
Chapter 19

Dither

Dither inputs are externally applied disturbances that have been used in control sys-
tems and in signal processing systems to alleviate the effects of nonlinearity, hys-
teresis, static friction, gear backlash, quantization, etc. In many cases, dither inputs
have been used to “improve” system behavior without there being a clear idea of the
nature of the improvement sought and without any method for designing the dither
signal other than empiricism. It is the purpose of this chapter to explain the uses of
dither signals in systems containing quantizers. We will employ the mathematical
methods developed herein for the design of dither signals and for analysis of their
benefits and limitations.

19.1 DITHER: ANTI-ALIAS FILTERING OF THE QUANTIZER
INPUT CF

When the input signal to a uniform quantizer has statistical properties allowing it to
satisfy QT I or QT II, the PQN model can be applied to describe the statistical behav-
ior of the quantizer. This is a linear model, and from the point of view of moments
and joint moments, the quantizer acts like a source of additive independent noise.
This type of linear behavior would be highly desirable under many circumstances.

When the quantizer input is inadequate for satisfaction of QT II, it is possible
to add an independent dither signal to the quantizer input so that the sum of input
and dither does satisfy QT II. Then the quantizer exhibits linear behavior and we can
say that it is linearized.

Figure 19.1 shows dither d added to the input x . If the CF of the dither alone
is bandlimited and satisfies QT II, then the CF of the quantizer input x + d will be
bandlimited and will satisfy QT II. The reason is that since x and d are independent,
the CF of x + d is the product of the CF of x and the CF of d, and the bandwidth of
the product is no wider than the bandwidth of the narrower factor. Therefore, when
the bandwidth of the CF of the dither d is narrow enough to satisfy QT II, then the
bandwidth of the CF of x + d is also narrow enough to satisfy QT II. The idea is
illustrated in Fig. 19.2.
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Figure 19.1 Dither added to the quantizer input.
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Figure 19.2 Bandlimitation of quantizer input CF resulting from dithering with a band-
limited independent dither signal: (a) CF of x ; (b) CF of d; (c) CF of (x +d). � = 2π/q .

Under these conditions, the PQN model applies and the dither signal has “lin-
earized” the quantizer. On the other hand, if the CF of the input x had a bandwidth
sufficiently narrow to satisfy QT II, then the use of the dither would be unnecessary.

Figure 19.3(a) represents quantization of the dithered signal (x + d) as the
addition of quantization noise ν. Figure 19.3(b) represents the PQN model that is
applicable when (x + d) has a characteristic function sufficiently bandlimited to
satisfy QT II.

The addition of a dither signal to the input x serves as anti-alias filtering for its
characteristic function. The CF of x + d is bandlimited by the action of the dither.
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Figure 19.3 Quantization of a dithered signal represented as addition of quantization
noise: (a) addition of quantization noise ν; (b) PQN model that is applicable when QT II
is satisfied.

This is illustrated in Fig. 19.4. The CF of the dither acts like a lowpass anti-alias
filter, and is analogous to a lowpass anti-alias filter commonly used before signal
sampling.
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Figure 19.4 Anti-alias filtering in signal sampling, and dithering in quantization: (a) anti-
alias; (b) dithering.

All this will be true for dither whose CF satisfies QT I or QT II. These ideas
will be extended subsequently for dither signals that do not satisfy QT I or QT II, but
do satisfy some of the other quantizing theorems.
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19.2 MOMENT RELATIONS WHEN QT II IS SATISFIED

Suppose that the dither d is independent of x , and that the combination (x + d)
satisfies QT II. Now refer to Fig. 19.3(a). It is clear that

E{ν(x + d)} = 0 . (19.1)

Therefore,

E{νx} = −E{νd} . (19.2)

Since x and d are independent, one might expect that

E{νx} = −E{νd} ?= 0 . (19.3)

Indeed, if the dither fulfills at least QT IV/A, Eq. (19.3) holds, since QTSD assures
both the uncorrelatedness of x and ν (see page 508), and E{ν} = 0. The quantization
noise exhibits behavior in a moment sense like independent additive noise, i.e., like
n of the PQN model.

To determine the moments and joint moments between x, d, (x + d), ν, and
(x + d)′, we can make use of the ideas developed in Chapter 7 which are embodied
in Eq. (7.82).

In accord with Eq. (7.82), we have

�(x+d),ν,(x+d)′
(
u(x+d), uν, u(x+d)′

)
=

∞∑
l=−∞

�(x+d),n,(x+d+n)
(
u(x+d), uν, u(x+d)′ + l�

)
. (19.4)

Pertaining to the block diagram of quantization in Fig. 19.3(a), the characteristic
function

�(x+d),ν,(x+d)′
(
u(x+d), uν, u(x+d)′

)
(19.5)

is the joint characteristic function between (x + d), ν, and (x + d)′. Pertaining to the
PQN model of Fig. 19.3(b), the characteristic function

�(x+d),n,(x+d+n)
(
u(x+d), un, u(x+d+n)

)
(19.6)

is the joint characteristic function between (x + d), n, and (x + d + n).
Eq. (19.4) relates the joint CF for quantization to the joint CF of the PQN

model. The quantization CF is the same as the PQN CF repeated and summed along
the u(x+d)′-axis. The quantization CF is periodic along the u(x+d)′-axis, while the
PQN CF is aperiodic. If QT I is satisfied, the periodic sections of the quantization
CF do not overlap and all moments and joint moments for quantization are the same
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as the corresponding ones for PQN. If QT I is not satisfied but QT II is satisfied, then
the periodic sections overlap but the moment relations still correspond.

Equation (19.4) can be generalized to encompass all of the variables of dithered
quantization represented in Fig. 19.3(a). Accordingly,

�x,d,(x+d),ν,(x+d)′
(
ux , ud , u(x+d), uν, u(x+d)′

)
=

∞∑
l=−∞

�x,d,(x+d),n,(x+d+n)
(
ux , ud , u(x+d), uν, u(x+d)′ + l�

)
=

∞∑
l=−∞

�x
(
ux + u(x+d) + u(x+d)′ + l�

)
�d
(
ud + u(x+d) + u(x+d)′ + l�

)
×�n

(
uν + u(x+d)′ + l�

)
. (19.7)

If QT I or QT II is satisfied by the quantizer input (x + d), inspection of Eq. (19.7)
indicates that when calculating the moments, only the l = 0 member of the sum can
yield nonzero derivatives, so that all joint moments of x, d, (x + d), ν, and (x + d)′
are the same as the corresponding joint moments of x, d, (x + d), n, and (x + d +
n). Regarding all moments, therefore, the quantization noise ν behaves like the
independent noise n of the PQN model. Furthermore, we now realize that Eq. (19.3)
is true.

19.3 CONDITIONS FOR STATISTICAL INDEPENDENCE OF
x AND ν, AND d AND ν

The joint probability density of x and ν can be regarded as a marginal density of
the joint density of x, d, (x + d), ν, and (x + d)′. The corresponding characteristic
functions are

�x,ν(ux , uν) = �x,d,(x+d),ν,(x+d)′(ux , 0, 0, uν, 0) . (19.8)

Now making use of Eq. (19.7), we obtain

�x,ν(ux , uν)=
∞∑

l=−∞
�x,d,(x+d),n,(x+d+n)(ux , 0, 0, uν, l�)

=
∞∑

l=−∞
�x (ux + l�)�d (l�)�n (uν + l�) . (19.9)

When QT I is satisfied, �x,ν(ux , uν) can be simply expressed as the 0th element of
the sum, i.e.,

�x,ν(ux , uν)=�x,d,(x+d),n,(x+d+n)(ux , 0, 0, uν, 0)
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=�x,n(ux , uν)
=�x (ux )�n (uν) . (19.10)

Because x and n are statistically independent, it is clear that x and ν are also statisti-
cally independent and that ν is uniformly distributed between ±q/2.

When QT I is not satisfied but QT II is satisfied, the elements of the sum in
Eq. (19.9) do overlap, but all of the derivatives of

�x,ν(ux , uν) =
∞∑

l=−∞
�x,d,(x+d),n,(x+d+n)(ux , 0, 0, uν, l�) (19.11)

with respect to ux and uν in the vicinity of ux = 0 and uν = 0 will be the same as the
corresponding derivatives of �x,n(ux , uν) = �x,d,(x+d),n,(x+d+n)(ux , 0, 0, uν, 0).
Assuming that the function �x,d,(x+d),n,(x+d+n) is differentiable at its origin,

∂r+t

∂ur
x∂ut

ν

∞∑
l=−∞

�x,d,(x+d),n,(x+d+n) (ux , 0, 0, uν, l�)∣∣∣ ux=0
uν=0

= ∂r+t

∂ur
x∂ut

ν

�x,d,(x+d),n,(x+d+n) (ux , 0, 0, uν, 0)∣∣∣ ux=0
uν=0

. (19.12)

If all the moments exist, combining this with Eq. (19.9) yields

�x,ν(ux , uν) = �x,n(ux , uν) . (19.13)

Once again, since x and n are statistically independent, x and ν are also statistically
independent and ν is uniformly distributed between ±q/2.

Analogous arguments can be made regarding the statistical independence of ν
and d. It can be seen that

�d,ν(ud , uν) = �d,n(ud , uν) (19.14)

when QT I is satisfied, so that ν is statistically independent of d under this condi-
tion. The quantization noise ν is therefore a statistically independent additive noise,
uniformly distributed between ±q/2.

When a dither signal is applied to the input of a quantizer, as in Fig. 19.1, the
total noise at the quantizer output will be the difference between the quantizer output
(x + d)′ and the quantizer input x . Referring to Fig. 19.3(a), the quantizer output
(x + d)′ is seen to be (x + d + ν). Accordingly, the total quantizer output noise is

(x + d)′ − x = (x + d + ν)− x
= d + ν . (19.15)
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This noise can be represented as
ξ = d + ν . (19.16)

When the quantizer input (x + d) meets the conditions for satisfaction of either QT I
or QT II, both d and ν are statistically independent of x . Their sum (d + ν), the total
quantizer output noise, is also statistically independent of the input x .

We need to note here that this latter independence does not directly follow from
the pairwise independences, despite the fact that it seems to be “logical”. Only an
additional proof can show it (see Section 19.5).1

It is possible for d and ν to both be statistically independent of x , and for their
sum d + ν to be dependent on x . To illustrate that the paradoxical case of mutually
independent, but in general sense interdependent random variables may easily occur,
consider the following example.

Example 19.1 Mutually Independent, but Jointly Interdependent Random
Variables
A three-dimensional distribution is illustrated in Fig. 19.5. The random variables
take the following joint values with probability 1/4 at the points: (x = 1, y =
1, z = 1), (x = −1, y = −1, z = 1), (x = 1, y = −1, z = −1), and (x =
−1, y = 1, z = −1). It is clear that the random variables are not independent,
while all the two-dimensional densities, like the one in Fig. 19.5(b), consist of
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Figure 19.5 Three-dimensional example for pairwise independent random
variables which are otherwise not independent: (a) three-dimensional dis-
tribution; (b) marginal density fx,y(x, y); (c) joint density fx,y+z(x, w).

the direct product of the distributions of two independent random variables. In
other words, x and y are independent, y and z are independent, and z and x are
independent, but x , y, and z are not independent, and y + z and x are also not
independent.

1It should be noted that under all circumstances, the quantization noise ν is deterministically related
to the quantizer input (x + d), although in statistical sense, it may be independent of x , and/or of d ,
and/or of their sum (x + d).
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For the full description of the interrelations of x , d, and ν, we need to
investigate the three-dimensional PDF or CF. The latter is given in Ad-
dendum S:2

�x,d,ν (ux , ud , uν)

=
∞∑

l=−∞
�x (ux + l�)�d(ud + l�)�n(uν + l�)

=
∞∑

l=−∞
�x (ux + l�)�d(ud + l�) sinc

(
q(uν + l�)

2

)
.

(19.17)

If the conditions of QT I or QT II are satisfied, the joint CF of x , ν, and d
becomes the product of the three CFs around zero, respectively, therefore
the random variables behave exactly like the ones in PQN.

The derivation is similar for the CF of the triplet (x, d, ξ). The joint CF
is (see Addendum S in the website of the book):

�x,d,ξ
(
ux , ud , uξ

)
=

∞∑
l=−∞

�x (ux + l�)�d(ud + uξ + l�) sinc
(

q(uξ + l�)
2

)
.

(19.18)

If the conditions of QT I or QT II are fulfilled, the joint moments are
again the same as those of PQN.

19.4 MOMENT RELATIONS AND QUANTIZATION NOISE
PDF WHEN QT III OR QT IV IS SATISFIED

The conditions for satisfaction of quantizing theorems QT III or QT IV are summa-
rized in Sections 7.5 and 7.6. The consequences of their satisfaction are also summa-
rized in the same section. These conditions apply to the characteristic function of the
quantizer input. They all involve zero values of the characteristic function, and/or
zero values of its derivatives. Since the dither d is constructed to be independent of
the input x , satisfaction of any or all of the quantizing theorems by the dither alone
guarantees the same satisfaction by (x + d): in other words, (x + d), (x + d)′ and
ν = (x + d)′ − (x + d) behave like described in the previous chapters.3 The reason
is that the CF of (x + d) is the product of the CF of x and the CF of d. Therefore,
regardless of the CF of x , the CF of (x + d) will have at least the same zero values

2see the web page http://www.mit.bme.hu/books/quantization/
3The total quantization error, ξ = d+ν, has more complex behavior, as we will see it in Section 19.5.
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and zero derivative values as the CF of d alone, at least when QT I, QT II, or QT III
are fulfilled. This is not true for QT IV/B, since zero derivative of�d(u) does not by
itself imply zero derivative of the product �d(u)�x (u). Therefore, when the dither
d fulfills QT IV/B, the sum (x + d) does not necessarily fulfill QT IV/B.

Precise mathematical analysis of the total quantization error ξ = ν + d, along
with exact conditions of its independence of d and x , is given in Section 19.5.

19.5 STATISTICAL ANALYSIS OF THE TOTAL
QUANTIZATION ERROR ξ = d + ν

In the analysis of ξ = d + ν (“non-subtractive dither”), thoroughly investigated by
Wannamaker (1994), Wannamaker, R. A., Lipshitz, S. P., Vanderkooy, and Wright
(2000), and Gray and Stockham (1993), the basic question is not whether ν is inde-
pendent of x +d or not. The total quantization output noise ξ = d +ν is the quantity
which corrupts the quantized output. We need to know the properties of this variable,
and its relationships to x and d.

One might think that since the properties of ν are known from quantization
theory discussed until now, ξ = d + ν is thoroughly known. Unfortunately, this is
not the case. Even if both d and ν are independent of x , their sum is not necessarily
independent of it. This paradox can be best illustrated by an example.

Example 19.2 Dependent Sum of Variables which are Independent of a
Third One
Heuristically, one might think that if two variables are each independent from
a third one, they have nothing to do with it, so their sum is also independent
from it. This example shows that this is not true, especially for quantization with
dither.

Let us consider the input variable x as in Fig. 19.6(a), dithered by the dither
d, uniform in [−q/2, q/2]. It is clear from the figure that x and d are indepen-
dent. The quantized output (x+d)′ is illustrated in Fig. 19.6(b). The quantization
error is illustrated in Fig. 19.6(c). As it will be proved on page 508, ν is indepen-
dent of the input, since the dither is zero-order. However, the total quantization
error, d + ν, does depend on x , as Fig. 19.6(d) illustrates. The explanation is
given in Fig. 19.6(e): the dither d and the quantization error ν strongly depend
on each other, although their correlation coefficient is zero, and their interde-
pendence is different for different values of x , so their sum does depend on it.

The interrelation of ν and d is difficult to analyze, but, fortunately, we do not need
detailed knowledge of this. Instead, we consider ξ = d +ν as a whole. The best idea
is to consider the conditional CF of ξ :4

4see the web page: http://www.mit.bme.hu/books/quantization/
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Figure 19.6 The total quantization error, ξ = d + ν, is not obligatorily
independent from the input x when the components d and ν of the sum are
both independent of the input: (a) joint distribution of the independent x
and d; (b) mapping of x + d to (x + d)′; (c) joint distribution of x and ν
which illustrates that they are independent; (d) joint distribution of x and
d + ν which illustrates that they are not independent; (e) joint distribution
of d and ν, illustrating how ν depends on d .

�ξ |x (uξ )=
∞∑

l=−∞
�d
(
uξ + l�

)
e jl�x sinc

(
q(uξ + l�)

2

)
= �d

(
uξ
)

sinc
(quξ

2

)
+

∞∑
l=−∞

l �=0

�d
(
uξ + l�

)
e jl�x sinc

(
q(uξ + l�)

2

)
. (19.19)
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Equation (19.19) yields simple and straightforward implications. First, it is clear that
the moments of ξ depend on x unless the effect of the last sum disappears at zero
from all derivatives. Apart from very special distributions of x (when all values of x
are equal to x0 + kq, with x0 being a deterministic constant), independence is only
possible if the dither satisfies QT II.

In Fig. 19.7, probability density functions are given for Example 19.2. The
variance of ξ depends on the value of x , despite of uniform dithering.
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Figure 19.7 Quantization of an ”almost constant” signal with uniform dither: (a1–a5) with
E{x} = 0; (b1–b5) with E{x} = q/2.

The purpose of dithering can be to eliminate or decrease the dependence of
the moments of ξ on x . To investigate this, consider that the moments of a variable
can be calculated by taking the value of the appropriate derivative of the CF at zero.
The last sum in Eq. (19.19) disappears if the CF of the dither is appropriate. Taking
into account that sinc(lπ) = 0 for l = ±1,±2, . . ., this immediately leads to the
following theorems.
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Quantizing Theorem III for Dither (QTD III)
The necessary and sufficient condition of the moments E{ξm}, where m =
1, 2, . . . , r +1, and r is a nonnegative integer, to be functionally indepen-
dent5 of the input variable x which does not have a discrete distribution
on a grid6 (x0 + kq), where k = 0,±1,±2, . . ., is that

dm−1�d(u)
dum−1

∣∣∣
u=l�

= 0 , for l = ±1,±2, . . . (19.20)

for all above values of m (r th-order dither). The values of these moments
then equal E{(d + n)m}.
An equvalent formulation of condition (19.20) is

dm
(
�d(u) sinc

(qu
2

))
dum

∣∣∣
u=l�

= 0 , for l = ±1,±2, . . . . (19.20b)

for values m = 1, 2, . . . , r + 1.

Functional independence has an important implication: if this holds, then

E{ξm xt } = E{ξm}E{xt } , for t = 1, 2, . . . (19.21)

For r = 0 (m = 1; zero-order dither, see Eq. (19.52) on page 508) and t = 1, this
means uncorrelatedness of ξ and x . However, in this case the second moment of ξ
may still depend on x (noise modulation). To avoid also this, first-order dither needs
to be used. This will also assure functional independence for the AC power, that is,
for the variance (we hear the audible AC power in audio, which is equal to the part
of the variance (power), which is within the audible band.

If only one moment of ξ is considered, the theorem can be further refined:

Quantizing Theorem IV for Dither (QTD IV)
The necessary and sufficient condition of the moment E{ξm}, where m is
a positive integer, to be functionally independent of the input variable x
which does not have a discrete distribution on a grid (x0 + kq), where
k = 0,±1,±2, . . ., is that

5Functional independence means that for any fixed value of x , the moments of the quantization
error are the same. This is an important property. Without this, it is possible e.g. that the variance of
the quantization error is different for different almost-constant values of x (see Fig. 19.7), causing a
modulated noise, audible as background noise changing its power with time.

6When all values of x are on a grid (x0 + kq), the expression (19.19) does not depend on x at all.
This is also a sufficient condition to ensure functional independence.
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dm
(
�d(u) sinc

(qu
2

))
dum

∣∣∣
u=l�

= 0 , for l = ±1,±2, . . . (19.22)

The value of this moment then equals E{(d + n)m}.
Again, if this holds, then

E{ξm xt } = E{ξm}E{xt } , for t = 1, 2, . . . (19.23)

For m = 1 (zero-order dither, see Eq. (19.52) on page 508) and t = 1, this means
uncorrelatedness of ξ and x . The second moment of ξ , its power, may still depend
on x (noise modulation). To avoid this, condition (19.22) with m = 2 needs to
be fulfilled. For functional independence of the variance, the best is to assure the
condition (19.22) both with m = 1 and m = 2 (QTD III/B).

The condition of QTD IV is somewhat difficult to check, since the derivatives
in (19.22) are not easy to evaluate if condition (19.20) is not fulfilled, but QTD III is
a very useful theorem. The immediate consequences are:

• because of functional dependence of the second-order moment on x , a dither
uniform between (±q/2) is not sufficient to decouple the variance of ξ from
x , since the derivatives of its CF are not zero at the required places, but the
uncorrelatedness of ξ and x is provided,

• a triangular dither between (±q) is appropriate to decouple the variance of ξ
from x . for this purpose: its application guarantees e.g. that var{(x + d)′} =
var{x} + var{d} + q2/12. Using triangular dither, noise modulation does not
occur.

For dithers which are not at least first-order (see page 496), the variance of the total
error varies with x . Its lower bound is zero, as it is for almost zero input and small
dither; its upper bound is var{ξ} ≤ max(var{d + ν)}) = (σd + σν)2, and it is reached
for the correlation coefficient equal to 1.

19.6 IMPORTANT DITHER TYPES

In practice, QT I and QT II are not satisfied perfectly, but only approximately so. The
other quantizing theorems may, with specially designed dithers, be perfectly satis-
fied. Of interest are special dithers that have probability density functions which are
uniformly distributed between ±q/2, and those that have probability density func-
tions which are triangularly distributed between ±q.

19.6.1 Uniform Dither

If an independent dither has a probability density function that is uniform between
±q/2, its characteristic function is a sinc function that has zero values at u = l�,
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l = ±1,±2, . . . This dither meets the conditions for perfect satisfaction of QT IV/A.
This ensures that the PDF of the quantization noise ν will be uniformly distributed
between ±q/2, so that E{ν} = 0, and E{ν2} = q2/12. However, in general, the
quantization noise ν will be correlated with d. In most applications, this form of
correlation would be undesirable. Moreover, noise modulation can be present, that
is, slowly changing x can cause changing power of the total quantization error (see
page 496), audible and annoying in many applications. In such cases, triangularly
distributed dither is preferable.

Example 19.3 Stochastic–Ergodic Conversion

Uniform dither has a special application in the so-called stochastic–ergodic con-
verter (Wehrmann, 1973; Tumfart, 1976). This principle was popular in the
nineteen-sixties, as a building block of simple and cheap analog to digital con-
verters, but because of its relatively large variance, it disappeared when sigma–
delta converters were introduced.

If zero-mean uniform dither in the form of a periodic triangular wave with
|d| ≤ a/2 (19.24)

is added to a signal, having the property
|x | ≤ a/2 , (19.25)

an interesting observation can be made (Fig. 19.8): the sum of signal and dither
never surpasses the two borders at ±a. This means that from the comparison
levels, only the one at zero is used. Consequently, from the point of view of
signal treatment, it is irrelevant how the characteristic of the quantizer behaves
outside the interval (−a, a): it may even be a limiter (a simple comparator),
while from a theoretical point of view, we may consider it as a central portion
of a uniform quantizer with q = a. In other words: if a uniformly distributed
dither is added to the input signal x , and (19.25) is fulfilled, the quantizer may
be substituted by a comparator. This is the basic idea of the stochastic–ergodic
converter.

The block diagram is shown in Fig. 19.8(a). The output is a binary signal, usable
for digital processing. Since the dither fulfils QT III/A, the mean values of x and
x ′ are proportional, so the information on the input mean value is “coded” in the
average value of the output signal:

lim
T →∞

1
T

T/2∫
−T/2

x ′(t) dt = μx

a/2
. (19.26)

This equation allows simple analysis of the basic properties of the binary signal.
Its values are ±1, and the probabilities are linear functions of the mean value:

p = P(x ′ = 1) = 0.5(1 + E{x ′}) = 0.5 + μx

a
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Figure 19.8 The stochastic–ergodic converter, a comparator C which re-
alizes a fraction of a uniform quantizer, with uniform dither at the input:
(a) block diagram, (b) transfer characteristic, (c) signal waveforms.

1 − p = P(x ′ = −1) = 0.5(1 − E{x ′}) = 0.5 − μx

a
. (19.27)

This determines the variance, since for a binary distribution,

var{x ′} = 4p(1 − p) = 1 −
(
μx

a/2

)2

, var{ax ′} = a2 − 4μ2
x . (19.28)

Sigma–delta converters have a much smaller variance than this (see Addendum
at the Website of this book), therefore SEM-based processing has disappeared
from applications today.

As illustrated by (19.28), second and higher moments are generally biased (even
after the application of Sheppard’s corrections), since the dither fulfills only
QT III/A. Therefore, the mean square value is not equal to the sum of second
moments of x , d, and n:

E{x ′2} = 1 , E{(ax ′)2} = a2 �= μ2
x + E{d2} + a2

12
= μ2

x + a2

6
. (19.29)
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19.6.2 Triangular Dither

If two uniformly distributed dither signals are independent of x and of each other,
adding them together creates a new dither signal whose PDF is the convolution of two
rectangles. This is a triangular PDF distributed between ±q. The new dither signal
has a CF that is a sinc2 function. It has zero values at u = l�, l = ±1,±2, ...,
and has zero derivative values at u = l�, l = ±1,±2, .... This kind of dither is of
very great practical interest. First of all, it meets the conditions for QT IV/A. The
quantization noise ν that results when such a dither is used is uniformly distributed
between ±q/2, so that E{ν} = 0, E{ν2} = q2/12,. Furthermore, ν is both orthogonal
to and uncorrelated with (x + d). The quantization noise ν is orthogonal to and
uncorrelated with d, regardless of the nature of x , and furthermore, ν is orthogonal
to and uncorrelated with x itself. From the point of view of second-order moments,
ν behaves therefore like n of the PQN model. In most applications, this is highly
desirable.

The triangular PDF distributed between ±q also meets the conditions for QT III
with r = 1 (QT III/B). Therefore,

E{(x + d)νt } = E{(x + d)nt } , t = 1, 2, ... (19.30)

for all x . Furthermore,

E{xνt } = E{xnt } , t = 1, 2, ... (19.31)

(see QTSD, Eq. (19.52)), and this is equal to zero if t is odd.
Combining Eq. (19.30) with (19.31), we obtain

E{dνt } = E{dnt } , t = 1, 2, ... (19.32)

which is equal to zero since the mean value of the dither is zero.
Triangular dither is very important, since it is first-order (its CF and the first

derivative of its CF are equal to zero for u = l�, l = ±1,±2, . . ., see page 496),
has theoretically the smallest variance among all first-order dithers, and it is simple
to generate. Since it is first-order, it eliminates noise modulation (see page 496),
therefore it is very useful in audio. One of its first applications took place during the
recording of the album Tusk (Fleetwood Mac, 1980), but this was not published until
1993 (Gray and Stockham, 1993) because of commercial reasons.

Example 19.4 The Sum of Two Independent, Uniformly Distributed Dithers

One can generate a triangularly distributed dither sequence by adding two inde-
pendent, uniformly distributed noise sequences. This generates white dither (its
spectrum is uniform).
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Example 19.5 A Simple High-Pass, Triangularly Distributed Dither

Triangular-PDF dither can be generated by the addition or by the subtraction of
two independent uniform samples. Let us assume that the samples of a uniform
number generator are independent, and let us generate the triangular samples
from a single source of uniform samples by means of the difference equation

dt(k) = du(k)− du(k − 1) . (19.33)

It is straightforward that this dither is triangular, but it is not white: R(1) =
R(−1) = −var{du} = −q2/12. Its spectrum is

S( f ) = q2

6 fc
(1 − cos(2π f Tc)) , (19.34)

where Tc = 1/ fc is the clock interval (Fig. 19.9).

(a)

du(k)

z−1

dt(k)
−

+
∑

Spectrum of dt(k)

Sdu( f )

0 fc/2
0

q2

12 fc

2 q2

12 fc

(b)

Figure 19.9 High-pass dither: (a) generation; (b) power spectral density.

By this arrangement, most of the power of the dither is removed from low fre-
quencies, and concentrated at high ones. The dither is not white, its high-pass
nature can be very useful in many practical situations.

19.6.3 Triangular plus Uniform Dither

The convolution of the triangular PDF with the rectangular PDF gives a dither PDF
that is distributed between ±3q/2. The CF is a sinc3 function, and it meets the
conditions for QT III with r = 2. Therefore,

E{(x + d)2νt } = E{(x + d)2nt } , t = 1, 2, . . . (19.35)

for all x , and when x = 0,

E{d2νt } = E{d2nt } , t = 1, 2, . . . (19.36)

Assume that Eq. (19.36) is true for all x . Subtracting both sides of (19.36) from
(19.35) one obtains

E{x2νt } + 2E{xdνt } = E{x2nt } + 2E{xdnt } , t = 1, 2, . . . . (19.37)
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Since x, d, and n are independent of each other, and E{d} = 0,

E{xdnt } = 0 . (19.38)

Since x and d are independent of each other but not independent of ν, it is not clear
whether

E{xdνt } ?= 0 , t = 1, 2, . . . (19.39)

In light of Eqs. (19.32) and (19.31), it is probable that (19.39) is true or at least
approximately true. Combining (19.39) with (19.37), one obtains

E{x2νt } ?= E{x2nt } , t = 1, 2, . . . (19.40)

This is true, because of QTSD (Eq. (19.52) is fulfilled).
From the point of view of these higher-order moments, the quantization noise

ν behaves like PQN.

19.6.4 Triangular plus Triangular Dither

The convolution of the triangular PDF with the triangular PDF gives a dither PDF that
is distributed between ±2q. The CF is a sinc4 function which meets the conditions
for QT III with r = 3. Following similar reasoning,

E{(x + d)3νt } = E{(x + d)3nt } , t = 1, 2, . . . (19.41)

E{d3νt } = E{d3nt } , t = 1, 2, . . . (19.42)

The following equation is true because of QTSD (Eq. (19.52) is fulfilled):

E{x3νt } = E{x3nt } , t = 1, 2, . . . (19.43)

The quantization noise ν behaves like PQN from the point of view of these higher-
order moments. Dither signals having triangular PDFs, or triangular convolved with
rectangular, or triangular convolved with triangular are useful in the audio field and
in other fields. Dither signals of this type may be generated by adding combinations
of independent rectangularly distributed signals.

19.6.5 Gaussian Dither

The Gaussian PDF and CF do not satisfy the conditions for any of the quantizing
theorems. However, a Gaussian dither with a standard deviation σ that is equal to or
greater than q/2, half a quantum step, would come exceedingly close to satisfying
QT I or QT II. Regarding all moments and joint moments, the quantization noise
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ν would closely approximate the behavior of PQN. Evidence of this is given e. g.
in Fig 5.6, in Tables 5.5, 5.2, 6.1, 6.2, 6.3, and 6.4, and throughout Chapter 11.
Independent Gaussian noise would serve very well as a dither signal.

An additional benefit of Gaussian dither is that its PDF smoothly touches the
horizontal axis at the edges, therefore its properties are not sensitive to the value
of the ratio of its standard deviation and the quantum size q. Therefore, e.g. when
nonlinearity of ADCs is considered (see Section E.3), Gaussian dither is preferable
over uniformly or triangularly distributed dither.

19.6.6 Sinusoidal Dither

A sine wave is easy to generate, and it too could serve as an effective dither. The
PDF of the sine wave, shown in Fig. I.6, does not satisfy the conditions for any of
the quantizing theorems. However, if the peak-to-peak amplitude of the sine wave
covers five to ten quantization boxes or more, the moments and joint moments of the
quantization noise ν would have values approximating those of PQN n. Moments
of the noise ν are shown in Fig. G.1 and Fig. G.11, for the sinusoidal dither acting
alone. Example 20.9 describes a nice application of sinusoidal dither.

The dither is often generated by digital means. Therefore, the properties of
digital dither need to be studied with special care. This is done in Appendix J.

19.6.7 The Use of Dither in the Arithmetic Processor

The somewhat deterministic pattern of the quantization errors (e.g. in the FFT) can
be broken up by applying uniform dither before each roundoff operation (Horváth,
1987). The effectiveness of the use of uniform dither may be somewhat surprising,
since theoretically, only triangularly distributed dither assures that ν and d will be
uncorrelated (uniform dither assures that ξ and x are uncorrelated, but this is not
sufficient, since the second moment of ξ depends on x). Simulations show that this
is not a significant problem in the noise of FFT calculations. One might speculate
that there are several roundoff noise sources, and their average behaves similarly to
the average of independent noises. Dithering with uniform dither could be a true
improvement in many kinds of arithmetic calculations. Its implementation is how-
ever not straightforward, since the dither needs to be added to the results after the
operation, but before roundoff.7

Moreover, there is another important problem. If new dither is generated for
each FFT, the results are not precisely reproducible for the same sequence, therefore
testing becomes difficult. On the other hand, if the samples of the dither are fixed
for an FFT to assure reproducibility, the average properties of the dither cannot be

7An alternative is to add the dither before the operations (scaling, addition or multiplication), but
then each operation needs to be executed with inputs of increased precision. Furthermore, in multipli-
cation, this increases the average variance.
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exploited. A possibility is to “freeze” the dither sequence for testing only, but this is
an additional complication usually not accepted.

An alternative improvement is to apply convergent rounding (see page 396).

19.7 THE USE OF DITHER FOR QUANTIZATION OF TWO
OR MORE VARIABLES

A stochastic dither d is generally constructed to be independent of the input signal x .
When two or more variables x1, x2, ..., xN are quantized, the dithers d1, d2, ..., dN
can be constructed so that each of these dither signals are independent of each
other and of all of the input variables x1, x2, ..., xN . If all of the input variables
x1, x2, ..., xN have zero values, the dither signals will be quantized, and the resulting
quantization noises ν1, ν2, ..., νN will be independent of each other. If all of the input
signals x1, x2, ..., xN being independent of d1, d2, ..., dN have other values, not all
zero, whether stochastic or deterministic, the quantization noises ν1, ν2, ..., νN will
not necessarily be independent of each other.

Suppose however that the dither signals d1, d2, ..., dN meet the conditions for
multidimensional QT I (or, that they are independent, and each of them meets the
conditions of QT I). The quantization noises ν1, ν2, ..., νN can be shown to be inde-
pendent of each other, regardless of the nature of the inputs x1, x2, ..., xN as long as
the dither signals are independent of these inputs. The quantization noises will have
joint moments with the dither signals and the input signals that would be the same
as if the quantization noises were replaced with independent PQN noises. The same
results can be shown to be obtained when QT I is not satisfied but QT II is satisfied
by the dither signals.

When the dither signals d1, d2, ..., dN do not meet the conditions for either
QT I or QT II, but do meet conditions for other of the quantizing theorems, it is not
clear whether the quantization noises ν1, ν2, ..., νN will be independent of each other
or uncorrelated with each other, even when the dither signals d1, d2, ..., dN are all
independent of each other. The input signals x1, x2, ..., xN are generally correlated
with each other, and their characteristics may dominate and determine the statistical
relations between ν1, ν2, ..., νN .

Of greatest interest are conditions under which the quantization noises ν1, ν2, ..., νN
are uncorrelated with each other. This happens for instance when all of the dither sig-
nals satisfy multidimensional QT IV/A. Then, although ν1 is deterministically related
to (d1 + x1), it is true that

E{ν1(d1 + x1)} = 0 , E{ν1d1} = 0 , and E{ν1x1} = 0 . (19.44)

Also, it is true that

E{ν2(d2 + x2)} = 0 , E{ν2d2} = 0 , and E{ν2x2} = 0 . (19.45)
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Although x1 and x2 are correlated with each other, ν1 and ν2 are uncorrelated with
x1 and x2 respectively.

Therefore ν1 and ν2 are uncorrelated with each other and, by similar reasoning,
we may conclude that ν1, ν2, ..., νN are mutually uncorrelated.

If x1, x2, . . . xN are samples of a time function and d1, d2, ..., dN are indepen-
dent additive dither samples that are independent or at least uncorrelated over time
(white), and the dither satisfies any or all of the quantizing theorems QT I, QT II,
QT III/B, then the quantization noise will be uniformly distributed between ±q/2,
uncorrelated with the input x and the dither d, and will be uncorrelated over time
(white).

The precise condition of whiteness can also be given. Let us look for the con-
dition that for two different time samples, E{ξ1ξ2} = E{d1d2}. Wannamaker (1992)
proved the following statement, using the conditional 2-D CF of ν:

Autocorrelation Function of ξ at Nonzero Lag Values
For independent dither, the necessary and sufficient condition of

E{ξ1ξ2} = E{d1d2} , (19.46)

is that each of the following equations is true:

�d1,d2(l1�1, l2�2)= 0 for (l1, l2) �= (0, 0)
∂ �d1,d2(l1�1, ud2)

∂ud2

∣∣∣
ud2

=0

= 0 for l1 �= 0

∂ �d1,d2(ud1, l2�2)

∂ud1

∣∣∣
ud1

=0

= 0 for l2 �= 0 . (19.47)

Example 19.6 Fulfillment of Conditions (19.47)
A simple application of this theorem is the use of independent, uniformly dis-
tributed dithers to both inputs. In this case

�d1,d2(ud1 , ud2) = �d1(ud1)�d2(ud2) = sinc
(q1u1

2

)
sinc

(q2u2

2

)
,

and it can be seen that the conditions (19.47) fulfill.
This means e.g. that if both inputs are converted via two independent stochastic–
ergodic converters (see Section 19.3), the product is an unbiased estimate of the
correlation:

E
{

A1xq1 · a2xq2
} = E {x1x2} , (19.48)

since E{di } = 0.
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Example 19.7 Defocusing the Optics
Photos can be used to determine the two-dimensional position of an object. Para-
doxically, resolution can be improved by defocusing the optics. This is approx-
imately equivalent to replacing the picture of each point by a uniformly illumi-
nated round spot. The resulting picture is a two-dimensional convolution of the
true picture and a function uniformly distributed above a circle. Therefore, this
defocused spot acts like two-dimensional dither, since it is a two-dimensional
lowpass filter. See Exercise 8.6 for some details.

19.8 SUBTRACTIVE DITHER

When the input to a quantizer cannot be relied upon to meet the criteria for a suitable
quantizing theorem, a dither signal can be added to the quantizer input to guaran-
tee satisfaction. Although the dither is beneficial in that it linearizes the quantizer
and ensures known properties for the quantization noise, it does make the quantizer
output more noisy. A clever idea was proposed by Roberts (1962) to overcome this
drawback. He added a dither to the quantizer input, and subtracted it from the quan-
tizer output. The dither thus acted like a catalyst in a chemical process, making the
process work better but not appearing in the process output. Roberts’ subtractive
dither idea should be used whenever it is possible.

+

+

+

+

+

+

x

x

(x + d)

(x + d) (x + d)′

(x + d)′ = (x + d + ν)

d

d(a)

(b)

ν

Q

��

�

Figure 19.10 Dither without subtraction: (a) a quantizer with dither; (b) quantizer re-
placed by additive quantization noise.

Figure 19.10(a) shows the quantizer with a dithered input, and Fig. 19.10(b)
shows how the dither contributes to the quantizer output noise. Without subtractive
dither, the quantizer output is x +d +ν. Accordingly, when d and ν are uncorrelated,⎛⎜⎝ quantizer

output
noise power

⎞⎟⎠ = E{ν2} + E{d2}

= q2/12 + E{d2} .
(19.49)
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The power of the dither adds to the quantization noise power.
Figure 19.11(a) illustrates the idea of subtractive dither. Fig. 19.11(b) shows

subtractive dither with the quantizer represented by additive quantization noise. The
result of dither subtraction on the quantizer output is shown in Fig. 19.11(c). With
subtractive dither, the quantizer output is x +ν. The power of the dither does not add
to the quantization noise power, but if the dither satisfies QT IV/A, the PQN model
is perfectly usable, independently of the properties of x . The benefit of subtractive
dither is clear.
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Figure 19.11 Dither with subtraction: (a) a quantizer with subtractive dither; (b) quantizer
replaced by additive quantization noise, with subtractive dither; (c) equivalent diagram of
quantizer with subtractive dither; (d) PQN model.

In order to prove the independence of ν of input x for a dither fulfilling QT IV/A,
the joint CF of the input signal and the noise can be investigated:

�x,ν (ux , uν)=
∞∑

l=−∞
�x (ux + l�)�d(l�)�n(uν + l�)

=
∞∑

l=−∞
�x (ux + l�)�d(l�) sinc

(
q(uν + l�)

2

)
. (19.50)
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Studying this, an important consequence can be drawn. When the dither satisfies
QT IV/A, then all l �= 0 members disappear in the sum:

�x,ν(ux , uν) = �x (ux ) ·�n(uν) , (19.51)

which is the CF of the sum of two independent random variables. Therefore, the
following theorem holds:

Quantizing Theorem for Subtractive Dither (QTSD)
If in dithered quantization

�d(l�) = 0 for l = ±1,±2, . . . , (19.52)

then the quantization noise ν = (x + d)′ − (x + d) will be independent
of the input signal x, and it will be uniform between (±q/2).

If (19.52) is fulfilled, we call d a zero-order dither.
We mention here that independence of x and ν does not imply the independence

of d and ν, but for subtractive dither this is not required, since d is eliminated from
the output variable. It is however possible that both x and d fulfill the conditions
of QT IV/A. In this case, x , ν and d are all pairwise independent. As we have seen
in Example 19.1 (page 491), this is not enough by itself to assure that the triplet x ,
d, and ν be independent. The key to this is studying the derivatives of the joint CF.
This, and a general theorem on joint moments is given in the Addendum, readable in
this book’s website.

19.8.1 Analog-to-Digital Conversion with Subtractive Dither

Subtractive dither can only be utilized when the exact dither signal is available
for subtraction after quantization. A dither signal from a pseudo-random genera-
tor would generally be used. Since the generating algorithm would be known, the
dither sequence could be recreated for subsequent subtraction. This could be used
with digital recording of audio or video signals. The dither would be added to the
analog signal before quantization, and then be subtracted after playback and digital-
to-analog conversion.

The subtractive dither signal would need to be generated by a computer or by
some form of digital apparatus so that it could be recorded and repeated. Injecting
the dither into the input of an analog-to-digital converter (ADC) would require the
dither to be in analog form. If generated by computer, the digital dither signal could
be converted to analog by a zero-order-hold digital-to-analog converter (DAC). Care
would be needed in doing this to ensure that the sampling instants of the ADC would
not correspond to the transition instants of the DAC.

Suppose that the ADC is a 16-bit converter. Then the dither must exist on
a much finer scale with much finer quantization steps so that it approximates an
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analog dither. For example, let the dither exist on a 24-bit scale that covers the same
dynamic range as the 16-bit scale of the ADC. So the steps of the dither will be
28 = 256 times finer than the quantization steps of the ADC. The dither signal in
analog form is added to the input x , and the sum is quantized. The quantizer output,
in digital form, becomes the input to a computer. The dither, now in digital form,
must be subtracted in the computer from the computer input. Refer to Fig. 19.12.

Q
attach 8

least sign.
zero-bits

8-bit DAC
attach 16
most sign.
zero-bits

8-bit
dither

generator

+
+

+
−

2-8

�d�ax
analog

input

16 bits 24 bits 24 bits x + ν
digital
output

COMPUTER

16-bit quantizer

Zero-order hold

Figure 19.12 A fixed-point analog-to-digital converter with subtractive dither. �a denotes
analog summation, and �d denotes digital summation. The abbreviation “sign.” stands for
“significant.”

16 bits 8 bits

from 16-bit
quantizer

dither bits
(opposite sign)

Figure 19.13 Formation of the 24-bit output of the analog-to-digital converter of
Fig. 19.12.

In Fig. 19.12, an 8-bit pseudo-random generator generates digital dither that
might be, for example, uniformly distributed, or triangular distributed, or Gaussian,
and so forth. The dither signal goes through an attenuator with an attenuation of
2−8, and is added to the analog input x . The dithered input is quantized to 16-bits.
The quantizer output is then given eight additional bits in the least significant bit
positions, all set to zero. The quantizer output now is 24-bit. The 8-bit dither signal
with sixteen zero bits attached to the most significant positions is then subtracted
from the quantizer output signal. Thus, a 24-bit dither is subtracted from the 24-
bit quantizer signal to produce the 24-bit quantized output. Figure 19.13 shows the
formation of the bits of the quantized output.
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In actual practice, some care will be needed to choose the gain of the analog
attenuator. The gain shown in Fig. 19.12, 2−8, is based on assuming integer numbers
and a gain of unity for the DAC. This is not realistic, since a commercial 8-bit DAC
whose maximum number magnitude would be 27 − 1 might produce a maximum
output of 5 volts, but illustrates the need of proper scaling of the dither. The gain
needs to be chosen to assure proper dither level at the input and at the output. It is
also important to add dither d at the quantizer input while the same d is subtracted
from the quantizer output.

The converter of Fig. 19.12 has an analog input and a 24-bit digital output. It
should be understood that this system is a 16-bit converter with 16-bit resolution. The
quantization noise power, q2/12, corresponds to that of the 16-bit quantizer. With
a 24-bit output, the quantizer of Fig. 19.12 has nicer quantization noise properties
when used in many applications such as in digital video and digital audio. The
disadvantage is that the digitized samples have 24 bits rather than 16 bits. This
increases the cost of storage and processing.

This could be avoided by storing the 16-bit ADC output, and regenerate and
subtract the dither only when the samples are used. But with integrated circuits, bits
and memory have become very cheap. Analog-to-digital conversion is still expen-
sive.

Experiments were done with a quantization system similar to that of Fig. 19.12.
The input signal x was sinusoidal, and scaled so that its peak-to-peak range covered
five quantization steps.

Figure 19.14(a) shows the original sinusoid. Figure 19.14(b) shows its power
spectrum. Figure 19.14(c) shows the quantized sinusoid, quantized without dither.
Figure 19.14(d) shows the spectrum of the sinusoid, quantized without dither. Fig-
ure 19.14(e) shows the quantized sinusoid, quantized with subtractive dither. Fig-
ure 19.14(f) shows the spectrum of the sinusoid, quantized with subtractive dither.
The frequency of the sinusoid was chosen to be a subharmonic of the sampling fre-
quency, and the dither was chosen to be uniformly distributed over ±q/2 and uncor-
related over time. The spectrum of the original sinusoid shows a single line. The
spectrum of the quantized sinusoid, without dither, shows the distortion. There are
harmonics of the original sinusoid, and the average amplitude of the fundamental
is somewhat smaller in this case than the corresponding amplitude of the original
sinusoid. (In other cases, the amplitude of the fundamental could be larger.) The
spectrum of the quantized sinusoid with subtractive dither shows a fundamental and
no harmonics. The average fundamental amplitude is the same as that of the original
sinusoid. But now, the effects of random quantization noise are seen in the base-
line of the spectrum of Fig. 19.14(f). This is white q2/12 noise, corresponding to ν.
Without dither, the distortion of the sinusoid due to quantization as manifested in the
harmonics shown in Fig. 19.14(d) and in the change in amplitude of the fundamen-
tal together add to a total power level of approximately q2/12. This is approximate
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Figure 19.14 Quantization of a sinusoidal signal, without dither and with subtractive
dither: (a) the original sine wave; (b) the spectrum of original sine wave; (c) the quan-
tized sine wave; (d) spectrum of the quantized sine wave; (e) sine wave quantized with
subtractive dither; (f) spectrum of sine wave quantized with subtractive dither; (g) auto-
correlation function between ν and x without dither; (h) crosscorrelation function between
ν and x without dither; (i) autocorrelation function of quantization noise with subtractive
dither; (j) crosscorrelation function between ν and x with subtractive dither.
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because the sinusoid by itself does not satisfy any quantizing theorem at the quantizer
input.

Figures 19.14(g) and 19.14(i) show autocorrelation functions of the quantiza-
tion noises without dither and with subtractive dither. Without dither, the periodic
components of the quantization noise are evident. With subtractive dither, the au-
tocorrelation shows no periodic components and shows the quantization noise to be
simply white noise having power of q2/12. With no dither, the autocorrelation for
zero lag shows the total quantization noise power to be just slightly less than q2/12
(in other cases, it could be higher than q2/12).

The use of dither does not generally reduce the power of quantization noise, and
indeed, without subtraction, adds its power to the quantization noise power making
things potentially worse. Dither is used to condition the quantization noise, to make
it white and to cause its joint moments with the input x to be like that of PQN.

Figure 19.14(h) shows the crosscorrelation function between ν and x for quan-
tization without dither. The correlation between periodic quantization noise and
the sinusoidal input is clearly evident. This result is very different from that of
Fig. 19.14(j), showing the crosscorrelation function between ν and x for quantization
with subtractive dither. In this case, the quantization noise is white noise and is not
periodic. It does not correlate with the input x . From the standpoint of moments, it
behaves like PQN.

19.9 DITHER WITH FLOATING-POINT

19.9.1 Dither with Floating-Point Analog-to-Digital Conversion

At this time, almost all analog-to-digital converters convert on a fixed-point scale
with uniform quantization. However, some analog-to-digital converters are in devel-
opment that convert an analog input directly to floating-point form. We anticipate
that in the future such converters will be available and therefore we write this section
to analyze their behavior with and without dither.

A floating-point quantizer is diagrammed in Fig. 19.15(a). Dither d is applied
to its input in Fig. 19.15(b). Generation of the dither is shown in Fig. 19.15(c). A
zero mean random noise signal dy having a fixed PDF is multiplied by 2E to obtain
the dither d.

The floating-point conversion and the dither process are done in two steps.
First, without dither, the input x is converted to floating-point digital form. The
result is a mantissa and an exponent E . With the second step, the dither d is added
to x and the conversion is repeated giving a new mantissa and exponent. The desired
conversion result is the new mantissa and exponent. The first step is done just to get
the exponent E , which is used in the formation of the dither for the second step.

In many practical implementations of floating-point dithering, the signal is first
compressed, and the already compressed y is then uniformly quantized. Therefore,
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Figure 19.15 Two-step floating-point quantizer with dither: (a) the floating-point quan-
tizer; (b) quantizer with dither; (c) dithered quantizer showing formation of the dither.

we can add the dither directly to y, and avoid the complications caused by dithering
the input signal x , see Fig. 19.16.

Compressor Q Expander�

QFL

DAC

x (x + d)′

Quantizer

dy

+
+

Figure 19.16 Floating-point quantizer with dither applied directly to the compressed sig-
nal.

An example of a floating-point quantizer’s input–output staircase function is
shown in Fig. 12.3. To provide dither for such a quantizer, the range of the input x
would need to be known so that the standard deviation of the dither could be adjusted
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for the step size. This is accomplished by multiplying the random noise dy by 2E in
order to obtain the dither d.
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Figure 19.17 Floating-point ADC with subtractive dither. Aa denotes an analog attenua-
tor.

Another example of a floating-point quantizer’s input–output staircase function
is shown in Fig. 12.10. Its compressor characteristic is shown in Fig. 12.7, its ex-
pander characteristic is shown in Fig. 12.8, and its hidden quantizer characteristic is
shown in Fig. 12.9. If the random noise dy is uniformly distributed over the range
±q/2 (the smallest step of the floating-point quantizer), multiplying it by 2E will
cause the additive dither at the hidden quantizer input to be uniformly distributed
over plus and minus half a step for all amplitudes of the input x , with rare excep-
tions at exponent transitions. Then QT IV/A would be satisfied at the input of the
hidden quantizer, with the consequence that the quantization noise νFL would be un-
correlated with the input x . If on the other hand the random noise dy is triangular
distributed over the range ±q, then multiplying it by 2E will cause the additive dither
at the hidden quantizer input to be triangular distributed over the range ±q. QT IV
would be satisfied and the quantization noise νFL would once again be uncorrelated
with the input x .

Dither dy with a triangular PDF will work better than dither dy with a rectan-
gular PDF. Dither with a triangular PDF generally works better than dither with a
uniform PDF for uniform quantization. For floating-point quantization, there is an
additional reason for the superiority of dither with a triangular PDF. The additional
reason is that the tapered triangular PDF handles edge effects more gracefully, when
x is at a level where the mantissa is ready to overflow and cause the exponent to go
up by one. Likewise, a Gaussian dither also works well. The uniformly distributed
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dither however has the advantage (except for edge effects) of being bounded by the
narrowest limits.

19.9.2 Floating-Point Quantization with Subtractive Dither

A floating-point analog-to-digital converter with subtractive dither would need to be
constructed by combining the system functions illustrated in Figs. 19.12 and 19.15.
Figure 19.17 shows a system that does this. The input x is analog, and the output is
digital, consisting of an exponent and a mantissa. The floating point quantizer QFL

is assumed, for purposes of illustration, to produce an output with a 10-bit mantissa.
For this illustration, the dither is assumed to be 8-bit, including one sign bit. At the
converter output, the mantissa has 18 bits. But it should be realized that the basic
resolution of this converter is that of a 10-bit mantissa, corresponding to the resolu-
tion of QFL. The purpose of the additional mantissa bits is to allow the quantization
noise to be well behaved, as is the case with subtractive dither.

In a floating-point ADC, dither can be added to the already compressed signal,
thereby simplifying the structure, see Fig. 19.18.
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Figure 19.18 Floating-point ADC with subtractive dither, applied to the mantissa. Aa
denotes an analog attenuator.

The eight bits of the pseudo-random dither generator may be assumed for this
illustration to be independently randomly chosen with 50% probability of 0’s and
50% probability of 1’s. Equally likely negative and positive numbers will be gen-
erated whose values will be distributed over the range ±127. This approximates a
uniformly distributed dither. Other distributions are possible, but this one is a good
and convenient choice.

Subtracting the dither at the output of QFL can be done in the following way.
The 10-bit mantissa of QFL is made into an 18-bit mantissa by appending eight zeros
beyond its least significant bit. This is indicated by multiplication of the mantissa by



516 19 Dither

28. (This scaling is compensated for by subtracting 8 from the exponent.) The 8-bit
dither is then subtracted from the enlarged mantissa. Taking into account the sign bit
of the dither, its seven bits are subtracted (if the dither is positive) or added (if the
dither is negative) to the seven least significant bits of the enlarged mantissa. The
range of the subtracted dither is plus or minus one half of the least significant bit of
the mantissa of QFL.

Adding the dither at the input to QFL can be done as follows. The 8-bit dither
is multiplied by 2E (its bits are shifted left by the amount E) and fed to a DAC. The
DAC output is scaled by a gain factor to form the input dither d. The exact scale
factor cannot be predicted because the gain of the DAC (this is the ratio of the largest
output voltage to the largest input binary number) would need to be known. The
scale factor must be chosen so that the dither subtracted at the output of QFL is equal
to the dither added at its input.

Simulation experiments were done with a floating-point quantizer without dither
and with subtractive dither. The input signal was a sine wave, shown in Fig. 19.19(a).
Its spectrum is shown in Fig. 19.19(b). With a mantissa length of p = 2, the quan-
tized sine wave was visibly distorted, as shown in Fig. 19.19(c). The spectrum of
the quantized sine wave in Fig. 19.19(d) shows a fundamental and its harmonics.
Figure 19.19(e) shows the result of floating-point quantization of the sine wave with
subtractive dither. Although the distortion in this case looks worse than without
dither, the spectrum of the quantized sine wave in Fig. 19.19(f) shows a fundamental
and no harmonics. The quantization noise νFL is essentially white and not periodic.
The autocorrelation function of νFL without dither, shown in Fig. 19.19(g), shows
periodicity in the quantization noise, while the autocorrelation function of νFL with
a subtractive dither shown in Fig. 19.19(i) is the autocorrelation function of white
noise. The crosscorrelation function between νFL and x for floating-point quantiza-
tion without dither is periodic, as can be seen in Fig. 19.19(h). The same crosscor-
relation function for floating-point quantization with subtractive dither is shown in
Fig. 19.19(j). Since in this case νFL is essentially white noise, it does not correlate
hardly at all with the periodic input x , and the crosscorrelation function is close to
zero for all lags.

With floating-point quantization like with fixed-point uniform quantization,
subtractive dither of proper design makes the quantization noise behave like PQN
from the point of view of moments and joint moments.

19.9.3 Dithered Roundoff with Floating-Point Computation

When pairs of floating-point numbers are added or multiplied in a computer, it is
generally necessary to quantize the sum or product in order to preserve the length of
the mantissa.

When floating-point numbers are multiplied, the mantissa of the product is the
product of the mantissas, and the exponent of the product is the sum of the exponents.
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Figure 19.19 Floating-point quantization of a sinusoidal signal with p = 2 (bits of possi-
ble normalized mantissa values: −1.1, −1.0, +1.0, +1.1), exponent −3,−2, . . . , 3, with-
out dither and with subtractive dither: (a) the original sine wave; (b) spectrum of the
original sine wave; (c) the quantized sine wave; (d) spectrum of the quantized sine wave;
(e) sine wave quantized with subtractive dither; (f) spectrum of a sine wave quantized
with subtractive dither; (g) autocorrelation function of quantization noise without dither;
(h) crosscorrelation function between νFL and x for quantization without dither; (i) autocor-
relation function of quantization noise with subtractive dither; (j) crosscorrelation function
between νFL and x for quantization with subtractive dither (note the small correlation val-
ues: their deviations from zero are caused by the finite sample number used in simulation).
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The product of the mantissas has a length of the order of the sum of the lengths
of the two mantissas, and this necessitates roundoff. When floating-point numbers
are summed, the mantissas need to be aligned relative to each other taking into ac-
count the exponent values. A large difference in the exponents could cause the sum
to have a mantissa length much greater than that of either of the mantissas. Generally
all numbers in the computer have mantissas of the same standard length. As such,
the mantissa of the sum of two numbers has a length of the order of the machine’s
standard mantissa length plus the difference in the exponents.

In general, the mantissas of the sum, difference, product, or quotient of two
floating-point numbers will be longer than the standard machine mantissa. To reduce
the length of the mantissa in order to conform to the standard, one could truncate the
mantissa by throwing away the excess least significant bits. However, a much better
approach would be to round the least significant bit of the standard word up or down
depending on the bits to be eliminated. (Do they represent a quantity that is greater
or less than one half the value of the least significant bit of the standard?)

Rounding is what is done most commonly. Before rounding, a dither could be
added. The purpose is to make sure that the quantization noise νFL is uncorrelated
with the input x . How this might be done is illustrated in Fig. 19.20.

Standard
mantissa

Excess
mantissa bits

Dither bits
Add
these

Sum

±

±

±

±

Roundoff

Dithered rounded mantissa

Figure 19.20 Dithered quantization of a floating-point number.

In Fig. 19.20, the most significant part of the mantissa to be rounded consists
of 8 bits, and the least significant part consists of 10 bits. The 18-bit number is to
be rounded so that it will contain just 8 bits. Before rounding, a dither is added.
For this example, the dither is digital and contains 5 bits plus a sign bit. All 6 bits
may be chosen randomly, independently, and with equal probability of 1s and 0s. By
adding or subtracting the 5 dither bits with the bit alignment illustrated in Fig. 19.20,
a dither that is approximately uniformly distributed between plus and minus one half
the value of the least significant bit is added to the 18-bit mantissa. The resulting
number is then rounded to 8 bits.

In digital signal processing, we can generate and use digital dither before arith-
metic quantization. This sounds very reasonable, but implementation is not trivial
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at all. In most computers, quantization is an inherent part of arithmetic operations,
since the results are calculated with the available memory precision only. In such
cases, we obtain the already quantized samples, therefore we cannot add the dither
before quantization. Therefore an indirect solution needs to be chosen. For example,
by modification of the calculation algorithm, we could generate lower bits of the re-
sult separately, in order to prepare for dithering. However, this is cumbersome and
often dubious.

The situation is much better when the results are generated in an accumulator
with higher precision than that of the memory. If these excess bits are available, they
can be used, combined with dither, to decrease the quantization distortion. If the
excess bits are not directly available, usually there is a roundabout way to indirectly
obtain them, but these possibilities are typically not worth doing.

An additional observation that can be made is that the dither amplitude is usu-
ally at the LSB level. For digital dither, its resolution is certainly finer than the LSB
of storage. Therefore, the dither cannot be subtracted after quantization, since the
result would have again bits which cannot be stored. Consequently, in calculations
usually only non-subtractive dither can be used.

The use of this kind of dither causes the quantization noise of the hidden quan-
tizer ν to be uncorrelated with its input y. The independent dither is also uncorrelated
with y. Based on the theory of floating-point quantization, the floating-point quanti-
zation noise νFL and the dither at the floating-point quantizer output are uncorrelated
with each other and are both uncorrelated with the input x . Since the quantization
noise and the dither are both uniformly distributed between plus and minus one half
of a quantization step of the hidden quantizer, they contribute equally in the mean
square sense to the net distortion of the quantization process.

By dithering before rounding in floating-point arithmetic, we ensure that the
quantization noise is uncorrelated with the input x . The net distortion, the sum of the
quantization noise and the dither, will also be uncorrelated with the input x , and will
have a mean square value equal to twice that of the quantization noise alone. The
doubling of the distortion power is the price paid for uncorrelatedness between the
distortion and input x . Sometimes this is worthwhile.

The question is, could the doubling of the distortion power be avoided by sub-
tractive dithering? The answer is yes, but the standard mantissa length would need
to be increased. Contemplating this, one would probably be better off using a longer
mantissa and rounding, with or without dither.

Finally, we need to mention an important disadvantage of such dithered cal-
culations. If the dither is random or pseudo-random, the result of each calculation
becomes slightly random, depending on the dither values. This means that when
repeating the same calculation, the result may slightly differ. This makes the proper
testing of otherwise deterministic algorithms very difficult. Therefore, dither in arith-
metic calculations is not used in practice.
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19.10 THE USE OF DITHER IN NONLINEAR CONTROL
SYSTEMS

An important area of application for dither signals is to nonlinear feedback control
systems. Here, nonlinearity can appear as a result of quantization in digital control
systems, and it could result from sensors such as proximity detectors or shaft en-
coders. Nonlinearity could be in the form of a stairstep of uniform quantization, or
it could have the characteristics of on–off two-level (signum) error detectors used
in contactor control, or three or more level detectors. Hysteresis might be present.
Some of these characteristics are shown in Figs. 1.4–1.7.

Purposes of introducing dither into feedback control systems with nonlinearity
are, among others, linearization, stabilization, and elimination of “limit cycles” and
static offsets. Engineers have used dither for years, on an empirical basis, to “im-
prove” the behavior of nonlinear control systems. Now, with the theory to explain
the effects of dither and how to design it, dither can be used more effectively and
with greater confidence. The subject is discussed in Chapter 17.

19.11 SUMMARY

If the quantization noise ν has PQN-properties, the quantizer, a nonlinear device,
behaves in a statistical sense like a linear device. The quantizer is then a source
of additive noise whose statistical properties are known and fixed: mean = 0,
variance = q2/12, uncorrelated with the quantizer input x .

If the quantizer input x has a PDF that does not satisfy any of the quantizing
theorems, the quantization noise ν will not have properties like PQN. These proper-
ties can be obtained, if desired, by the addition of a suitably designed independent
dither signal d to the quantizer input.

When dither is added, the input to the quantizer is (x+d). The output is (x+d)′.
The quantizer output is the sum of quantizer input x , the quantizer noise ν, and the
dither d, i.e., (x + d)′ = x + ν + d. If the PDF of d satisfies QT I for example, the
sum (x + d) will automatically satisfy QT I. The CF of d will be bandlimited, and
the CF of (x + d), the product of the CFs, will be bandlimited at least to the same
extent, regardless of the properties of the quantizer input x . If the PDF of d does not
satisfy QT I but satisfies QT II, then the PDF of (x + d) will satisfy QT II, by similar
reasoning. In fact, since all of the quantizing theorems involve regions of zero-value
and zero derivatives for the CF of x , satisfaction of any of the quantizing theorems
QT I, QT II or QT III by the dither d will ensure satisfaction of the same quantizing
theorem by (x + d).

If dither d has a CF with a narrow enough bandwidth to satisfy QT I, then
its addition to x before quantization ensures that the quantizer input (x + d) will
have a CF with a narrow enough bandwidth to satisfy QT I. The addition of dither
to the quantizer input acts in a way that is analogous to lowpass filtering commonly
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used before signal sampling to prevent aliasing. The dither is an anti-alias filter for
quantization.

Dither can be designed to satisfy QT I or QT II only approximately, not per-
fectly. A Gaussian dither with σ > q/2 comes very close to perfection however.
With such a dither, the PQN model works almost perfectly. The quantization noise
ν has essentially zero mean, a variance of q2/12, and is uncorrelated with input x .
The total output noise (ν + d) is also essentially uncorrelated with input x . In fact,
if QT II were perfectly satisfied, the quantization noise ν would be independent of
x , and the total output noise (ν + d) would also be independent of x . The quantizer
would be “linearized” by the dither, and the PQN model would prevail.

If the quantizer input is a time series, a series of samples over time, a white
Gaussian dither with σ > q/2 would cause the quantization noise to have essentially
zero mean, a variance of q2/12, to be uncorrelated with input x , and to be an additive
independent white noise.

A sinusoidal dither whose zero-to-peak amplitude covers several quantum boxes,
although it would not have a PDF that satisfies any of the quantizing theorems, would
cause the quantization noise to have close to PQN properties.

A dither with a triangular PDF whose amplitude range covers ±q would per-
fectly satisfy QT III/B. Using this dither would cause ν to have mean of zero, a
variance of q2/12, and it would be uncorrelated with (x + d), d, and x . The total
noise (ν+d) at the quantizer output would be uncorrelated with x . From the point of
view of second-order moments, use of this dither would ensure that the quantization
noise ν would behave exactly like n of the PQN model.

When dither is added to the quantizer input, the total quantizer output noise is
equal to (ν + d). The disadvantage to using dither is that the total output noise in-
cludes d. When using a Gaussian dither whose standard deviation is q/2 for example,
the total output noise power is q2/12+q2/4 = q2/3, which is four times greater than
that of the quantization noise alone. When using a triangular dither whose amplitude
range is ±q for example, the total output noise power is q2/12 + q2/6 = q2/4,
which is three times greater than that of the quantization noise alone. The added
noise power at the quantizer output represents a significant price to pay for both of
these dithers.

In some cases, this additional output noise can be eliminated by subtracting the
same dither signal at the quantizer output that had been added in at the quantizer
input. The method is called “subtractive dither,” and was first proposed by Roberts
(1962). It should always be practiced when it is possible to do so. The method
removes the dither from the quantizer output. The dither then works like the catalyst
of a chemical process. It makes the process work better, but does not appear at the
process output.

The dither methodology developed for uniform quantization can be modified
for use with floating-point quantization. Dither can also be used in numerical floating-
point computation. Frequently, dither is used in nonlinear feedback control systems
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to achieve linearization or approximate linearization. The theoretical ideas about
dither that have been developed in this chapter could be very helpful in designing
dither signals for these and other applications. One could use the quantizing theo-
rems QT I, QT II, QT III, and QT IV to design dithers so that the quantization noise
would have desired physical and statistical properties. The most popular dithers are
Gaussian, sinusoidal, rectangular, and triangular.

19.12 EXERCISES

19.1 Assume that when recording for 16-bit storage on a CD, a dither triangularly distributed
in [−q, q] is used. What is the maximum SNR in this case? Theoretically, can an SNR
of 96 dB be reached for 16-bit fixed-point representation, using dither?

19.2 The input range of an eight-bit A/D converter (7 bits + sign) is ±1 V. A DC voltage
between ±0.5 V is to be measured, the desired accuracy is ±1 mV. Let us suppose that
the A/D converter can be well modeled by an ideal uniform quantizer. Use a Gaussian
dither.

(a) Determine the required minimum standard deviation of the dither, if the mean of
the quantization error is to be kept smaller than 0.5 mV.

(b) Using the dither determined in part (a), how many independent samples of the
quantizer output need to be averaged so that the maximum error within the 95%
confidence interval is not larger than 0.5 mV?

19.3 An unknown signal is quantized using a a dither which is a sum of three independent,
uniformly distributed variables whose range is ±q each.

(a) Which moments of ξ = (d + ν) are equal to the corresponding moments of
(n + d)?

(b) Which joint moments of ξ = (d + ν) with x and d correspond to joint moments
of (d + n) with x or d?
Hint: use the joint CFs of x and� , and d and� , respectively, available from the
web address
http://www.mit.bme.hu/books/quantization/.

19.4 The input signal x satisfies the conditions of QT IV/A. What can we say about ν and
about ξ = d + ν? What can we say if d satisfies QT IV/A, but x not?

19.5 Let a dither be generated with the PDF given in Fig. E3.12.1 of Exercise 3.12 (page 55).
For which values of q is the dither zero-order, for which values is it first-order?

19.6 Let a dither be generated with the PDF given in Fig. E3.13.1 of Exercise 3.13 (page 55).
For which values of q is the dither zero-order, for which values is it first-order?

19.7 Consider the dither PDFs given in Fig. E19.7.1(a)–(d). What is the order of the dither
generated with these PDFs? For which values of q is the dither zero-order, for which
values is it first-order? Give the expressions of the dither CFs.

19.8 Determine the characteristic function of the quantized output variable (x + d)′,
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Figure E19.7.1 Probability density functions of dithers to analyze.

(a) starting from the CF of the quantizer output without dither, given by Eq. (4.11),
(b) starting from the joint CF given by Eq. (19.4),
(c) starting from the joint CF given by Eq. (19.17).

19.9 Prove that for first-order dither, d and ν are uncorrelated.

19.10 Prove that for independent first-order dither, var{(x + d)′} = var{x} + var{d} + q2/12.

19.11 If x is uniformly distributed in (−q/2, q/2), and d is also uniformly distributed in
(−q/2, q/2), the sum x + d fulfills QT III/B, although d is only zero-order (it is not
first-order).

(a) Is the quantization noise ν = (x + d)′ − (x + d) independent of x? Are they
correlated?

(b) Is ν independent of d? Are they correlated?
(c) Is ν independent of x + d? Are they correlated?
(d) Which moments of ξ = d + ν are functionally independent of x?

19.12 Assume that the PDF of x can be written as the weighted sum of two shifted PDFs:
fx (z) = 0.5g(z)+ 0.5g(z + q/2) , (E19.12.1)

where g(z) is a PDF, and the dither is uniform in (−q/4, q/4).

(a) Determine which of the QTs for dither (QTD III, or QTD IV, or QTSD, or
GQTSD) are fulfilled.

(b) Which QT is fulfilled by x + d?
(c) Determine the PDF of the quantization noise ν = (x + d)′ − (x + d).
(d) Is the quantization noise ν independent of x? Are they correlated?
(e) Is ν independent of d? Are they correlated?
(f) Is ν independent of x + d? Are they correlated?
(g) Which moments of ξ = d + ν are functionally independent of x?
(h) Determine the PDF of ξ = d +ν for x binary with equal probabilities at (0, q/2),

furthermore at (q/4, 3q/4).
(i) Determine the CF of ξ = d + ν for these cases.
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19.13 For input x like in Eq. (E19.12.1), and a dither with trapezoidal PDF (Fig. E19.13.1):

fd(z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2
(

z
q + 3

4

)
1
q for − 3

4 q ≤ z < − 1
4 q

1
q for − 1

4 q ≤ z < 1
4 q

2
(

3
4 − z

q

)
1
q for 1

4 q ≤ z < 3
4 q

0 otherwise

(E19.13.1)
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Figure E19.13.1 Trapezoidal PDF.

repeat the questions (c)-(h) of Exercise 19.12.

19.14 Assume that the PDF of x can be written as the sum of three shifted PDFs:
fx (z) = 0.25g(z − q/2)+ 0.5g(z)+ 0.25g(z + q/2) , (E19.14.1)

where g(z) is a PDF, and the dither is triangular in (−q/2, q/2). Repeat the questions
of Exercise 19.12.

19.15 A dither signal satisfies QT IV/B but not QT IV/A. What is assured by the theory?

19.16 Roberts (1962) has introduced a global measure of the distortion of the quantizer with
subtractive dither, the so-called D-factor. This is defined as

D = E{(x − E{(x ′ − d)|x})2} . (E19.16.1)

This is a nonnegative measure of the quantizer distortion with subtractive dither, and
it becomes zero exactly when the resulting quantization noise ν is unbiased. Schuch-
man (1964) has shown that this statement is equivalent to the conditions for QTSD
(page 508), therefore the measurement of the quantity D can be used to check for
fulfillment of QTSD. Prove this statement.

19.17 At the website of the book, you can find the image einstein.tif. Do all of the
following:

(a) Read the image into MATLAB and quantize it uniformly to 8 representative lev-
els. Evaluate the mean squared error between the original image and the quan-
tized image.

(b) Generate random noise uniformly distributed over [−d/2, d/2], where d is the
step size for the quantization in part (a), and add this noise to the original im-
age. What is the mean squared error between the original image and the dithered
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image? Quantize this dithered image uniformly to 8 representative levels. Also,
evaluate the mean squared error between the original and the dithered and quan-
tized image.

(c) In which case, part (a) or part (b), do you get a higher mean squared error? In
which case, part (a) or part (b), is the subjective quality of the quantized image
better? Explain your answers briefly.

(d) The matrix ⎡⎢⎣ 1 2 1
2 4 2
1 2 1

⎤⎥⎦ (E19.17.1)

is a 2-D lowpass filter kernel. Filter the quantized image from (a) using this
kernel. Also filter the dithered and quantized image from (b) using this kernel.
Evaluate the mean squared error with respect to the original image for both. What
effect does the lowpass filtering have, in this case, on subjective quality?
Hint: Use the following code for filtering an image:

kernel = [1 2 1; 2 4 2; 1 2 1];
kernel = kernel/sum(sum(kernel));
img_filt = conv2(img, kernel);
img_filt = img_filt(2:(size(img_filt,1)-1),...

2:(size(img_filt,2)-1));

19.18 Derive the equivalent of Sheppard’s first 4 corrections (express the moments of x) with
independent zero-mean non-subtractive dither applied which satisfies the PQN model.

19.19 Prove that with independent dither triangularly distributed between ±q, the quantiza-
tion noise ν is orthogonal to and uncorrelated with d, regardless of the nature of x , and
furthermore, ν is orthogonal to and uncorrelated with x .

19.20 Verify, by Monte Carlo simulation, Eqs. (19.39), (19.40), and (19.43).

19.21 Using Gaussian and sinusoidal dithers, with various input signals x , check by Monte
Carlo simulation how closely the PQN model fits the experimental data regarding the
joint moments of x , d, ξ = d + ν, and ν. Specifically, q = 1,

(a) Gaussian dither, μ = 0, σ = q,
(b) sinusoidal dither, μ = 0, App = 15q,

for signal

(i) constant x , with value x = 0.3q,
(ii) sinusoidal x , μ = 0.1q, App = 0.3q,

(iii) uniform x , μ = 0.2q, App = q,

check the moments E{dξ}, E{ν}, E{xν}.
19.22 Suppose that, as in Section 19.7 (page 504), each of the individual dither signals

d1, d2, ..., dN meets the conditions for QT II. Show that the quantization noises
ν1, ν2, ..., νN are independent of each other, regardless of the nature of the inputs
x1, x2, ..., xN as long as the dither signals are independent of these inputs.
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19.23 Prove that if the dithers di , and d j satisfy the multidimensional QT IV/A, νi and ν j are
uncorrelated with xi and x j respectively, and that νi and ν j are uncorrelated with each
other.

19.24 Verify by computer simulation that with triangular independent dithers distributed be-
tween ±q, ν1 and ν2 are uncorrelated with x1, x2, d1, and d2, for x1 and x2 being
input time series signals as in Exercise 19.21, even if x1 = x2. Examine cov{x1, ν2},
cov{d1, ν1}, and cov{d2, ν1}.

19.25 Explain why the statement following Eq. (19.13): “since x and n are statistically in-
dependent, x and ν are also statistically independent and ν is uniformly distributed
between ±q/2” is true, and discuss the form of �x,ν(ux , uν).

19.26 Assume that for numbers equal to (integer+0.5)q, an independent dither uniformly dis-
tributed in (−q/2, q/2) is added, and afterwards, convergent rounding (see page 396)
is implemented. Describe the behavior of ν, E{ν|x}, E{ξ |x}, E{ν2|x}, and E{ξ2|x}, for
x uniformly distributed on the discrete values {(k + 0.5)q}, k = 1, 2, ..., N .

19.27 Prove the statement (Autocorrelation Function of ξ at Nonzero Lag Values), given on
page 505.

19.28 The distance of the Moon from the Earth can be determined by radar echo measure-
ments (John H. DeWitt, Jr, Jan. 1946, Zoltán Bay, Feb. 1946). However, these echoes
are very weak, thus the noise buries them.

In order to improve the SNR, a pseudo-code can be emitted, and the two-way travel
time can be determined by crosscorrelation of the pseudo-code to the noisy echo re-
ceived from the moon.

Simulate the correlation-based experiment, using the following data.

The average Earth–Moon distance is about D = 385 000 km. Therefore, the estimated
delay is about 2D/c ≈ 2.56 s.

The radar signal of 100 MHz is switched on and off according to a pseudo-random
binary signal (Godfrey, 1993) of length N = 210 − 1 = 1023. The clock frequency of
the binary signal is fc = 10 Hz.

Received power as a function of time is calculated, anti-alias filtered, then sampled.
At the output of the bandpass receiver (
 f/ f0 ≈ 0.01), the noise is white Gaussian.
The estimated SNR (calculated with respect to signal power with “signal on”) is about
−20 dB. This means that the received signal is very noisy, but, on the other hand, this
noise acts like dither, allowing detection of the signal even with very rough quantiza-
tion.

The sampling frequency is fs = 1 kHz. Cross-correlation is determined with the input
binary signal.

Determine by simulation whether with 8-bit ADC (input range: ±3σ around the ap-
proximate value of the power to be sampled), crosscorrelation is usable to detect the
distance of the Moon. If there any difference if quantization of the received noisy signal
is made rough, to 4-level, or to 3-level, or even to 2-level? Why do these also work?

19.29 Prove that if a discrete dither has a distribution symmetric to zero, and has values only
on the grid kqd (or at least on the grid kqd/2), with k = 0,±1,±2, . . ., it is true for
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the derivative of its characteristic function that �̇d

(
λ 2π

qd

)
= 0, for λ = ±1,±2, . . ..

Note: these derivative values appear in Eq. (J.4). Examples: distributions shown in
Fig. J.4(a)–(c) (Appendix J, page 693).

19.30 (a) Determine the variances of the dithers defined in Fig. J.2(a)–(c) (page 691) in the
amplitude domain.

(b) Determine the characteristic functions of the dithers defined in Fig. J.2(a),(c).
(Notice that the distribution in Fig. J.2(c) is a convolution of the distribution
shown in Fig. J.2(b) and of the binary distribution8 at ±qd/2.)

(c) Do the CFs exactly fulfill condition (J.1) for r = 1?
(d) Use the CFs for an alternative determination of the variances.

19.31 (a) Determine the variances of the dithers defined in Fig. J.4(a)–(c) (page 693) in the
amplitude domain.

(b) Determine the characteristic functions of the dithers defined in Fig. J.4(b),(c).
(Notice that the distribution in Fig. J.4(b) is an convolution of the distributions il-
lustrated in Fig. J.2(b) and Fig. J.2(c), furthermore that the distribution in Fig. J.4(c)
is an autoconvolution of the distribution of Fig. J.2(c).)

(c) Do the CFs exactly fulfill condition (J.1) for r = 2?
(d) Define in what sense are the CFs for Fig. J.4(b),(c) similar to the characteristic

function (J.8).
(e) Use the CF for an alternative determination of the variances. Compare the results

with the ones for part (a).

19.32 QTDD (see page 686) assures that the moments of ξ can be made functionally inde-
pendent of x , but does not guarantee their values.

(a) Assume that a triangular digital dither of Fig. J.4(a) is applied. Determine the
value of the moment E{ξ2} by

i. theoretical calculations, and/or
ii. by numerical summation of the probabilities, for L = 3, and/or

iii. by Monte Carlo, for L = 3 (e.g. use roundrand, page 713).

and give its difference from the theoretical value 3q2/12.
For each case, determine the maximum possible deviation from the above value,
caused by deterministic roundoff of the quantizer input values (k +0.5)q, exactly
in the midpoint between two representable numbers.

(b) Repeat the questions in (a) for the dither of Fig. J.4(b).
(c) Repeat the questions in (a) for the dither of Fig. J.4(c).

19.33 Devise simple means to generate dithers illustrated in

(a) Fig. J.2(a)–(c) (page 691),
(b) Fig. J.4(a)–(c) (page 693).

8Binary distribution is binomial distribution with n = 1, see Section 3.7, page 47.
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19.34 Determine simple approximations of the errors of the corrected first and second mo-
ments when approximately normally distributed digital dither is applied (normally dis-
tributed dither with μ = 0, and σ = q is quantized with a uniform midtread quantizer
with quantum step qd), with 2L = q/qd = 16:

(a) when x has a continuous distribution, like exponential, with λ = 1/q;
(b) when x is representable on the grid kqd.

19.35 The dither in Fig. J.2(a) (page 691) is asymmetric to the vertical axis (the mean value
is −qd). We try to make it symmetric by deleting the value at −q/2, and increasing the
probabilities of the other values accordingly.

(a) What do you think, why is this dither not recommended in the book?
(b) Determine the characteristic function of the dither. Does this CF fulfill condition

(J.1) for r = 1?
(c) Determine the dependence of the error of the first moment on the discrete values

x = kqd, and on x when it has continuous value.
(d) Can this “chopped” dither be used as dither?

19.36 Assume that for numbers equal to (integer + 0.5)q, an independent digital dither as
shown in Fig. J.2(b) is added with qd = q/4, and afterwards, either rounding towards
zero (see page 12), or convergent rounding (see page 396) is implemented. Describe
the behavior of ν, E{ν|x}, E{ξ |x}, E{ν2|x}, and E{ξ2|x}, for x uniformly distributed on
the discrete values {(k + 0.5)q}, k = 1, 2, ..., N .

19.37 Determine the conditional CF �ν|x (u), and use this for the proof of GQTSD (see the
Addendum on this book’s website):

General Quantizing Theorem for Subtractive Dither (GQTSD)
If in dithered quantization

dm �d(ud)

dum
d

∣∣
ud =l�

= 0 (E19.37.1)

for m being a nonnegative integer, and l = ±1,±2, . . ., then

E{xtx dmνtν } = E{xtx dmntν }
for tx = 0, 1, . . . , and tν = 0, 1, . . .

19.38 Starting from the joint characteristic function:

�x,d,ν (ux , ud , uν)

=
∞∑

l=−∞
�x (ux + l�)�d(ud + l�) sinc

(
q(uν + l�)

2

)
, (E19.38.1)

prove the following equation:

�x,d,ξ
(
ux , ud , uξ

) =
∞∑

l=−∞
�x (ux + l�)�d(ud + uξ + l�) sinc

(
q(uξ + l�)

2

)
.

(E19.38.2)




