Contents

Preface	XIX
Acknowledgments	XXI
Glossary of Symbols	XXIII
Acronyms and Abbreviations	XXVII

Part I Background

1	Intro	oduction	3
	1.1	Definition of the Quantizer	3
	1.2	Sampling and Quantization (Analog-to-Digital Conversion)	9
	1.3	Exercises	10
2	Sam	pling Theory	13
	2.1	Linvill's Frequency Domain Description of Sampling	14
	2.2	The Sampling Theorem; Recovery of the Time Function from its	
		Samples	18
	2.3	Anti-Alias Filtering	22
	2.4	A Statistical Description of Quantization, Based on Sampling	
		Theory	25
	2.5	Exercises	28
3	Prob	ability Density Functions, Characteristic Functions, Moments	31
	3.1	Probability Density Function	31
	3.2	Characteristic Function and Moments	33
	3.3	Joint Probability Density Functions	35
	3.4	Joint Characteristic Functions, Moments, and Correlation	
		Functions	40
	3.5	First-Order Statistical Description of the Effects of Memoryless	
		Operations on Signals	43
			VII

3.6	Addition of Random Variables and Other Functions of Random	
	Variables	46
3.7	The Binomial Probability Density Function	47
3.8	The Central Limit Theorem	49
3.9	Exercises	53

Part II Uniform Quantization

4	Stati	stical Analysis of the Quantizer Output	61
	4.1	PDF and CF of the Quantizer Output	61
	4.2	Comparison of Quantization with the Addition of Independent	
		Uniformly Distributed Noise, the PQN Model	66
	4.3	Quantizing Theorems I and II	69
	4.4	Recovery of the PDF of the Input Variable <i>x</i> from the PDF of the	
		Output Variable x'	70
	4.5	Recovery of Moments of the Input Variable x from Moments of	
		the Output Variable x' when QT II is Satisfied; Sheppard's	
		Corrections and the PQN Model	80
	4.6	General Expressions of the Moments of the Quantizer Output, and	
		of the Errors of Sheppard's Corrections: Deviations from the PQN	
		Model	84
	4.7	Sheppard's Corrections with a Gaussian Input	84
	4.8	Summary	85
	4.9	Exercises	87
5	Stati	stical Analysis of the Quantization Noise	93
	5.1	Analysis of the Quantization Noise and the PQN Model	93
	5.2	Satisfaction of Quantizing Theorems I and II	99
	5.3	Quantizing Theorem III/A	99
	5.4	General Expressions of the First- and Higher-Order Moments of	
		the Quantization Noise: Deviations from the PQN Model	102
	5.5	Quantization Noise with Gaussian Inputs	106
	5.6	Summary	107
	5.7	Exercises	108
6	Cros	scorrelations between Quantization Noise, Quantizer Input,	
	and (Quantizer Output	113
	6.1	Crosscorrelations when Quantizing Theorem II is Satisfied	113
		6.1.1 Crosscorrelation between Quantization Noise and the	
		Quantizer Input	113
		6.1.2 Crosscorrelation between Quantization Noise and the	
		Quantizer Output	115

7

	6.1.3	Crosscorrelation between the Quantizer Input and the Quantizer Output	116
6.2	Genera	al Expressions of Crosscorrelations	116
	6.2.1	Crosscorrelation between Quantization Noise and the	
		Quantizer Input	116
	6.2.2	Crosscorrelation between Quantization Noise and the Quantizer Output Signal	119
	6.2.3	Crosscorrelation between the Quantizer Input and Output Signals	122
63	Correl	ation and Covariance between Gaussian Quantizer Input and	122
0.0	Its Ou	antization Noise	123
6.4	Condi	tions of Orthogonality of Input x and Noise v: Quantizing	-
	Theore	em III/B	126
6.5	Condi	tions of Uncorrelatedness between x and v: Quantizing	
	Theore	em IV/B	127
6.6	Summ	ary	128
6.7	Exerci	ses	129
Gene	ral Stat	istical Relations among the Quantization Noise, the	
Quan	tizer In	put, and the Quantizer Output	131
7.1	Joint F	² DF and CF of the Quantizer Input and Output	131
7.2	Quant	izing Theorems for the Joint CF of the Quantizer Input and	120
7.2	Outpu	t DDE en l.C.E. ef de Constituer Institut en l.de Constitution	138
1.3	Joint I	Application of the DON Model	140
74	Ouent	Application of the PQN Model	140
/.4	the Ou	antization Noise: Application of the PON Model	146
75	Ioint N	Aments of the Quantizer Input and the Quantization Noise:	140
1.5	Ouanti	izing Theorem III	149
	7 5 1	General Expressions of Joint Moments when Quantizing	117
	/.0.1	Theorem III is not satisfied	151
7.6	Joint N	Moments of the Centralized Quantizer Input and the	
	Quanti	ization Noise: Quantizing Theorem IV	152
	7.6.1	General Expressions of Joint Moments	153
7.7	Joint I	PDF and CF of the Quantization Noise and the Quantizer	
	Outpu	t	154
7.8	Three-	Dimensional Probability Density Function and	
	Charac	cteristic Function	158
	7.8.1	Three-Dimensional Probability Density Function	158
	7.8.2	Three-Dimensional Characteristic Function	159
7.9	Genera	al Relationship between Quantization and the PQN Model	160
7.10	Overv	iew of the Quantizing Theorems	162

<u>X</u>		Cc	ontents
	7 1 1	Examples of Probability Density Functions Satisfying Quantizing	
	,	Theorems III/B or QT IV/B	165
	7.12	Summary	170
	7.13	Exercises	171
8	Quan	tization of Two or More Variables: Statistical Analysis of	
	the Q	uantizer Output	173
	8.1	Two-Dimensional Sampling Theory	174
	8.2	Statistical Analysis of the Quantizer Output for Two-Variable	
		Quantization	179
	8.3	A Comparison of Multivariable Quantization with the Addition of	
		Independent Quantization Noise (PQN)	184
	8.4	Quantizing Theorem I for Two and More Variables	186
	8.5	Quantizing Theorem II for Two and More Variables	187
	8.6	Recovery of the Joint PDF of the Inputs x_1 , x_2 from the Joint PDF	
		of the Outputs x'_1, x'_2	187
	8.7	Recovery of the Joint Moments of the Inputs x_1 , x_2 from the Joint	
		Moments of the Outputs x'_1, x'_2 : Sheppard's Corrections	190
	8.8	Summary	192
	8.9	Exercises	193
9	Quan	tization of Two or More Variables: Statistical Analysis of	
	Quan	tization Noise	197
	9.1	Analysis of Quantization Noise, Validity of the PQN Model	197
	9.2	Joint Moments of the Quantization Noise	200
	9.3	Satisfaction of Quantizing Theorems I and II	203
	9.4	Quantizing Theorem III/A for N Variables	204
	9.5	Quantization Noise with Multiple Gaussian Inputs	206
	9.6	Summary	207
	9.7	Exercises	207
10	Quan	tization of Two or More Variables: General Statistical	
	Relat	ions between the Quantization Noises, and the Quantizer	
	Input	ts and Outputs	209
	10.1	Joint PDF and CF of the Quantizer Inputs and Outputs	209
	10.2	Joint PDF and CF of the Quantizer Inputs and the Quantization	
		Noises	210
	10.3	Joint PDF, CF, and Moments of the Quantizer Inputs and Noises	
		when Quantizing Theorem I or II is Satisfied	211
	10.4	General Expressions for the Covariances between Quantizer	
		Inputs and Noises	213
	10.5	Joint PDF, CF, and Moments of the Quantizer Inputs and Noises	
		when Quantizing Theorem IV/B is Satisfied	214

	10.6	Joint Moments of Quantizer Inputs and Noises with Quantizing	
		Theorem III Satisfied	216
	10.7	Joint Moments of the Quantizer Inputs and Noises with	
		Quantizing Theorem IV Satisfied	217
	10.8	Some Thoughts about the Quantizing Theorems	218
	10.9	Joint PDF and CF of Quantization Noises and Quantizer Outputs	
		under General Conditions	218
	10.10	Joint PDF and CF of Quantizer Inputs, Quantization Noises, and	
		Quantizer Outputs	219
	10.11	Summary	221
	10.12	Exercises	222
11	Colou	lation of the Moments and Correlation Functions of Quantized	
11	Calcu	iation of the Moments and Correlation Functions of Quantized	225
	Gauss	aan variadies	223
	11.1	The Moments of the Quantizer Output	225
	11.2	Moments of the Quantization Noise, Validity of the PQN Model	233
	11.3	Covariance of the Input x and Noise v	237
	11.4	Joint Moments of Centralized Input \tilde{x} and Noise v	240
	11.5	Quantization of Two Gaussian Variables	242
	11.6	Quantization of Samples of a Gaussian Time Series	249
	11.7	Summary	252

Part III Floating-Point Quantization

11.8 Exercises

12	Basic	s of Floating-Point Quantization	257
	12.1 The Floating-Point Quantizer		
	12.2	Floating-Point Quantization Noise	260
	12.3	An Exact Model of the Floating-Point Quantizer	261
	12.4	How Good is the PQN Model for the Hidden Quantizer?	266
	12.5	Analysis of Floating-Point Quantization Noise	272
	12.6	How Good is the PQN Model for the Exponent Quantizer?	280
		12.6.1 Gaussian Input	280
		12.6.2 Input with Triangular Distribution	285
		12.6.3 Input with Uniform Distribution	286
		12.6.4 Sinusoidal Input	290
	12.7	A Floating-Point PQN Model	302
	12.8	Summary	303
	12.9	Exercises	304
13	More	on Floating-Point Quantization	307
	13.1	Small Deviations from the Floating-Point PQN Model	307

253

XII		Cor	tents
	13.2	Quantization of Small Input Signals with High Bias	311
	13.3	Floating-Point Quantization of Two or More Variables	313
	10.0	13.3.1 Relationship between Correlation Coefficients $\rho_{\rm W}$ is and	010
		$\rho_{\rm vir}$ for Floating-Point Quantization	324
	13.4	A Simplified Model of the Floating-Point Quantizer	325
	13.5	A Comparison of Exact and Simplified Models of the Floating-	
		Point Quantizer	331
	13.6	Digital Communication with Signal Compression and Expansion:	
		"μ-law" and "A-law"	332
	13.7	Testing for PQN	333
	13.8	Practical Number Systems: The IEEE Standard	343
		13.8.1 Representation of Very Small Numbers	343
		13.8.2 Binary Point	344
		13.8.3 Underflow, Overflow, Dynamic Range, and SNR	345
		13.8.4 The IEEE Standard	346
	13.9	Summary	348
	13.10	Exercises	351
14	Casca	des of Fixed-Point and Floating-Point Quantizers	355
	14.1	A Floating-Point Compact Disc	355
	14.2	A Cascade of Fixed-Point and Floating-Point Quantizers	356
	14.3	More on the Cascade of Fixed-Point and Floating-Point Quantizers	360
	14.4	Connecting an Analog-to-Digital Converter to a Floating-Point	
		Computer: Another Cascade of Fixed- and Floating-Point	
		Quantization	367
	14.5	Connecting the Output of a Floating-Point Computer to a Digital-	
		to-Analog Converter: a Cascade of Floating-Point and Fixed-Point	
		Quantization	368
	14.6	Summary	369
	14.7	Exercises	369

Part IV Quantization in Signal Processing, Feedback Control, and Computations

15	Roun	doff Noise in FIR Digital Filters and in FFT Calculations	373
	15.1	The FIR Digital Filter	373
	15.2	Calculation of the Output Signal of an FIR Filter	374
	15.3	PQN Analysis of Roundoff Noise at the Output of an FIR Filter	376
	15.4	Roundoff Noise with Fixed-Point Quantization	377
	15.5	Roundoff Noise with Floating-Point Quantization	381
	15.6	Roundoff Noise in DFT and FFT Calculations	383
		15.6.1 Multiplication of Complex Numbers	385

		15.6.2 Number Representations in Digital Signal Processing	
		Algorithms, and Roundoff	386
		15.6.3 Growing of the Maximum Value in a Sequence Resulting	
		from the DFT	387
	15.7	A Fixed-Point FFT Error Analysis	388
		15.7.1 Quantization Noise with Direct Calculation of the DFT	388
		15.7.2 Sources of Quantization Noise in the FFT	389
		15.7.3 FFT with Fixed-Point Number Representation	392
	15.8	Some Noise Analysis Results for Block Floating-Point and	
		Floating-Point FFT	394
		15.8.1 FFT with Block Floating-Point Number Representation	394
		15.8.2 FFT with Floating-Point Number Representation	394
	15.9	Summary	397
	15.10	Exercises	397
16	Round	loff Noise in IIR Digital Filters	403
	16.1	A One-Pole Digital Filter	403
	16.2	Ouantization in a One-Pole Digital Filter	404
	16.3	PON Modeling and Moments with FIR and IIR Systems	406
	16.4	Roundoff in a One-Pole Digital Filter with Fixed-Point	
		Computation	407
	16.5	Roundoff in a One-Pole Digital Filter with Floating-Point	
		Computation	414
	16.6	Simulation of Floating-point IIR Digital Filters	416
	16.7	Strange Cases: Exceptions to PQN Behavior in Digital Filters with	
		Floating-Point Computation	418
	16.8	Testing the PON Model for Quantization Within Feedback Loops	419
	16.9	Summary	425
	16.10	Exercises	427
17	Round	loff Noise in Digital Feedback Control Systems	431
1/	17.1	The Analog-to-Digital Converter	432
	17.2	The Digital-to-Analog Converter	432
	17.2	A Control System Example	434
	17.4	Signal Scaling Within the Feedback Loon	442
	17.5	Mean Square of the Total Quantization Noise at the Plant Output	447
	17.6	Satisfaction of OT II at the Quantizer Inputs	449
	17.7	The Bertram Bound	455
	17.8	Summary	460
	17.9	Exercises	461
	11.7		101
18	Round	loff Errors in Nonlinear Dynamic Systems – A Chaotic Example	465
	18.1	Roundott Noise	465

XIV		Contents
18.2	Experiments with a Linear System	467
18.3	Experiments with a Chaotic System	470
	18.3.1 Study of the Logistic Map	470
	18.3.2 Logistic Map with External Driving Function	478
18.4	Summary	481
18.5	Exercises	481

Part V Applications of Quantization Noise Theory

 19.1 Dither: Anti-alias Filtering of the Quantizer Input CF 19.2 Moment Relations when QT II is Satisfied 19.3 Conditions for Statistical Independence of x and v, and d and v 19.4 Moment Relations and Quantization Noise PDF when QT III or QT IV is Satisfied 4 19.5 Statistical Analysis of the Total Quantization Error 5 = d + v 	 185 188 189 192 193 197 197 100 101 102
 19.2 Moment Relations when QT II is Satisfied 19.3 Conditions for Statistical Independence of x and v, and d and v 19.4 Moment Relations and Quantization Noise PDF when QT III or QT IV is Satisfied 19.5 Statistical Analysis of the Total Quantization Error 5 = d + v 	188 189 192 193 197 197 197 197 100 101
 19.3 Conditions for Statistical Independence of x and v, and d and v 19.4 Moment Relations and Quantization Noise PDF when QT III or QT IV is Satisfied 4 19.5 Statistical Analysis of the Total Quantization Error 5 = d + v 	192 193 197 197 197 197 197 100 101
 19.4 Moment Relations and Quantization Noise PDF when QT III or QT IV is Satisfied 44 19.5 Statistical Analysis of the Total Quantization Error 5 = d + u 	192 193 197 197 197 500 501 502
QT IV is Satisfied 4 19.5 Statistical Analysis of the Total Quantization Error $\xi = d + u$	192 193 197 197 500 501 502
19.5 Statistical Analysis of the Total Quantization Error $\xi = d + y$	193 197 197 500 501 502
19.5 Statistical Analysis of the Total Quantization Error $\xi = u + v$ 4	197 197 500 501 502
19.6 Important Dither Types 4	97 00 01 02
19.6.1 Uniform Dither 4	500 501 502
19.6.2 Triangular Dither 50	501 502
19.6.3Triangular plus Uniform Dither50	502
19.6.4Triangular plus Triangular Dither50	
19.6.5 Gaussian Dither 50	602
19.6.6 Sinusoidal Dither 5	603
19.6.7The Use of Dither in the Arithmetic Processor5	603
19.7The Use of Dither for Quantization of Two or More Variables5	604
19.8Subtractive Dither50	606
19.8.1Analog-to-Digital Conversion with Subtractive Dither5	608
19.9Dither with Floating-Point5	512
19.9.1 Dither with Floating-Point Analog-to-Digital Conversion 5	512
19.9.2Floating-Point Quantization with Subtractive Dither5	515
19.9.3Dithered Roundoff with Floating-Point Computation5	516
19.10The Use of Dither in Nonlinear Control Systems5	520
19.11 Summary 5.	520
19.12 Exercises 5	522
20 Spectrum of Quantization Noise and Conditions of Whiteness 5.	529
20.1 Quantization of Gaussian and Sine-Wave Signals 5.	530
20.2 Calculation of Continuous-Time Correlation Functions and Spectra 5.	532
20.2.1 General Considerations 5.	532
20.2.2 Direct Numerical Evaluation of the Expectations 5	535
20.2.3 Approximation Methods 5.	536

	20.2.4 Correlation Function and Spectrum of Quantized Gaussian	
	Signals	538
	20.2.5 Spectrum of the Quantization Noise of a Quantized Sine	
	Wave	544
20.3	Conditions of Whiteness for the Sampled Quantization Noise	548
	20.3.1 Bandlimited Gaussian Noise	550
	20.3.2 Sine Wave	554
	20.3.3 A Uniform Condition for White Noise Spectrum	556
20.4	Summary	560
20.5	Exercises	562

Part VI Quantization of System Parameters

21	Coefficient Quantization			
	21.1	Coefficient Quantization in Linear Digital Filters	566	
	21.2	An Example of Coefficient Quantization	569	
	21.3 Floating-Point Coefficient Quantization		572	
	21.4	Analysis of Coefficient Quantization Effects by Computer		
		Simulation	574	
	21.5	Coefficient Quantization in Nonlinear Systems	576	
	21.6	Summary	578	
	21.7	Exercises	579	

APPENDICES

A Perfectly Bandlimited Characteristic Functions			
	A.1	Examples of Bandlimited Characteristic Functions	589
	A.2 A Bandlimited Characteristic Function Cannot Be Analytic		594
		A.2.1 Characteristic Functions that Satisfy QT I or QT II	595
		A.2.2 Impossibility of Reconstruction of the Input PDF when	
		QT II is Satisfied but QT I is not	595
B	Gene and o	ral Expressions of the Moments of the Quantizer Output, of the Errors of Sheppard's Corrections	597
	B .1	General Expressions of the Moments of the Quantizer Output	597
	B.2	General Expressions of the Errors of Sheppard's Corrections	602
	B.3	General Expressions for the Quantizer Output Joint Moments	607
С	Deriv	vatives of the Sinc Function	613

X۷	/1	Con	itents
D	Proo	fs of Ouantizing Theorems III and IV	617
	D.1	Proof of QT III	617
	D.2	Proof of QT IV	618
Е	Limi	ts of Applicability of the Theory – Caveat Reader	621
	E.1	Long-time vs. Short-time Properties of Quantization	621
		E.1.1 Mathematical Analysis	624
	E.2	Saturation effects	626
	E.3	Analog-to-Digital Conversion: Non-ideal Realization of Uniform Quantization	628
F	Som	e Properties of the Gaussian PDF and CF	633
	F.1	Approximate Expressions for the Gaussian Characteristic Function	634
	F.2	Derivatives of the CF with $E\{x\} \neq 0$	635
	F.3	Two-Dimensional CF	636
G	Quar	ntization of a Sinusoidal Input	637
	G.1	Study of the Residual Error of Sheppard's First Correction	638
	G.2	Approximate Upper Bounds for the Residual Errors of Higher	
		Moments	640
		G.2.1 Examples	642
	G.3	Correlation between Quantizer Input and Quantization Noise	643
	G.4	Time Series Analysis of a Sine Wave	645
	G.5	Exact Finite-sum Expressions for Moments of the Quantization	C 4 0
	0.0		648
	G.6	Joint PDF and CF of Two Quantized Samples of a Sine Wave	653
		G.6.1 The Signal Model	653
		G.6.2 Derivation of the Joint PDF	654
	\mathbf{C}	G.0.5 Derivation of the Joint CF Some Droperties of the Passal Functions of the First Kind	660
	U.7	G 7.1 Derivativas	660
		G.7.2 Approximations and Limits	661
н	Appl Sinu	soidal	663
T	A Fe	w Properties of Selected Distributions	667
	I.1	Chi-Square Distribution	667
	I.2	Exponential Distribution	670
	I.3	Gamma Distribution	672
	I.4	Laplacian Distribution	674
	I.5	Rayleigh Distribution	676
	I.6	Sinusoidal Distribution	677

\sim		
1 0	nto	ntc
00	I ILC	1113

	I.7	Uniform Distribution	679			
	I.8	Triangular Distribution	680			
	I.9 "House" Distribution					
J	Digital Dither		685			
	J.1	Quantization of Representable Samples	686			
		J.1.1 Dirac Delta Functions at $q/2 + kq$	688			
	J.2	Digital Dither with Approximately Normal Distribution	689			
	J.3	Generation of Digital Dither	689			
		J.3.1 Uniformly Distributed Digital Dither	690			
		J.3.2 Triangularly Distributed Digital Dither	693			
K	Roun	doff Noise in Scientific Computations	697			
	K.1	Comparison to Reference Values	697			
		K.1.1 Comparison to Manually Calculable Results	697			
		K.1.2 Increased Precision	698			
		K.1.3 Ambiguities of IEEE Double-Precision Calculations	698			
		K.1.4 Decreased-Precision Calculations	700			
		K.1.5 Different Ways of Computation	700			
		K.1.6 The Use of the Inverse of the Algorithm	702			
	K.2	The Condition Number	703			
	K.3	Upper Limits of Errors	705			
	K.4	The Effect of Nonlinearities	707			
L	Simu	ating Arbitrary-Precision Fixed-Point and Floating-Point				
	Roun	doff in Matlab	711			
	L.1	Straightforward Programming	712			
		L.1.1 Fixed-point roundoff	712			
		L.1.2 Floating-Point Roundoff	712			
	L.2	The Use of More Advanced Quantizers	713			
	L.3	Quantized DSP Simulation Toolbox (QDSP)	716			
	L.4	Fixed-Point Toolbox	718			
M	The F	irst Paper on Sampling-Related Quantization Theory	721			
Bil	bliogra	phy	733			
Inc	lex		742			

XVII

A	ldend	la Published on this Book's Website \mathbf{Only}^1		
N	Comparison of the Characteristic Function Method and Sheppard's			
	N 1 The Fuler-Maclaurin Summation Formula			
	N 2	Derivation of Shennard's Corrections	W6	
	N.3	Approximations in the Derivation of Sheppard's Corrections	W8	
	N.4	Sheppard's Corrections and the Characteristic Function Method	W10	
0	Inter	polation of the Cumulative Distribution Function from the His-		
	togra	m and Numerical Reconstruction of the Input PDF	W23	
	0.1	Sampling Theorems for Cumulative Distribution Functions	W23	
	O.2	Convergence of the Interpolation Formula	W26	
	0.3	Numerical Differentiation	W28	
Р	Small	Bit-Number Correlation	W29	
	P.1	Hybrid Sign Correlator	W29	
	P.2	Polarity Coincidence Correlator	W30	
Q	Noise	Shaping and Sigma-delta Modulation	W33	
R	Secon	nd-order Statistical Properties of a Triangle-Wave Signal	W37	
	R .1	The Signal Model	W37	
	R.2	Derivation of the Joint PDF	W38	
	R.3	Derivation of the Joint CF	W41	
	R.4	Exercises	W48	
S	Chara	acteristic Functions of Quantities Involved when Using Dither	W49	
	S .1	Calculation of the Joint Characteristic Functions of ξ , x and $(x+d)'$	W49	
	S.2	Calculation of the Joint Characteristic Functions of Input/Output		
		Quantities, Dither, and Quantization Errors	W51	
	S.3	A General Theorem Concerning Subtractive Dither	W55	
Т	Kind	Corrections	W57	
	T.1	Numerical Evaluation of the Residual Errors of Sheppard's Cor-		
		rections for a Gaussian Input	W57	
	T.2	Kind Corrections for One Variable	W62	
		T.2.1 General Expressions for the Centralized Moments of the Quantizer Output, and for the Errors of the Kind Correc-		
		tions	W64	

¹http://www.mit.bme.hu/books/quantization/

XVIII/A

v	A Fev	v Paper	s from the Literature of Quantization Theory	W89
U	Comp Chara	oarison acteristi	of the Engineers' Fourier transform and Definition of the ic Function	W85
	T.5	Exerci	ses	W81
	T.4	Kind C	Corrections for Two Variables	W81
	T.3	Centra	lized Moments of the Quantizer Output for Gaussian input	W76
		T.2.3	General Expressions for the Errors of the Kind Corrections	W72
			Quantizer Output	W65
		T.2.2	General Expressions for the Centralized Moments of the	