
Exercises and Solutions S53

Solutions for Exercises in Chapter 4

4.1 A program is given in file problem 4 1.m .
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Figure S4.1.1 PDF of the input x with the pulse
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Figure S4.1.2 Result of convolution

4.10 (a) The PDF consists of 5 Dirac delta functions at −2q,−q, 0, q, 2q, with coeffi-
cients 1/32, 8/32, 14/32, 8/32, 1/32, respectively. The characteristic function is


(u) = 14
32

+ 16
32

cos (qu) + 2
32

cos (2qu) . (S4.10.1)

(b) The moments of x can be calculated by noticing that the input is a sum of two
independent, uniformly distributed random variables in (−q, q). Therefore,

E{x} = 0

E{x2} = 2
q2

3
E{x3} = 0
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S54 Solutions to Exercises in Chapter 4
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Figure S4.10.1 PDF of input

E{x4} = q4

5
+ q4

5
+ 6

(
q2

3

)2

= 16
15

q4 . (S4.10.2)

The moments of the quantized variable are determined from the discrete PDF:

E{(x ′)} = 0

E{(x ′)2} = 2
1

32
(2q)2 + 2

1
4

q2 = 3
4

q2

E{(x ′)3} = 0

E{(x ′)4} = 2
1

32
(2q)4 + 2

1
4

q4 = 3
2

q4 . (S4.10.3)

(c) Since the input signal fulfils QT III/B (
(u) = sinc2(qu)), Sheppard’s first and
second corrections are fulfilled. Indeed,

E{x} = E{(x ′)} − 0, E{x2} = E{(x ′)2} − 1
12

q2.

Because of the symmetry to zero, the third Sheppard correction is also exactly
fulfilled: E{x3} = E{(x ′)3} − 0.
Sheppard’s fourth correction is not fulfilled. R4 is not zero:

R4 = E{(x ′)4} −
(

1
2

q2E{(x ′)2} − 7
240

q4
)

− E{x4}

= 3
2

q4 −
(

1
2

q2 3
4

q2 − 7
240

q4
)

− 16
15

q4

= 21
240

q4

= 0.0875 . (S4.10.4)

The ratio of the error to the correction is:
R4

S4
= 0.253 . (S4.10.5)
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(d) A Monte Carlo experiment is executed in program problem 4 10.m.
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Figure S4.10.2 Histogram of simulated input

4.13 (a) The PDF consists of 5 Dirac delta functions at −2q,−q, 0, q, 2q, with coeffi-
cients

αAB
32

+ 2AB
8

,
2AB

4
+ 8αAB

32
,

2AB
4

+ 14αAB
32

,
2AB

4
+ 8αAB

32
,

2AB
8

+ αAB
32

, (S4.13.1)

respectively. The total probability is 2AB + αAB = 1.
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Figure S4.13.1 PDF of input

The characteristic function is


(u) =
(

2AB
4

+ 14αAB
32

)
+ 2

(
2AB

4
+ 8αAB

32

)
cos (qu)

+ 2
(

2AB
8

+ αAB
32

)
cos (2qu) . (S4.13.2)
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S56 Solutions to Exercises in Chapter 4

(b) The moments of x have been calculated in Exercise 3.12:

E {x} = 0

E
{

x2
}

= 2AB
A2

3
+ αAB

A2

6
E
{

x3
}

= 0

E
{

x4
}

= 2AB
A4

5
+ αAB

⎛
⎝2

A4

80
+ 6

(
A2

12

)2
⎞
⎠ (S3.12.2)

The moments of the quantized variable are determined from the discrete PDF:

E{(x ′)} = 0

E{(x ′)2} = 2
(

2AB
8

+ αAB
32

)
(2q)2 + 2

(
2AB

4
+ 8αAB

32

)
q2

= 2AB
3
2

q2 + αAB
3
4

q2

E{(x ′)3} = 0

E{(x ′)4} = 2
(

2AB
8

+ αAB
32

)
(2q)4 + 2

(
2AB

4
+ 8αAB

32

)
q4

= 2AB
(

4 + 1
2

)
q4 + αAB

(
1 + 1

2

)
q4

= 2AB
9
2

q4 + αAB
3
2

q4 . (S4.13.3)

(c) Since the input signal fulfils QT III/A, Sheppard’s first correction is fulfilled.
Indeed, E{x} = E{(x ′)} − 0.
The second correction is not valid:

R2 = E{(x ′)2} − S2 − E{x2}
=
(

αAB
3

16
4q2 + 2AB

3
8

4q2
)

− q2

12
−
(

2AB
A2

3
+ αAB

A2

6

)

= 2AB
(

3
2

− 4
3

)
q2 + αAB

(
3
4

− 2
3

)
q2 − q2

12

= 2AB
1
6

q2 + αAB
1

12
q2 − q2

12

= 2AB
q2

12
≈ 0.0556 (S4.13.4)

and this is not zero.
For α = 1, R2/S2 = 0.67.
Because of the symmetry to zero, the third Sheppard correction is exactly ful-
filled: E{x3} = E{(x ′)3} − 0 = 0.
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Sheppard’s fourth correction is not fulfilled, either: R4 	= 0.

R4 = E{(x ′)4} −
(

1
2

q2E{(x ′)2} − 7
240

q4
)

− E{x4}

= 2AB
9
2
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3
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(

9
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(
3

32
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− 1

40
− 1

24
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q4

= 2AB
132

3840
A4 + αAB

14
3840

A4 + 7
240

q4

≈ 0.415 . (S4.13.5)

For α = 1, R4/S4 = 0.697.

(d) A Monte Carlo experiment is executed in program problem 4 13.m. A ran-
dom variable with “house” PDF can be simulated by unifying the set of N1 =

2AB
2AB+αAB N random samples, uniform in (±A), with N2 = αAB

2AB+αAB N random
samples, triangular in (±A).
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Figure S4.13.2 Histogram of simulated input

4.21 (a) We can easily extend the formulas to quantizers with the transfer characteristic
shifted along the ideal 45o line. If the size of the shift, as measured on the hori-
zontal axis, is s, the impulse carrier of Eq. (4.5) is slightly modified:

c(x)
�=

∞∑
m=−∞

qδ(x − mq − s) . (S4.21.1)
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S58 Solutions to Exercises in Chapter 4

The shift in the exponent causes a phase shift in the CF of the quantized variable
with respect to Eq. (4.11):


x ′(u) =
(

x (u) sinc

(qu
2

))
�

( ∞∑
l=−∞

e jusδ(u + l�)

)

=
∞∑

l=−∞
e− jl�s


x (u + l�) sinc
(

q(u + l�)

2

)
, (S4.21.2)

Cf. Eq. (S2.10.2) in the solution of Exercise 2.10. The CF of the quantized vari-
able at the output of a “shifted” quantizer is very similar to the one at the output of
a mid-tread quantizer. The central replica is identical, the other repetitions have
an additional phase shift. Therefore, all the quantizing theorems hold invariably,
independently of s.

(b) For a mid-riser quantizer, for which s = q/2, the extra factor is even simpler,
e− jl�q/2 = (−1)l .

(c) Equation (4.11) can be modified by the exponential terms due to the addition of
constant values:


x ′(u) = e jus
∞∑

l=−∞
e− j (u+l�)s


x (u + l�) sinc
(

q(u + l�)

2

)

=
∞∑

l=−∞
e− jl�s


x (u + l�) sinc
(

q(u + l�)

2

)
. (S4.21.3)

(d) Input offset means that the mean value of the input is apparently increased by
μoffs:


x ′(u) =
∞∑

l=−∞
e j (u+l�)s


x (u + l�) sinc
(

q(u + l�)

2

)
. (S4.21.4)

The difference from (S4.21.3) is that this is not corrected for on the quantized
side.

(e) This is basically the same problem, except that the sign of the exponent is the
opposite. For midrise quantization, this makes no difference.
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