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Abstract - Recently, much excitement has been caused in
the EUPAS group by the evaluation of the IEEE 1241 draft
standard. This draft contains a lot of useful information and
several well establi shed facts. However, there are also some
detail s which are not full y clarified, or need further exami-
nation. This paper deals with one of these: the possibilit y of
data processing, based on windowed data.
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1.  INTRODUCTION

Finite record length effects may deteriorate the results of
measurements with sinusoidals significantly. The draft stan-
dard recognizes this fact, and at several places advocates co-
herent sampling. This means that in a test, an integer num-
ber of periods needs to be taken, that is,
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where fi is the frequency of the sine wave, mi is an integer
less than M/2, M is the number of samples in the record, and
fs is the sampling frequency (cf. 4.1.5.1).

Fig. 1.  DFT result of a coherently sampled sinusoidal. M=128, fi=20

It is right indeed that whenever possible, coherent sam-
pling is the proper choice (Fig. 1).

However, when incoherent sampling may occur (see (i)
and (ii ) above Eq. (4.1.5.1.3)), windowing is almost un-
avoidable. In the following sections we are going to discuss
the consequences of applying windows in detail .

2.  MODELING A SINE WAVE

The cause of many problems is the fact that theoreticall y,
the Fourier transform of a sine wave consists of two Dirac
delta functions at the appropriate frequencies:

( ){ }
( ) ( ).

22
          

2cos

i
j

i
j

i

ffe
A

ffe
A

tfAF

++−=

+

− δδ

φπ

φφ (2)

In strict sense, this does not exist, and in measurements
we obtain only a secondary function based on this. We col-
lect samples from a finite-length record. This operation can
be modeled by cutting out the finite-length record from the
infinite-length sinusoidal applying multipli cation by a win-
dow function. The equivalent of this multipli cation is a con-
volution in the frequency domain:
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The consequence of discrete processing is first of all that
the shape of the above-described window function slightly
changes because of aliasing, so the results for continuous-
time windows only approximately hold. In other words, the
window shape becomes slightly dependent on the number of
samples, M. Second, in the DFT we see only the samples of
the discrete-time window, taken at the frequency bins of the
discrete Fourier transform:
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Now the problem we try to solve is the following: we
have M samples in the time or in the frequency domain, cor-
rupted by some noise and by some distortion components.
From these samples, we would li ke to determine the pa-
rameters of the sine wave as precisely as possible, then sub-
tract it from the samples, and evaluate the rest for SINAD,
THD, etc., maybe using also the amplitude of the sinusoidal.

In the case of no extra windowing, we have the so-called
rectangular window. For the continuous-time case:
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When we apply the DFT to discrete points, we have the
following:
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The DFT is clearly a delta function at zero, and zero
elsewhere. However, when writing the N-point DFT, we see
more:
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The absolute value of Wrect,M/N(k) is shown in Fig. 2.

Fig. 2. DFT of the rectangular window, N=128, M=16.

The records obtained by coherent sampling are easy to use.
As long as the time domain window consists of at most a
few low-frequency sinusoids whose frequencies correspond
to the DFT bins, the frequency domain equivalent of the
window contains zeros at distances n�∆f from the center. As
an example, let us consider the Hanning window.
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The formulae are similar for the discrete case.

Fig. 3.  Hanning window in the frequency domain, N=128, M=16.

Apart from the main lobes, the repeated rectangular
windows have zeros at the same places. This means that in
the Fourier transform there is only a large central peak,
while the sinusoid has no effect on the other bins. Therefore,
coherent sampling is usually insensiti ve to windowing. We
will come back to this later. Let us discuss now what we are
interested in, and how this is obtained in the case of inco-
herent sampling.

3.  DISCUSSION

Usually, we have one or maximum 2-3 sinusoidal sig-
nals. We are interested primaril y not in them, but rather in
the rest of the spectrum. We usually wish to remove them as
profoundly as it is possible, since the remaining part is the
error we want to measure. The basic steps are as follows:

• determine the sine parameters from the record,
• subtract (suppress) the sine(s),
• analyze the residuals.

Determination of the sine parameters

Let us look first at a typical DFT result calculated from
incoherently sampled data.

In Fig. 4 we see in the individual bins the samples of the
window function, positioned around the frequency of the sine
wave. The exact frequency of the sine wave is somewhere
between the adjacent large peak pairs. The true frequency of
the sine wave is at most ∆f/2 from the place of the maximum
peak, and the maximum peak is also down from the theo-
retical value (64).



Fig. 4.  Typical DFT of an incoherently sampled sine wave, fi=20.3

This inaccuracy is far too much for our purposes, espe-
ciall y because the value of the maximum also may vary
down to about 64% of the true value. There are basicall y two
approaches to tackle these problems.

By the nonparametric approach we can significantly im-
prove the approximation of the maximum value by applying
the so-called flat top window [2]. By this, we modify the
shape of the window in order to achieve that the value of the
window is essentiall y constant in the frequency domain be-
tween [-∆f/2,∆f/2] . In Fig. 5. the maximum amplitude error
is about 0.2% (the difference between heights of the lines,
being at a distance ∆f from each other, is much larger).
However, the determination of the frequency is still not im-
proved – we can only use this method for our purposes when
the frequency of the sine wave is known. If we know both
the amplitude and the frequency, the determination of the
phase is straightforward.

Fig. 5.  Incoherent sampling processed with flat top window

Parametric model fitti ng

A more useful approach is parametric model fitti ng. This
can be performed in the time domain or in the frequency
domain. Intuiti vely it is clear that when performed properly,
the procedures in the two domains are essentiall y equivalent.
The basic idea in any case is that we assume a certain model
of the signal (sine wave with noise, etc), and determine the

parameters from the model which fits the best the measured
data.

There is however a fundamental problem. We can solve
model fitting properly if the model is valid. When any non-
modeled phenomena occur, even the best method may yield
wrong results. For example, in the case of incoherent sam-
pling, any other harmonics (e.g. harmonic distortion) may
disturb the fitting procedure. Then the consequence is that
the parameters are imprecise, and therefore the removal of
the sine wave is inaccurate. The error we commit may be in
the same order of magnitude as the residuals we want to
evaluate. This can be a serious problem in the four parame-
ter method [1, 4.1.4.3].

A possibilit y to circumvent the above diff iculties is to
model every important harmonic which may be present, and
after the fit, remove the fundamental sine wave only. The
diff iculty is that in general it i s very diff icult to select the
frequencies where such harmonics are present. Selecting too
many harmonics can make the algorithm slow and sensiti ve
to local minima. The only reasonable way is to extend the
four parameter method by a mechanism which takes into
account that most such components are harmonicall y related
to each other. Therefore, while there are several compo-
nents, their frequencies are described by one single parame-
ter ωi and the (fixed) harmonic numbers only. This approach
is not yet described in the draft, maybe because of complica-
tions diff icult to tackle in advance.

The equivalent of the four parameter method, or of its
several-component extension, is to fit the DFT result by a
scaled version of the frequency domain form of the discrete
window, or by a set of such windows. This is in general
more complex than in the time domain, so we do not discuss
it further.

When we want to avoid the above-described too complex
modeling, and still want to determine the parameters of the
sine wave properly, the best way is to avoid that different
harmonics disturb the estimates of each other. This is the
basic idea of windowing.

Windowing

From Fig. 4 it is straightforward that each incoherently
sampled sine wave results in components at the other fre-
quency bins (leakage). The cause is the form of the rectan-
gular window: its sidelobes are too large. The idea is then to
modify the shape of the window function to have as small
sidelobes as it is possible.

Here, there are two approaches again. One is the use of
so-called harmonic windows: windows which are the sum of
a few low-frequency sinusoidal functions, which therefore
have a series of zeros for coherent sampling (see Eq. (10)).
This gives the so-called Blackman-Harris windows [3,4].

However, we can reali ze that the requirement of the ze-
ros (for coherent sampling) is not necessary. We can specu-
late that it is enough to prescribe that the sidelobes do not
surpass a certain level. This leads to the designed low-ripple
windows, li ke the Kaiser (Kaiser-Bessel) window [3,4,9] or
the Dolph-Chebyshev one [3,4,8].



In general, we may observe when we prescribe the fre-
quency domain behavior, and wish to design a symmetric
time series to this, we just design a linear phase FIR filter.
Consequently, any good FIR filter design algorithm, e.g. the
well -known REMEZ algorithm can be used to obtain the
best window we can have at all .

It is true for each window that sidelobe suppression is at
the cost of widening the main lobe. Therefore, windowing
somewhat decreases selectivity: non-overlapping compo-
nents may not be closer than a few bins (a few times ∆f).
Therefore, the frequency of the sine wave must be larger
than a few times ∆f=fs /M for proper processing.

In the light of the above discussion, we can probably re-
fine the statement in the draft ([1, Section 4.1.5]: "The win-
dow functions are chosen in a trade off between the effective
noise bandwidth (ENBW), or resultant DFT bins, and
minimum stopband response of the window filter function as
discussed in the following clause." In the above light,
ENBW is not very important. The proper selection of the
window function can be as follows: select the one with the
allowed stopband response, with as small mainlobe band-
width1 as it is possible. Now the value of the ENBW will be
determined by the window: it can be appropriately calcu-
lated from the window samples. Its definition may however
deserve a littl e explanation. First of all , let us observe that it
is amplitude scaling independent, and its value (see Eq.
4.1.5.1.4) is exactly 1 for the rectangular window.

Let us first discuss the scaling of the windows. There are
a few strategies for this. We can

a) keep the scaling of the frequency domain peaks of sinu-
soidals constant (that is, maintain the same value of the
time domain integral), or

b) keep the variance of a white noise sequence constant.
In this paper we follow the first strategy. By  this the height
of the peak of the Fourier transform of a sine wave is the
same as without windowing2.

For random signals, we cannot give a measure in terms
of the amplitude, only in terms of the standard deviation or
the variance. The integral of the window function remains
constant (the denominator in the expression of the ENBW),
while the variance changes for white noise in the following
way:
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Because of Parseval's theorem, this is also true in the
frequency domain:

                                           
1 Keeping sine waves in mind, let us define the width of the mainlobe as the
distance between the two stopbands, because this determines the minimum nec-
essary distance between non-overlapping harmonics.
2This is at least theoretically true – for non-coherent sampling the maximum
value of the spectrum can be smaller, depending on the frequency mismatch
and the shape of the window. The smaller the frequency mismatch, the closer
the maximum to the theoretical value is.
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Therefore, the ENBW accounts for the change in the
noise variance. It is equal to the multipli cative term, and its
square root corresponds to the multipli cative term in the
standard deviation.

We know now how the amplitude of the transform of a
windowed sine wave changes, and we also know how the
variance or the standard deviation of the noise peaks
change. The last thing we have to discuss is whether the
power of a sine wave can also be calculated from the spec-
trum, without the necessity of calculating the amplitudes.
Here the precise answer is unfortunately no. The sum of
squares of the frequency domain samples gives the power of
the sine in the window, and this can be different from the
power of the continuous-time signal. However, the deviation
is usually not large. If we need the approximate power of the
harmonic (as for the total harmonic distortion), the sum of
the squares of the frequency domain samples, divided by
ENBW and by M, gives an approximate value of the power.
The result is not full y accurate (see Fig. 6), since it slightly
depends on the frequency of the sine, but will still yield a
good enough approximate value of the power we are looking
for.

Fig. 6.  Value of the power calculated from the adjacent lines, as a function
of the frequency. Kaiser window with beta=3, M=128.

Now that we successfull y separated the effect of the dif-
ferent harmonics, we can turn back again to the determina-
tion of the parameters. Now our problem is simpli fied to the
following one: given a few frequency domain samples
(around the sine frequency), determine the parameters.

The standard way for this is the so-called Interpolated
FFT [5]. This is a set of algorithms which, based on some
approximation, determine the parameters of the sine wave
from the samples around the maximum. This gives a good
estimate of the amplitude and of the frequency.

Another possibilit y is as follows. In testing we usually
have some time for off-line calculations. There is a simple
algorithm for this purpose. If we select all the samples from



the main lobe, and set the rest to zero, we have with good
approximation the Fourier transform of a windowed sine
wave. Taking the IDFT of the two selected line groups, we
obtain the time samples of the windowed sine wave. When
dividing by the window function (and discarding those val-
ues which are divided by a very small number where the
window function is close to zero), we can use the four pa-
rameter method to determine the desired parameters. This
fairly simple procedure has not been described in the draft
yet.

Proper removal of the sine components

As we already mentioned above, removal of the sine is
only effective if the sine parameters are precisely known.
Inaccurate estimation of the parameters is usually a problem
because the sides of the sidelobes in Fig. 2 are steep, so a
small error in the removal may cause a large residual. This
is the main issue for windowing: we have to accept that the
values of the sine parameters are not exact, but if correction
is necessary which is comparable to the quantities to meas-
ure (harmonic distortion components, noise), accurate char-
acterization of the ADC is ill usory.

The removal is fairly easy when there are no significant
sidelobes. We simply discard the group of the few large
samples. We can even subtract the sine from the samples,
take the ordinary DFT without windowing (or with some
windowing again for the determination of the largest peaks,
li ke needed for SFDR), and evaluate the result.

Analysis of the residuals

As we have seen above, we can have both the windowed
and the non-windowed version of the residuals, as we li ke.
The only question is which method is sensiti ve to incoherent
sampling, and what is the result of windowing.

THD [1, Section 4.1.5] The draft standard says about the
Total Harmonic Distortion test:

"The test described above is based on DFT analysis (e.g.,
via DFT) on unwindowed sample sets." … "Windowing is
not recommended for these procedures due to the widening
of resolution bandwidth."

Based on the above discussions, we can state the follow-
ing. If we talk about the effect of periodic components, li ke
in the case of the THD, it is logical to use a close-to-flat-top
window after the removal of the sine wave. The precision of
the flatness depends on the requirement for the measure-
ment of the amplitudes: this is usually not very strict. Read
the amplitudes, and sum up the power accordingly. The
price we pay is that the noise floor increases, and we must
not have harmonics too close to each other. These disad-
vantages are usually tolerable.

Another possibilit y is to select the GROUPS of lines be-
longing to the harmonic peaks (the number depends on the
window), add the squared absolute values together, and di-
vide by the ENBW and M2. This will give a good estimate of
the power of the harmonic, with lower noise floor.

SFDR [1, Section 4.4.5.3] The standard does not discuss the
effect of windowing to the Spurious-Free Dynamic Range.
However, the calculation is straightforward: take the average
of the windowed DFT's calculated with an approximate flat
top window (with possibly small bandwidth to prevent
aliasing), and look for the largest peak.

SINAD [1, Section 4.5.1] Here we want to calculate the
power of the residuals to have the Signal to Noise and Dis-
tortion Ratio. This is straightforward again: use the non-
windowed residuals, and add the squared absolute values, or
do the same with windowed data, and divide by the ENBW
value.

4. SUGGESTIONS

In the previous sections, we have formulated suggestions
to extend and improve the draft standard IEEE 1421. We
feel however that the design of window functions, displaying
their properties, evaluating complex algorithms with  no
programming bugs etc. is a diff icult task for most users. On
the other hand, nobody can undertake the job for developing
all algorithms for all important computers, ready-to-use but
also flexible enough for special purposes. The suggestion is
that EUPAS, maybe jointly with the draft committee, make
model algorithms publicly available via a WEB site, in order
to allow that people can compare their algorithms to stan-
dard ones, have quick solutions for a few cases. The author
is ready to work on such an undertaking based on Matlab
itself and on function M-files.
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