
Appendix J

Digital Dither

Quantization theory deals primarily with continuous-amplitude signals and continuous-
amplitude dither. However, within a digital signal processor or a digital computer,
both the signal and the dither are represented with finite word length. Examples are
digital FIR and IIR filtering, digital control, and numerical calculations. In these
cases, intermediate results (e.g. products of numbers) whose amplitude is discrete,
have excess bit length, so they must be re-quantized to be stored with the bit number
of the memory. Before re-quantization, digital dither may be added to the signal, or
sometimes this is even necessary to avoid limit cycles and hysteresis (see Fig. J.1,
and Exercises 17.10–17.12, page 462).
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Figure J.1 Application of digital dither within a computer, after multiplication.

Another scenario, when the dither is digital, is when the dither is generated
within the computer for the quantization of analog signals. This usually means that
each dither sample is produced by a pseudo-random number generator, and a D/A
converter is used to convert the number to an analog level to be added to the input of
the quantizer before quantization.

In both cases, it is good to know the properties of the most common digital
dithers. Therefore, in this appendix we will investigate the properties of digital dither
which is desired to be added to a digital signal before requantization.1

1A part of this appendix was first published in, and is reprinted with permission, from Kollár, I.,
“Digital non-subtractive dither: Necessary and sufficient condition for unbiasedness, with implementa-
tion issues,” Proceedings of the 23rd IEEE Instrumentation and Measurement Technology Conference,
Sorrento, Italy, 24-27 April 2006, pp. 140–145. c©2006 IEEE.
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J.1 QUANTIZATION OF REPRESENTABLE SAMPLES

An interesting approach was presented by Wannamaker, R. A., Lipshitz, S. P., Van-
derkooy, and Wright (2000). They have recognized that in general, no digital dither
can completely remove quantization bias. Therefore, they looked into the possibil-
ity of removing the bias for all the input numbers representable2 with the given bit
number at the input of the quantizer. Inspired by their work, we state a theorem here,
which has a condition which can be fulfilled by practical dithers:

Quantizing Theorem for Digital Dither (QTDD)
For a digital system in which re-quantization is used to remove the L
least significant bits of binary data, E{ξm |x} has the same value for all
representable values of x for m = 1, 2, . . . , r , if a non-subtractive digital
dither (with the same precision as the input data) is applied for which
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for t = 0, 1, . . . , r − 1, at l = 1, 2, . . . , 2L − 1 ((r − 1)th-order digital
dither).

The proof follows from examination of the conditional CF of ξ , given in the Adden-
dum. The required moments are not influenced by the value of x in the infinite sum
of the last part, because

• For the first moment, we need to examine the sum for the values x = kqd =
k2−Lq, where qd is the quantum size of the digital dither. We will look at the
terms for which l �= 2Lλ (λ is an integer), and at the terms for which l = 2Lλ,
separately.
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2Representable are the numbers which are possible for the input signal of the quantizer, that is, all
the numbers that may be given by a combination of the input bits.
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The first sum equals zero because of the theorem’s condition (J.1) for m = 1,
and the second sum does not depend on k (and thus, does not depend on x).3

This proves the theorem for m = 1.

• Similarly, for m > 1, independence of x (or of k) will be provided, since the
terms for l �= 2Lλ disappear because of (J.1), and x disappears from each term
corresponding to l = 2Lλ:

e jl�x = e j2Lλ 2π
q kdd = e jλk2π ≡ 1 . (J.3)

While functional independence of x is provided, the sum usually does not equal
zero. For m = 1, an extra condition was given to assure zero value (footnote 2 on
page 687). For m = 2, the nonzero value is more common. If (J.1) is fulfilled for
r = 2, it is enough to examine the possibly nonzero elements:
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3In addition, if the dither has a distribution symmetric to zero, or a distribution symmetric to any of

nqd/2,
n = ±1,±2, . . ., the second sum also equals zero since
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therefore the terms in the sum are cancel out pairwise for ±λ.
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This is often somewhat larger than E{d2}+E{n2}. However, the deviation is relatively
small, since the first sum is zero for a dither which has a distribution symmetric
to zero and has values only on the grid kqd (or at least only on the grid kqd/2,
k = 0,±1,±2, . . ., see Exercise 19.29), while the second sum can be upper bounded
since |�(u)| ≤ 1:

E{ξ2|x} ≤ q2
d

3
, (J.5)

which is usually negligible when compared to E{d2} + E{n2} = E{d2} + q2/12.
Since this deviation does not depend on x , it can be corrected for.

From QTDD, the important consequence is that the resolution (LSB) of the dig-
ital dither should be the same as of the data to be quantized, qd = 2−Lq. The theorem
provides that this is sufficient. Finer resolution of the dither would be superfluous,
coarser resolution would not be sufficient. This theorem is useful for dithering in
digital computers and digital signal processors.

J.1.1 Dirac Delta Functions at q/2 + kq

While the above proof is correct, the theorem has an important application limitation.
Quantization theory is considered as area sampling of a smooth PDF. When at the
edge of such an area there is a Dirac delta function, it is tacitly assumed in the
derivation that half of the integral of the Dirac delta belongs to this area, and half
of it to the next area. This is a property of Fourier transform pairs, and the proofs are
based upon Fourier transform. This corresponds to random-direction quantization of
input values equal to (integer + 0.5)q: half of the values at the comparison levels are
rounded downwards, half of them are rounded upwards.

The existence of such Dirac delta functions is a common case in re-quantization.
In practical processors, however, as well as in simulations in MATLAB, a determin-
istic algorithm is implemented (see Exercise 1.3): such values are either rounded
always upwards, or always downwards, or towards zero, or towards ±∞ (like in
MATLAB’s round(·) function), or convergent rounding is implemented (rounding
towards the closest even number when the input is exactly at 0.5 LSB distance from
two representable numbers). Quantization theory does not deal with these cases.
Therefore, we have to content ourselves by

• either accepting that convergent rounding averages out the bias for the given
input signal,

• or assuming that for the given input, the probability of the values just at 0.5 LSB
from two representable values is very small,
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• or saying that if qd � q, deviation between theory and practice is negligible,

• or implementing in the processor (in the simulation program) a modification
of rounding to correspond to theory: when having a number which equals
(integer + 0.5)LSB, either additional dither should determine if rounding is
done in the upwards or downwards direction, or the program takes care to do
upwards/downwards rounding alternately for the same level.

J.2 DIGITAL DITHER WITH APPROXIMATELY NORMAL
DISTRIBUTION

In a computer, it is easy to generate normally distributed numbers. Either a pseudo-
random number generator can be used, or several independent, identically distributed
random numbers can be added. These normally distributed numbers are then quan-
tized to qd to make a digital dither.

The characteristic function of the approximately normally distributed digital
dither is
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with �d = 2π/qd.
If the common rule σ > q is followed for the normally distributed dither, and its

mean value is equal to zero, the moments of the dither can be well reconstructed from
samples of the digital dither, using Sheppard’s corrections. Some similar corrections
can be used between moments of (x + d)′ and of (x + d), or between moments of
(x + d)′ − d, and of x .

For Gaussian dither with σ > q , the condition (J.1) of QTDD is fulfilled with
good approximation, thus the moments are independent of x , if x is representable
on the grid kqd. This does not mean however that for any value of x , the moments
would be unbiased. It is heuristically clear that the digital dither has “roughness” qd,
therefore, if x is arbitrary, the error in Sheppard’s first correction may reach ±qd/2,
and in Sheppard’s second correction it may be in the order of magnitude of q2

d/6
(Exercise 19.34). We cannot go into these details, the errors of this kind can be
studied in detail by investigation of the corresponding CFs, by making use of the
dither CF, given in Eq. (J.6).

J.3 GENERATION OF DIGITAL DITHER

Let us turn now to the generation of digital dither. Random number generators can
be realized based on different principles (Godfrey, 1993). One of the most popular
methods is based on feedback shift registers. These generate 2N − 1 pseudo-random
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bits, where N is the register length, and these can be used to generate pseudo-random
numbers. If 2N is not very large, we notice that the generated dither has a periodic
nature, and that using a full period, it goes through every individual step. This latter
fact may be used for increased efficiency in averaging: in this special case the se-
quence to be averaged contains all possible values just once. Therefore, the result of
averaging is exact, with no randomness due to dithering.

The first thing we have to decide is the distribution of the dither. We can approx-
imate any distribution by digital means; however, uniform and triangular dithers are
by far the most popular ones. We will deal here with these. Gaussian and sinusoidal
dithers are also usual and reasonable choices. Their properties can be determined
with similar analysis.

As for the number of bits, according to QTDD (see page 686), it is not rea-
sonable to use a dither which has finer resolution than the variable to be quantized.
Thus, the difference of the bit numbers of the accumulator and of the memory (the
storage bit number) determine the reasonable bit number of the dither.

When the number of bits is known, the digital representation of the distribution
is to be selected. We can consider digital dither as a finely quantized version of the
continuous one. Therefore, using at least a few bits, we can apply the approxima-
tion that the variance is var{d} ≈ var{dc} + q2

d/12 ≈ var{dc}, with dc being the
continuous-time dither, and qd denoting the dither LSB.

J.3.1 Uniformly Distributed Digital Dither

For uniform dither, we have a few, almost equivalent, solutions (Fig. J.2).
In Fig. J.2(a), the digital dither clearly has a bias of E{d} = −qd/2. The

representation is simple and straightforward. The number of different values is 2L ,
with L = log2(q/qd). The variance is var{d} = var{dc} − q2

d/12 = q2/12 − q2
d/12.

In 1/2L part of the cases x + d will be equal to (integer + 0.5)LSB (see the remark
above section J.2).

In Fig. J.2(b), we have removed the bias. The dither can be represented with L
bits, keeping in mind that each dither sample has an additional 1 at the bit position
0.5 LSBdither.4

In Fig. J.2(c), the digital dither needs L + 1 bits for representation, since it can
have 2L + 1 different values. The 0.5 LSB problem arises also here similarly to the
case of Fig. J.2(a).

All three cases behave similarly.
In Fig J.3 we have illustrated the behavior of the most important characteristics

of the quantization noise of the dither of Fig. J.2(b). We can observe that even for
a few-bit dither, some of the characteristics of the noise are good enough, but the
variance still can have large variations: it changes between [0, q2/4]. The cause of

4In this case, for proper quantization we need to round values x + d = (k + 0.5)q upwards. This is
even simpler to implement than up or down rounding with probability 0.5-0.5.
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Figure J.2 Discrete uniform dithers with L = 3 (qd = q/23): (a) simple (two’s comple-
ment) binary representation which has mean value −qd/2; (b) unbiased (shifted) binary
representation; (c) unbiased binary representation with half-probability boundary samples
(needs L + 1 bits for coding all the possible values).

the anomaly is that the dither is only zero-order. The CF of the dither in Fig. J.3(b)
is:
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The values of the characteristic function of the dither are zero at l · 2π/q, l =
±1,±2, . . . except when l = k · 2L , k = ±1,±2, . . . Therefore, this dither is only
digitally zero-order dither. The exceptional peaks (see Fig. J.3f) have no influence
on the first moment, see Eq. (J.2). However, the derivatives are not zero, allowing
for significant correlation values between d and ν.

The characteristic functions of the other two dithers are similar.
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Figure J.3 Quantization noise characteristics for digital uniform dither as in Fig. J.2(b).
The x marks were calculated for the cases when x is discrete: k2−L q , k = 0, 1, . . .; the
dotted upper/lower bounds (marked by the triangles) were determined from all (continuous-
amplitude) values of x . (a) mean value; (b) variance; (c) correlation coefficient with input
x ; (d) correlation coefficient with input d; (e) variance of ξ = d + ν; (f) the CF of the
dither for q/qd = 2L = 8.
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J.3.2 Triangularly Distributed Digital Dither

For triangular dither, we have again three almost equivalent forms.
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Figure J.4 Discrete triangular dithers with L = 3 (qd = q/23): (a) combination of
two dithers of Fig. J.2(b), or mean-corrected combination of two dithers of Fig. J.2(a);
(b) continuous-amplitude triangular dither, quantized with a mid-riser quantizer to resolu-
tion qd; (c) continuous-amplitude triangular dither, quantized with a mid-tread quantizer to
resolution qd.

In Fig. J.4(a), the digital triangular dither can be obtained by simply adding
two dithers of Fig. J.2(b), or by adding two dithers of Fig. J.2(a) and subtracting
the bias −qd. The representation is simple and straightforward. The number of
values is 2 · 2L − 1, so the necessary number of bits is L + 1. The variance is
var{d} = var{dc} − 2q2

d/12 = 2q2/12 − 2q2
d/12 (double of variance of the first

digital dither).
This digital dither cannot be obtained by direct quantization of the continuous-

time triangular one. A possibility to have this is illustrated in Fig. J.4(b). This dither
can still be represented with L + 1 bits (2 · 2L different values), keeping in mind that
each dither sample has an additional 1 at the bit position 0.5 LSB, like in Fig. J.2(a).

The dither form of Fig. J.4c is the result of mid-tread uniform quantization of
the continuous-amplitude dither. Mathematically, the distribution can be obtained by
correcting the dither shown in Fig. J.4(a) by subtracting a probability P1 = (qd/2)/q ·
1/q · qd/2 = q2

d/4q2 at the center, and executing similar corrections at the edges.
The number of amplitude levels is 2 · 2L + 1.

Condition (J.1) is fulfilled for r = 1, therefore these dithers are zero-order
digital dithers.
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Figure J.5 Quantization noise characteristics for digital triangular dither given in
Fig. J.4(a). The x marks were calculated for the cases when x is discrete: k2−L q ,
k = 0, 1, . . .; the upper/lower bounds (marked by the triangles) were determined from
all (continuous-amplitude) values of x . (a) mean value; (b) variance; (c) correlation co-
efficient with input x ; (d) correlation coefficient with input d; (e) variance of ξ = d + ν;
(f) the CF of the dither for 2L = q/qd = 8.

In Fig J.5 we have illustrated the behavior of the most important characteristics
of the noise of Fig. J.4(a). The CF of this dither is:
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The characteristic functions of the other two dithers are similar but slightly different.
The value and the first derivative of the characteristic function of the dither

are equal to zero at the places required in Eq. (J.1), so this dither is a digital first-
order dither. The peaks shown in the plots have no x-dependent effect on the second
moments when the input is digital with LSB = qd, as provided by theorem J.1,
therefore they can be corrected for, using knowledge of the dither. This is the dither
which can be recommended for digital systems.




