a lot of useful information and
several well established facts. However, there are also some
detail s which are not fully clarified, or need further exami-
nation. This paper deals with one of these: the posshility of
data processng, based on windowed data.
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1. INTRODUCTION

Finite record length effeds may deteriorate the results of
measurements with sinusoidals sgnificantly. The draft stan-
dard reaognizes this fact, and at several places advocates co-
herent sampling. This means that in a test, an integer num-
ber of periods neadsto be taken, that is,

f=—f, 1)
where f; is the frequency of the sine wave, my is an integer

lessthan M/2, M is the number of samplesin the record, and
fs is the sampling frequency (cf. 4.1.5.1).
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Fig. 1. DFT result of a mherently sampled sinusoidal. M=128, =20

It is right indeed that whenever possble, coherent sam-
pling isthe proper choice(Fig. 1).

However, when incoherent sampling may occur (see (i)
and (ii) abowe Eq. (4.1.5.1.3)), windowing is amost un-
avoidable. In the following sedions we are going to discuss
the mnsequences of applying windows in detail .

2. MODELING A SINE WAVE

The cause of many problemsis the fact that theoretically,
the Fourier transform of a sine wave @nsists of two Dirac
delta functions at the appropriate frequencies:

F{Acos(2rf;t + @)}
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In strict sense, this does not exist, and in measurements
we obtain only a secondary function based on this. We l-
lead samples from a finite-length record. This operation can
be modeled by cutting out the finite-length record from the
infinite-length sinusoidal applying multi plication by a win-
dow function. The equivalent of this multiplication is a con-
volution in the frequency domain:

F{Acos(2r;t + @) w(t)}
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The mnsequence of discrete processng isfirst of all that
the shape of the above-described window function dightly
changes because of aliasing, so the results for continuous-
time windows only approximately hold. In other words, the
window shape becomes dightly dependent on the number of
samples, M. Sewnd, in the DFT we seeonly the samples of
the discrete-time window, taken at the frequency bins of the
discrete Fourier transform:

f
fie =k > =KIDf ()



Now the problem we try to solve is the following: we
have M samplesin thetime or in the frequency domain, cor-
rupted by some noise and by some distortion components.
From these samples, we would like to determine the pa-
rameters of the sine wave as predsely as possble, then sub-
tract it from the samples, and evaluate the rest for SINAD,
THD, etc., maybe using also the amplit ude of the sinusoidal.

In the @se of no extra windowing, we have the so-call ed
redangular window. For the mntinuous-time @se:

M if 0<st<T

t) = 5

Wreer (1) Ep otherwise Sl
; sin(rfT

W (1) =™ 000 ©

When we apply the DFT to discrete points, we have the
following:
01 for 0OsisM-1

= 7
%) otherwise. Y

Wrect (i )

The DFT is clearly a delta function at zero, and zero
elsewhere. However, when writing the N-point DFT, we see
more:

sinBT% M @
Wrect,M/N (k) = ejnk D— (8)

sinBTEH
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The absolute value of Weg mn(K) is frownin Fig. 2.
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Fig. 2. DFT of the redanguar window, N=128 M=16.

The records ohtained by coherent sampling are easy to use.
As long as the time domain window consists of at most a
few low-frequency sinusoids whose frequencies correspond
to the DFT bins, the frequency domain equivalent of the
window contains zeros at distances nAf from the center. As
an example, let us consider the Hanning window.

-H- 1
()= A cosprt B ) ©

W, () :E§(f)—0.56@f —%Q—o.sa@f +T£%:M/rect(f)
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The formulae are simil ar for the discrete @ase.
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Fig. 3. Hanningwindow in the frequency domain, N=128 M=16.

Apart from the main lobes, the repeated redangular
windows have zeros at the same places. This means that in
the Fourier transform there is only a large central peak,
whil e the sinusoid has no effed on the other bins. Therefore,
coherent sampling is usually insensitive to windowing. We
will come back to this later. Let us discussnow what we are
interested in, and how this is ohtained in the @se of inco-
herent sampling.

3. DISCUSSON

Usually, we have one or maximum 2-3 sinusoidal sig-
nals. We are interested primarily not in them, but rather in
the rest of the spedrum. We usually wish to remove them as
profoundly as it is possble, since the remaining part is the
error we want to measure. The basic steps are as follows:

 determine the sine parameters from the record,
 subtract (suppress the sing(s),
» analyzetheresiduals.

Let uslodk first at a typical DFT result calculated from
incoherently sampled data.

In Fig. 4 we seein the individual bins the samples of the
window function, positioned around the frequency of the sine
wave. The eact frequency of the sine wave is ©mewhere
between the adjacent large peak pairs. The true frequency of
the sine wave is at most Af/2 from the place of the maximum
peak, and the maximum peak is also down from the theo-
retical value (64).
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Fig. 4. Typicd DFT of an incoherently sampled sine wave, f=20.3

This inacauracy is far too much for our purposes, espe-
cially because the value of the maximum aso may vary
down to abaut 64% of the true value. There are basically two
approaches to tackle these problems.

By the nonpaametric approach we @n significantly im-
prove the approximation of the maximum value by applying
the so-called flat top window [2]. By this, we modify the
shape of the window in order to achieve that the value of the
window is essntially constant in the frequency domain be-
tween [-Af/2,Af/2]. In Fig. 5. the maximum amplitude aror
is about 0.2% (the difference between heights of the lines,
being at a distance Af from each other, is much larger).
However, the determination of the frequency is gill not im-
proved —we @n only use this method for our purposes when
the frequency of the sine wave is known. If we know bath
the amplitude and the frequency, the determination of the
phaseis graightforward.
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Fig. 5. Incoherent sampling processed with flat top window

Parametric model fitti ng

A more useful approach is parametric model fitting. This
can be performed in the time domain or in the frequency
domain. Intuitively it is clear that when performed properly,
the procedures in the two domains are essentially equivalent.
Thebasicideain any case is that we assume a certain model
of the signal (sine wave with noise, etc), and determine the

parameters from the model which fits the best the measured
data.

There is however a fundamental problem. We @an solve
model fitting properly if the mode is valid. When any non-
modeled phenomena ocaur, even the best method may yield
wrong results. For example, in the @ase of incoherent sam-
pling, any other harmonics (e.g. harmonic distortion) may
disturb the fitting procedure. Then the wnsequence is that
the parameters are impredse, and therefore the removal of
the sine wave is inaccurate. The eror we commit may be in
the same order of magnitude as the residuals we want to
evaluate. This can be a serious problem in the four parame-
ter method [1, 4.1.4.3].

A posshility to circumvent the abowe difficulties is to
model evey important harmonic which may be present, and
after the fit, remove the fundamental sine wave only. The
difficulty is that in general it is very difficult to seled the
frequencies where such harmonics are present. Seeding too
many harmonics can make the algorithm slow and sensitive
to local minima. The only reasonable way is to extend the
four parameter method by a mechanism which takes into
acoount that most such components are harmonically related
to each other. Therefore, while there are several compo-
nents, their frequencies are described by one single parame-
ter w3 and the (fixed) harmonic numbers only. This approach
is not yet described in the draft, maybe because of complica-
tions difficult to tacklein advance

The auivalent of the four parameter method, or of its
several-component extension, is to fit the DFT result by a
scaled version of the frequency domain form of the discrete
window, or by a set of such windows. This is in general
more cmplex than in the time domain, so we do not discuss
it further.

When we want to avoid the above-described too complex
modeling, and still want to determine the parameters of the
sine wave properly, the best way is to avoid that different
harmonics disturb the etimates of each other. This is the
basic idea of windoning.

Windoning

From Fig. 4 it is graightforward that each incoherently
sampled sine wave results in components at the other fre-
quency bins (leakage). The ause is the form of the redan-
gular window: its sdelobes are toolarge. Theideais then to
modify the shape of the window function to have as small
sidelobes asit is posshle.

Here, there are two approaches again. One is the use of
so-call ed harmonic windows: windows which are the sum of
a few low-frequency sinusoidal functions, which therefore
have a series of zeros for coherent sampling (see Eqg. (10)).
This gives the so-call ed Blackman-Harris windows [3,4].

However, we @an redlize that the requirement of the ze-
ros (for coherent sampling) is not necessary. We @an speau-
late that it is enough to prescribe that the sidelobes do not
surpassa ceatain level. This leads to the designed low-ripple
windows, like the Kaiser (Kaiser-Bess#l) window [3,4,9] or
the Dol ph-Chebyshev one[3,4,8].



In general, we may observe when we prescribe the fre-
guency domain behavior, and wish to design a symmetric
time series to this, we just design a linear phase FIR filter.
Consequently, any goad FIR filter design algorithm, e.g. the
well-known REMEZ algorithm can be used to oltain the
best window we @n have at all.

It is true for each window that sidelobe suppresson is at
the @st of widening the main lobe. Therefore, windowing
somewhat deaeases sledivity: non-overlapping compo-
nents may not be doser than a few hins (a few times Af).
Therefore, the frequency of the sine wave must be larger
than afew times Af=f;/M for proper processng.

In the light of the abowve discusgon, we an probably re-
fine the statement in the draft ([1, Sedion 4.1.5]: "The win-
dow functions are diosen in atrade off between the dfedive
noise bandwidth (ENBW), or resultant DFT bins, and
minimum stopband response of the window filter function as
discused in the following clause In the abowe light,
ENBW is not very important. The proper sdedion of the
window function can be as follows: seled the one with the
allowed stopband response, with as gnall mainlobe band-
width* asit is possble. Now the value of the ENBW will be
determined by the window: it can be appropriately calcu-
lated from the window samples. Its definition may however
deserve alittl e explanation. First of all, let us observe that it
is amplitude scaling independent, and its value (see Eq.
4.1.5.1.4) isexactly 1 for the readangular window.

Let usfirst discussthe scaling of the windows. There are
afew strategies for this. We @n

a) keep the scaling of the frequency domain peaks of sinu-
soidals constant (that is, maintain the same value of the
time domain integral), or

b) ke the variance of a white noise sequence onstant.

In this paper we foll ow the first strategy. By this the height
of the peak of the Fourier transform of a sine wave is the
same as without windowing?.

For random signals, we @nnot give a measure in terms
of the amplitude, only in terms of the standard deviation or
the variance The integral of the window function remains
constant (the denominator in the expresson of the ENBW),
whil e the variance danges for white noise in the foll owing
way:

M-1 ’
wo(n) M-1
— 0= ZWz(n) = ENBW. (11)

1 ! 2 M n=0
wn Wrect(n) -

Becuse of Parseval's theorem, this is also true in the
frequency domain:

valy, =

! Kegping sine wavesin mind, let us define the width of the mainlobe asthe
distance between the two stopbands, becuse this determines the minimum nec-
essry distance between noroverlapping harmonics.

*Thisisat least theoretically true — for non-coherent sampli ng the maximum
value of the pedrum can be small er, depending onthe frequency mismatch
and the shape of thewindow. The small er the frequency mismatch, the doser
the maximum to the theoretical valueis.

M-1
S W2(K)

= :ﬁ z_w (n) = ENBW. (12

W2t (K)
k=0

vary, =

Therefore, the ENBW acoounts for the change in the
noise variance It is equal to the multiplicative term, and its
square roat corresponds to the multiplicative term in the
standard deviation.

We know now how the amplitude of the transform of a
windowed sine wave canges, and we also know how the
variance or the standard deviation of the noise peaks
change. The last thing we have to discuss is whether the
power of a sine wave @n also be alculated from the spec-
trum, without the necessty of calculating the amplitudes.
Here the predse answer is unfortunately no. The sum of
squares of the frequency domain samples gives the power of
the sine in the window, and this can be different from the
power of the cntinuous-time signal. However, the deviation
isusualy not large. If we need the approximate power of the
harmonic (as for the total harmonic distortion), the sum of
the squares of the frequency domain samples, divided by
ENBW and by M, gives an approximate value of the power.
The result is not fully accurate (seeFig. 6), sinceit dightly
depends on the frequency of the sine, but will still yield a
goad enough approximate value of the power we are looking
for.
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Fig. 6. Value of the power cdculated from the ajacent lines, asafunction
of the frequency. Kaiser window with beta=3, M=128

Now that we successully separated the dfed of the dif-
ferent harmonics, we @n turn back again to the determina-
tion of the parameters. Now our problem is smplified to the
following one: given a few frequency domain samples
(around the sine frequency), determine the parameters.

The standard way for this is the so-called Interpolated
FFT [5]. Thisis a set of algorithms which, based on some
approximation, determine the parameters of the sine wave
from the samples around the maximum. This gives a good
estimate of the amplitude and of the frequency.

Another posshility is as follows. In testing we usually
have some time for off-line @l culations. There is a smple
algorithm for this purpose. If we seled all the samples from



the main lobe, and set the rest to zero, we have with goad
approximation the Fourier transform of a windowed sine
wave. Taking the IDFT of the two seleded line groups, we
ohtain the time samples of the windowed sine wave. When
dividing by the window function (and dscarding those val-
ues which are divided by a very small number where the
window function is close to zero), we @n use the four pa
rameter method to determine the desired parameters. This
fairly simple procedure has not been described in the draft
yet.

As we already mentioned abowe, removal of the sine is
only effedive if the sine parameters are predsely known.
Inaccurate estimation of the parametersis usually a problem
because the sides of the sidelobes in Fig. 2 are steep, s0 a
small error in the removal may cause a large residual. This
is the main isaue for windowing: we have to accept that the
values of the sine parameters are not exact, but if corredion
is necessary which is comparable to the quantiti es to meas-
ure (harmonic distortion components, noise), accurate tar-
acterization of the ADC isill usory.

The removal is fairly easy when there are no significant
sidelobes. We simply discard the group of the few large
samples. We @n even subtract the sine from the samples,
take the ordinary DFT without windowing (or with some
windowing again for the determination of the largest peaks,
like needed for SFDR), and eval uate the result.

As we have seen abowve, we @n have bath the windowed
and the non-windowed version of the residuals, as we like.
The only question is which method is sensitive to incoherent
sampling, and what is the result of windowing.

THD [1, Sedion 4.1.5] The draft standard says about the
Total Harmonic Distortion test:

"The test described abowve is based on DFT analysis (e.g.,
via DFT) on urmindonved sample sets.” ... "Windowing is
not recommended for these procedures due to the widening
of resolution bandwidth."

Based on the abowe discussons, we @n state the foll ow-
ing. If we talk about the dfed of periodic components, like
in the @ase of the THD, it islogical to use a close-to-flat-top
window after the removal of the sine wave. The predsion of
the flatness depends on the requirement for the measure-
ment of the amplitudes: thisis usually not very strict. Read
the amplitudes, and sum up the power accordingly. The
price we pay is that the noise floor increases, and we must
not have harmonics too close to each other. These disad-
vantages are usually tolerable.

Another posshility is to seled the GROUPS of lines be-
longing to the harmonic peaks (the number depends on the
window), add the squared absolute values together, and d-
vide by the ENBW and M2 Thiswill give a good estimate of
the power of the harmonic, with lower noise floar.

SR [1, Sedion 4.4.5.3] The standard does not discussthe
effea of windowing to the Spurious-Free Dynamic Range.
However, the @lculation is graightforward: take the average
of the windowed DFT's calculated with an approximate flat
top window (with posgbly small bandwidth to prevent
aliasing), and look for the largest peak.

SINAD [1, Sedion 4.5.1] Here we want to calculate the
power of the residuals to have the Signal to Noise and Dis-
tortion Ratio. This is draightforward again: use the non-
windowed residuals, and add the squared absolute values, or
do the same with windowed data, and dvide by the ENBW
value.

4. SUGGESTIONS

In the previous dions, we have formulated suggestions
to extend and improve the draft standard IEEE 1421 We
fed however that the design of window functions, displaying
their properties, evaluating complex agorithms with o
programming bugs etc. is a difficult task for most users. On
the other hand, nobady can undertake the job for developing
al algorithms for all important computers, ready-to-use but
also flexible enough for spedal purposes. The suggestion is
that EUPAS, maybe jointly with the draft committeg make
model algorithms publicly avail able via aWEB site, in order
to alow that people @n compare their algorithms to stan-
dard ones, have quick solutions for a few cases. The author
is ready to work on such an undertaking based on Matlab
itself and on function M-fil es.
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