
Chapter 12

Basics of Floating-Point
Quantization

Representation of physical quantities in terms of floating-point numbers allows one
to cover a very wide dynamic range with a relatively small number of digits. Given
this type of representation, roundoff errors are roughly proportional to the amplitude
of the represented quantity. In contrast, roundoff errors with uniform quantization
are bounded between ±q/2 and are not in any way proportional to the represented
quantity.

Floating-point is in most cases so advantageous over fixed-point number rep-
resentation that it is rapidly becoming ubiquitous. The movement toward usage of
floating-point numbers is accelerating as the speed of floating-point calculation is
increasing and the cost of implementation is going down. For this reason, it is es-
sential to have a method of analysis for floating-point quantization and floating-point
arithmetic.

12.1 THE FLOATING-POINT QUANTIZER

Binary numbers have become accepted as the basis for all digital computation. We
therefore describe floating-point representation in terms of binary numbers. Other
number bases are completely possible, such as base 10 or base 16, but modern digital
hardware is built on the binary base.

The numbers in the table of Fig. 12.1 are chosen to provide a simple example.
We begin by counting with nonnegative binary floating-point numbers as illustrated
in Fig. 12.1. The counting starts with the number 0, represented here by 00000. Each
number is multiplied by 2E , where E is an exponent. Initially, let E = 0. Continuing
the count, the next number is 1, represented by 00001, and so forth. The counting
continues with increments of 1, past 16 represented by 10000, and goes on until the
count stops with the number 31, represented by 11111. The numbers are now re-
set back to 10000, and the exponent is incremented by 1. The next number will be
32, represented by 10000 × 21. The next number will be 34, given by 10001 × 21.
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Mantissa
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1

10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 −→ 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
20 1 0 1 0 0
21 1 0 1 0 1
22 1 0 1 1 0
23 1 0 1 1 1
24 1 1 0 0 0
25 1 1 0 0 1
26 1 1 0 1 0
27 1 1 0 1 1
28 1 1 1 0 0
29 1 1 1 0 1
30 1 1 1 1 0
31 ←− 1 1 1 1 1
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×2E

Figure 12.1 Counting with binary floating-point numbers with 5-bit mantissa. No sign bit
is included here.
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x x ′QFL

Figure 12.2 A floating-point quantizer.

This will continue with increments of 2 until the number 62 is reached, represented
by 11111 × 21. The numbers are again re-set back to 10000, and the exponent is
incremented again. The next number will be 64, given by 10000 × 22. And so
forth. By counting, we have defined the allowed numbers on the number scale. Each
number consists of a mantissa (see page 343) multiplied by 2 raised to a power given
by the exponent E .

The counting process illustrated in Fig. 12.1 is done with binary numbers hav-
ing 5-bit mantissas. The counting begins with binary 00000 with E = 0 and goes up
to 11111, then the numbers are recycled back to 10000, and with E = 1, the count-
ing resumes up to 11111, then the numbers are recycled back to 10000 again with
E = 2, and the counting proceeds.

A floating-point quantizer is represented in Fig. 12.2.1 The input to this quan-
tizer is x , a variable that is generally continuous in amplitude. The output of this
quantizer is x ′, a variable that is discrete in amplitude and that can only take on val-
ues in accord with a floating-point number scale. The input–output relation for this
quantizer is a staircase function that does not have uniform steps.

Figure 12.3 illustrates the input–output relation for a floating-point quantizer
with a 3-bit mantissa. The input physical quantity is x . Its floating-point represen-
tation is x ′. The smallest step size is q. With a 3-bit mantissa, four steps are taken
for each cycle, except for eight steps taken for the first cycle starting at the origin.
The spacings of the cycles are determined by the choice of a parameter
. A general
relation between 
 and q, defining 
, is given by Eq. (12.1):




= 2pq , (12.1)

where p is the number of bits of the mantissa. With a 3-bit mantissa, 
 = 8q.
Figure 12.3 is helpful in gaining an understanding of relation (12.1). Note that after
the first cycle, the spacing of the cycles and the step sizes vary by a factor of 2 from
cycle to cycle.

1The basic ideas and figures of the next sections were first published in, and are taken with permis-
sion from Widrow, B., Kollár, I. and Liu, M.-C., ”Statistical theory of quantization,” IEEE Transactions
on Instrumentation and Measurement 45(6): 35361. c©1995 IEEE.



260 12 Basics of Floating-Point Quantization

x

x

x ′

x ′

−4
 −2
 −
 
 2
 4


−4


−2


−





2


4


− 3q
2 − q

2
q
2

3q
2

−2q

−q

q

2q

Average gain = 1

Figure 12.3 Input–output staircase function for a floating-point quantizer with a 3-bit man-
tissa.
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Figure 12.4 Floating-point quantization noise.

12.2 FLOATING-POINT QUANTIZATION NOISE

The roundoff noise of the floating-point quantizer νFL is the difference between the
quantizer output and input:

νFL = x ′ − x . (12.2)

Figure 12.4 illustrates the relationships between x , x ′, and νFL.
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Figure 12.5 The PDF of floating-point quantization noise with a zero-mean Gaussian in-
put, σx = 32
, and with a 2-bit mantissa.

The PDF of the quantization noise can be obtained by slicing and stacking the
PDF of x , as was done for the uniform quantizer and illustrated in Fig. 5.2. Because
the staircase steps are not uniform, the PDF of the quantization noise is not uniform.
It has a pyramidal shape.

With a zero-mean Gaussian input with σx = 32
, and with a mantissa hav-
ing just two bits, the quantization noise PDF has been calculated. It is plotted in
Fig. 12.5. The shape of this PDF is typical. The narrow segments near the top of
the pyramid are caused by the occurrence of values of x that are small in magnitude
(small quantization step sizes), while the wide segments near the bottom of the pyra-
mid are caused by the occurrence of values of x that are large in magnitude (large
quantization step sizes).

The shape of the PDF of floating-point quantization noise resembles the silhou-
ette of a big-city “skyscraper” like the famous Empire State Building of New York
City. We have called functions like that of Fig. 12.5 “skyscraper PDFs”. Mathemat-
ical methods will be developed next to analyze floating-point quantization noise, to
find its mean and variance, and the correlation coefficient between this noise and the
input x .

12.3 AN EXACT MODEL OF THE FLOATING-POINT
QUANTIZER

A floating-point quantizer of the type shown in Fig. 12.3 can be modeled exactly as a
cascade of a nonlinear function (a “compressor”) followed by a uniform quantizer (a
“hidden” quantizer) followed by an inverse nonlinear function (an “expander”). The
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Figure 12.6 A model of a floating-point quantizer: (a) block diagram; (b) definition of
quantization noises.

overall idea is illustrated in Fig. 12.6(a). A similar idea is often used to represent
compression and expansion in a data compression system (see e.g. Gersho and Gray
(1992), CCITT (1984)).

The input–output characteristic of the compressor (y vs. x) is shown in Fig. 12.7,
and the input–output characteristic of the expander (x ′ vs. y′) is shown in Fig. 12.8.
The hidden quantizer is conventional, having a uniform-staircase input–output char-
acteristic (y′ vs. y). Its quantization step size is q, and its quantization noise is

ν = y′ − y . (12.3)

Figure 12.6(b) is a diagram showing the sources of νFL and ν. An expression for the
input–output characteristic of the compressor is
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where k is a nonnegative integer. This is a piecewise-linear characteristic.
An expression for the input–output characteristic of the expander is
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(12.5)

where k is a nonnegative integer. This characteristic is also piecewise linear.
One should realize that the compressor and expander characteristics described

above are universal and are applicable for any choice of mantissa size.
The compressor and expander characteristics of Figs. 12.7 and 12.8 are drawn

to scale. Fig. 12.9 shows the characteristic (y′ vs. y) of the hidden quantizer drawn
to the same scale, assuming a mantissa of 2 bits. For this case, 
 = 4q.

If only the compressor and expander were cascaded, the result would be a per-
fect gain of unity since they are inverses of each other. If the compressor is cascaded
with the hidden quantizer of Fig. 12.9 and then cascaded with the expander, all in
accord with the diagram of Fig. 12.6, the result is a floating-point quantizer. The one
illustrated in Fig. 12.10 has a 2-bit mantissa.

The cascaded model of the floating-point quantizer shown in Fig. 12.6 becomes
very useful when the quantization noise of the hidden quantizer has the properties of
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Figure 12.7 The compressor’s input–output characteristic.
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Figure 12.8 The expander’s input–output characteristic.
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Figure 12.9 The uniform “hidden quantizer.” The mantissa has 2 bits.
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Figure 12.10 A floating-point quantizer with a 2-bit mantissa.
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PQN. This would happen if QT I or QT II were satisfied at the input y of the hidden
quantizer. Testing for the satisfaction of these quantizing theorems is complicated
by the nonlinearity of the compressor. If x were a Gaussian input to the floating-
point quantizer, the input to the hidden quantizer would be x mapped through the
compressor. The result would be a non-Gaussian input to the hidden quantizer.

In practice, inputs to the hidden quantizer almost never perfectly meet the con-
ditions for satisfaction of a quantizing theorem. On the other hand, these inputs
almost always satisfy these conditions approximately. The quantization noise ν in-
troduced by the hidden quantizer is generally very close to uniform and very close to
being uncorrelated with its input y. The PDF of y is usually sliced up so finely that
the hidden quantizer produces noise having properties like PQN.

12.4 HOW GOOD IS THE PQN MODEL FOR THE HIDDEN
QUANTIZER?

In previous chapters where uniform quantization was studied, it was possible to de-
fine properties of the input CF that would be necessary and sufficient for the satis-
faction of a quantizing theorem, such as QT II. Even if these conditions were not
obtained, as for example with a Gaussian input, it was possible to determine the er-
rors that would exist in moment prediction when using the PQN model. These errors
would almost always be very small.

For floating-point quantization, the same kind of calculations for the hidden
quantizer could in principle be made, but the mathematics would be far more difficult
because of the action of the compressor on the input signal x . The distortion of the
compressor almost never simplifies the CF of the input x nor makes it easy to test for
the satisfaction of a quantizing theorem.

To determine the statistical properties of ν, the PDF of the input x can be
mapped through the piecewise-linear compressor characteristic to obtain the PDF
of y. In turn, y is quantized by the hidden quantizer, and the quantization noise ν
can be tested for similarity to PQN. The PDF of ν can be determined directly from
the PDF of y, or it could be obtained by Monte Carlo methods by applying random
x inputs into the compressor and observing corresponding values of y and ν. The
moments of ν can be determined, and so can the covariance between ν and y. For the
PQN model to be usable, the covariance of ν and y should be close to zero, less than
a few percent, the PDF of ν should be almost uniform between ±q/2, and the mean
of ν should be close to zero while the mean square of ν should be close to q2/12.

In many cases with x being Gaussian, the PDF of the compressor output y can
be very “ugly.” Examples are shown in Figs. 12.11(a)–12.14(a). These represent
cases where the input x is Gaussian with various mean values and various ratios of
σx/
. With mantissas of 4 bits or more, these ugly inputs to the hidden quantizer
cause it to produce quantization noise which behaves remarkably like PQN. This
is difficult to prove analytically, but confirming results from slicing and stacking
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Figure 12.11 PDF of compressor output and of hidden quantization noise when x is zero-
mean Gaussian with σx = 50
: (a) fy(y); (b) fν(ν) for p = 4 (q = 
/16); (c) fν(ν) for
p = 8 (q = 
/256).

these PDFs are very convincing. Similar techniques have been used with these PDFs
to calculate correlation coefficients between ν and y. The noise ν turns out to be
essentially uniform, and the correlation coefficient turns out to be essentially zero.

Consider the ugly PDF of y shown in Fig. 12.11(a), fy(y). The horizontal scale
goes over a range of ±5
. If we choose a mantissa of 4 bits, the horizontal scale will
cover the range ±80q. If we choose a mantissa of 8 bits, q will be much smaller and
the horizontal scale will cover the range ±1280q. With the 4-bit mantissa, slicing and
stacking this PDF to obtain the PDF of ν, we obtain the result shown in Fig. 12.11(b).
From the PDF of ν, we obtain a mean value of 1.048 · 10−6q, and a mean square of
0.9996q2/12. The correlation coefficient between ν and y is (1.02 · 10−3). With
an 8-bit mantissa, fν(ν) shown in Fig. 12.11c is even more uniform, giving a mean
value for ν of −9.448 · 10−9q, and a mean square of 1.0001q2/12. The correlation
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Figure 12.12 PDF of compressor output and of hidden quantization noise when x
is Gaussian with σx = 
/2 and μx = σx : (a) fy(y); (b) fν(ν) for 4-bit mantissas,
(q = 
/16); (c) fν(ν) for 8-bit mantissas, (q = 
/256).
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Figure 12.13 PDF of compressor output and of hidden quantization noise when x
is Gaussian with σx = 50
 and μx = σx : (a) fy(y); (b) fν(ν) for 4-bit mantissas,
(q = 
/16); (c) fν(ν) for 8-bit mantissas, (q = 
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Figure 12.14 PDF of compressor output and of hidden quantization noise when x is
Gaussian with σx = 50
 and μx = 10σx = 500
: (a) fy(y); (b) fν(ν) for 4-bit mantissas,
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TABLE 12.1 Properties of the hidden quantization noise ν for Gaussian input

(a) p = 4 E{ν}/q E{ν2}/(q2/12) ρy,ν

μx = 0, σx = 50
 0.0002 0.9997 0.0140
μx = σx , σx = 0.5
 −0.0015 0.9998 −0.0069
μx = σx , σx = 50
 −0.0019 0.9994 −0.0089
μx = σx , σx = 500
 −0.0023 0.9987 −0.0077

(b) p = 8 E{ν}/q E{ν2}/(q2/12) ρy,ν

μx = 0, σx = 50
 4.25 · 10−5 0.9995 8.68 · 10−4

μx = σx , σx = 0.5
 −2.24 · 10−4 1.0005 −2.35 · 10−4

μx = σx , σx = 50
 −3.72 · 10−4 0.9997 −1.30 · 10−3

μx = σx , σx = 500
 −1.92 · 10−4 0.9985 −8.77 · 10−4

coefficient between ν and y is (2.8 · 10−4). With a mantissa of four bits or more, the
noise ν behaves very much like PQN.

This process was repeated for the ugly PDFs of Figs. 12.12(a), 12.13(a), and
12.14(a). The corresponding PDFs of the quantization noise of the hidden quan-
tizer are shown in Figs. 12.12(b), 12.13(b), and 12.14(b). With a 4-bit mantissa,
Table 12.1(a) lists the values of mean and mean square of ν, and correlation coeffi-
cient between ν and y for all the cases. With an 8-bit mantissa, the corresponding
moments are listed in Table 12.1(b).

Similar tests have been made with uniformly distributed inputs, with triangu-
larly distributed inputs, and with sinusoidal inputs. Input means ranged from zero to
one standard deviation. The moments of Tables 12.1(a),(b) are typical for Gaussian
inputs, but similar results are obtained with other forms of inputs.

For every single test case, the input x had a PDF that extended over at least
several multiples of 
. With a mantissa of 8 bits or more, the noise of the hidden
quantizer had a mean of almost zero, a mean square of almost q2/12, and a correla-
tion coefficient with the quantizer input of almost zero.

The PQN model works so well that we assume that it is true as long as the
mantissa has 8 or more bits and the PDF of x covers at least several 
-quanta of the
floating-point quantizer. It should be noted that the single precision IEEE standard
(see Section 13.8) calls for a mantissa with 24 bits. When working with this standard,
the PQN model will work exceedingly well almost everywhere.
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12.5 ANALYSIS OF FLOATING-POINT QUANTIZATION
NOISE

We will use the model of the floating-point quantizer shown in Fig. 12.6 to determine
the statistical properties of νFL. We will derive its mean, its mean square, and its
correlation coefficient with input x .

The hidden quantizer injects noise into y, resulting in y′, which propagates
through the expander to make x ′. Thus, the noise of the hidden quantizer propagates
through the nonlinear expander into x ′. The noise in x ′ is νFL.

Assume that the noise ν of the hidden quantizer is small compared to y. Then
ν is a small increment to y. This causes an increment νFL at the expander output.
Accordingly,

νFL = ν
(

dx ′

dy′

)
y
. (12.6)

The derivative is a function of y. This is because the increment ν is added to y, so y
is the nominal point where the derivative should be taken.

Since the PQN model was found to work so well for so many cases with regard
to the behavior of the hidden quantizer, we will make the assumption that the con-
ditions for PQN are indeed satisfied for the hidden quantizer. This greatly simplifies
the statistical analysis of νFL.

Expression (12.6) can be used in the following way to find the crosscorrelation
between νFL and input x .

E{νFLx} = E

{
ν ·
(

dx ′

dy′

)
y
· x

}

= E {ν} E

{(
dx ′

dy′

)
y
· x

}
= 0 . (12.7)

When deriving this result, it was possible to factor the expectation into a product
of expectations because, from the point of view of moments, ν behaves as if it is
independent of y and independent of any function of y, such as

(
dx ′
dy′
)

y
and x . Since

the expected value of ν is zero, the crosscorrelation turns out to be zero.
Expression (12.6) can also be used to find the mean of νFL. Accordingly,

E{νFL} = E

{
ν ·
(

dx ′

dy′

)
y

}

= E{ν}E
{(

dx ′

dy′

)
y

}
= 0 . (12.8)
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So the mean of νFL is zero, and the crosscorrelation between νFL and x is zero. Both
results are consequences of the hidden quantizer behaving in accord with the PQN
model.

Our next objective is the determination of E{ν2
FL}. We will need to find an ex-

pression for
(

dx ′
dy′
)

y
in order to obtain quantitative results. By inspection of Figs. 12.7

and 12.8, which show the characteristics of the compressor and the expander, we de-
termine that

dx ′

dy′ = 1 when 0.5
 < x < 


dx ′

dy′ = 2 when 
 < x < 2


dx ′

dy′ = 4 when 2
 < x < 4


...
dx ′

dy′ = 1 when −
 < x < −0.5


dx ′

dy′ = 2 when −2
 < x < −

dx ′

dy′ = 4 when −4
 < x < −2


...
dx ′

dy′ = 2k when 2k−1
 < |x | < 2k


(12.9)

where k is a nonnegative integer.
These relations define the derivative as a function of x , except in the range

−
/2 < x < 
/2. The probability of x values in that range are assumed to be neg-
ligible. Having the derivative as a function of x is equivalent to having the derivative
as a function of y because y is a monotonic function of x (see Fig. 12.7).

It is useful now to introduce the function log2(x/
) + 0.5. This is plotted in
Fig. 12.15(a). We next introduce a new notation for uniform quantization,

x ′ = Qq(x) . (12.10)

The operator Qq represents uniform quantization with a quantum step size of q. Us-
ing this notation, we can introduce yet another function of x , shown in Fig. 12.15(b),
by adding the quantity 0.5 to log2(x/
) and uniformly quantizing the result with a
unit quantum step size. The function is, accordingly, Q1

(
log2(x/
)+ 0.5

)
.
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Figure 12.15 Approximate and exact exponent characteristics: (a) logarithmic approxi-
mation; (b) exact expression, Q1

(
log2(x/
)+ 0.5
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vs. x .
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Referring back to (12.9), it is apparent that for positive values of x , the deriva-
tive can be represented in terms of the new function as(

dx ′

dy′

)
x

= 2
Q1

((
log2

x



)
+ 0.5

)
, x > 
/2 . (12.11)

For negative values of x , the derivative is(
dx ′

dy′

)
x

= 2
Q1

((
log2

−x



)
+ 0.5

)
, x < −
/2 . (12.12)

Another way to write this is(
dx ′

dy′

)
x

= 2
Q1

((
log2

|x |



)
+ 0.5

)
, |x | > 
/2 . (12.13)

These are exact expressions for the derivative.
From Eqs. (12.13) and Eq. (12.6), we obtain νFL as

νFL = ν · 2
Q1

((
log2

|x |



)
+ 0.5

)
, |x | > 
/2 . (12.14)

One should note that the value of 
 would generally be much smaller than the value
of x . At the input level of |x | < 
/2, the floating-point quantizer would be experi-
encing underflow. Even smaller inputs would be possible, as for example when input
x has a zero crossing. But if the probability of x having a magnitude less than 
 is
sufficiently low, Eq. (12.14) could be simply written as

νFL = ν · 2
Q1

((
log2

|x |



)
+ 0.5

)
. (12.15)

The exponent in Eq. (12.15) is a quantized function of x , and it can be expressed as

Q1

((
log2

|x |



)
+ 0.5

)
=
(

log2
|x |



+ 0.5
)

+ νEXP . (12.16)

The quantization noise is νEXP, the noise in the exponent. It is bounded by ±0.5.
The floating-point quantization noise can now be expressed as

νFL = ν · 2
Q1

((
log2

|x |



)
+0.5

)

= ν · 2

(
log2

|x |



+ 0.5
)

+νEXP

= ν · |x |



20.52νEXP
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= √
2ν · |x |



2νEXP . (12.17)

The mean square of νFL can be obtained from this.

E{ν2
FL} = 2E

{
ν2 x2


2 22νEXP

}
= 2E{ν2}E

{
x2


2 22νEXP

}
. (12.18)

The factorization is permissible because by assumption ν behaves as PQN. The noise
νEXP is related to x , but since νEXP is bounded, it is possible to upper and lower bound
E{ν2

FL} even without knowledge of the relation between νEXP and x . The bounds are

E{ν2}E{ x2


2 } ≤ E{ν2
FL} ≤ 4E{ν2}E

{
x2


2

}
. (12.19)

These bounds hold without exception as long as the PQN model applies for the hid-
den quantizer.

If, in addition to this, the PQN model applies to the quantized exponent in
Eq. (12.15), then a precise value for E{ν2

FL} can be obtained. With PQN, νEXP will
have zero mean, a mean square of 1/12, a mean fourth of 1/80, and will be uncorre-
lated with log2

( |x |



)
. From the point of view of moments, νEXP will behave as if it is

independent of x and any function of x . From Eq. (12.17),

νFL = √
2 · ν · |x |



2νEXP = √

2 · ν · |x |



eνEXP ln 2 . (12.20)

From this, we can obtain E{ν2
FL}:

E{ν2
FL} = 2E

{
ν2 x2


2 e2νEXP ln 2
}

= 2E
{
ν2 x2


2

(
1 + 2νEXP ln 2 + 1

2!
(2νEXP ln 2)2 + 1

3!
(2νEXP ln 2)3

+ 1
4!
(2νEXP ln 2)4 + · · ·

)}
= E{ν2}E

{
x2


2

}
E
{

2 + 4νEXP ln 2 + 4ν2
EXP(ln 2)2 + 8

3
ν3

EXP(ln 2)3

+ 4
3
ν4

EXP(ln 2)4 + · · ·
}
. (12.21)

Since the odd moments of νEXP are all zero,

E{ν2
FL} = E{ν2}E

{
x2


2

}(
2 + 4(

1
12
)(ln 2)2 + (4

3
)(

1
80
)(ln 2)4 + · · ·

)
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= 2.16 · E{ν2}E
{

x2


2

}
. (12.22)

This falls about half way between the lower and upper bounds.
A more useful form of this expression can be obtained by substituting the fol-

lowing,

E{ν2} = q2

12
, and

q



= 2−p . (12.23)

The result is a very important one:

E{ν2
FL} = 0.180 · 2−2p · E{x2} . (12.24)

Example 12.1 Roundoff noise when multiplying two floating-point num-
bers
Let us assume that two numbers: 1.34 · 10−3 and 4.2 are multiplied using IEEE
double precision arithmetic. The exact value of the roundoff error could be de-
termined by using the result of more precise calculation (with p > 53) as a
reference. However, this is usually not available.

The mean square of the roundoff noise can be easily determined using Eq. (12.24),
without the need of reference calculations. The product equals 5.63·10−3. When
two numbers of magnitudes similar as above are multiplied, the roundoff noise
will have a mean square of E{ν2

FL} ≈ 0.180 · 2−2p · 3.2 · 10−5. Although we
cannot determine the precise roundoff error value for the given case, we can give
its expected magnitude.
Example 12.2 Roundoff noise in 2nd-order IIR filtering with floating point
Let us assume one evaluates the recursive formula

y(n) = −a(1)y(n − 1)− a(2)y(n − 2)+ b(1)x(n − 1) .

When the operations (multiplications and additions) are executed in natural or-
der, all with precision p, the following sources of arithmetic roundoff can be
enumerated:

1. roundoff after the multiplication a(1)y(n − 1):
var{νFL1} ≈ 0.180 · 2−2p · a(1)2 · var{y},

2. roundoff after the storage of −a(1)y(n − 1):
var{νFL2} = 0, since if the product in item 1 is rounded, the quantity to be
stored is already quantized,

3. roundoff after the multiplication a(2)y(n − 2):
var{νFL3} ≈ 0.180 · 2−2p · a(2)2 · var{y},

4. roundoff after the addition −a(1)y(n − 1)− a(2)y(n − 2):
var{νFL4} ≈ 0.180 · 2−2p (a(1)2 · var{y} + a(2)2 · var{y}

+2a(1)a(2) · Cyy(1)
)
,

5. roundoff after the storage of −a(1)y(n − 1)− a(2)y(n − 2):
var{νFL5} = 0, since if the product in item 4 is rounded, the quantity to be
stored is already quantized,
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6. roundoff after the multiplication b(1)x(n − 1):
var{νFL6} ≈ 0.180 · 2−2p · b(1)2 · var{x},

7. roundoff after the last addition:
var{νFL7} ≈ 0.180 · 2−2p · var{y},

8. roundoff after the storage of the result to y(n):
var{νFL8} = 0, since if the sum in item 7 is rounded, the quantity to be
stored is already quantized.

These variances need to be added to obtain the total variance of the arithmetic
roundoff noise injected to y in each step.

The total noise variance in y can be determined then by adding the effect of each
injected noise. This can be done using the response to an impulse injected to
y(0): if this is given by hyy(0), hyy(1), . . ., including the unit impulse itself at
time 0, the variance of the total roundoff noise can be calculated by multiplying

the above variance of the injected noise by
∞∑

n=0
h2

yy(n).

For all these calculations, one also needs to determine the variance of y, and the
one-step covariance Cyy(1).

If x is sinusoidal with amplitude A, y is also sinusoidal with an amplitude de-
termined by the transfer function: var{y} = |H( f1)|2 var{x} = |H( f1)|2 A2/2.
Cyy(1) ≈ var{y} for low-frequency sinusoidal input.

If x is zero-mean white noise, var{y} = var{x}
∞∑

n=0
h2(n), with h(n) being the

impulse response from x to y. The covariance is about var{x}
∞∑

n=0
h(n)h(n + 1).

Numerically, let us use single precision (p = 24), and let a(1) = −0.9, a(2) =
0.5, and b(1) = 0.2, and let the input signal be a sine wave with unit power
(A2/2 = 1), and frequency f1 = 0.015 fs. With these, H( f1) = 0.33, and
var{y} = 0.11, and the covariance Cyy(1) approximately equals var{y}. Evalu-
ating the variance of the floating-point noise,

var{νFL} =
8∑

n=1

var{νFLn} ≈ 1.83 · 10−16 . (12.25)

The use of extended-precision accumulator and of multiply-and-add operation

In many modern processors, an accumulator is used with extended precision
pacc, and multiply-and-add operation (see page 374) can be applied. In this
case, multiplication is usually executed without roundoff, and additions are not
followed by extra storage, therefore roundoff happens only for certain items (but,
in addition to the above, var{νFL2} �= 0, since νFL1 = 0). The total variance of y,
caused by arithmetic roundoff, is

varinj = var{νFL2} + var{νFL4} + var{νFL7} + var{νFL8}
= 0.180 · 2−2pacc · a(1)2 var{y}
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+ 0.180 · 2−2pacc
(

a(1)2 var{y} + a(2)2 var{y} + 2a(1)a(2)Cyy(1)
)

+ 0.180 · 2−2pacc · var{y}
+ 0.180 · 2−2p · var{y} . (12.26)

In this expression, usually the last term dominates. With the numerical data,
var{νFL-ext} ≈ 7.1 · 10−17.

Making the same substitution in Eq. (12.19), the bounds are

1
12

· 2−2p · E{x2} ≤ E{ν2
FL} ≤ 1

3
· 2−2p · E{x2} . (12.27)

The signal-to-noise ratio for the floating-point quantizer is defined as

SNR

= E{x2}

E{ν2
FL}
. (12.28)

If both ν and νEXP obey PQN models, then Eq. (12.24) can be used to obtain the SNR.
The result is:

SNR = 5.55 · 22p . (12.29)

This is the ratio of signal power to quantization noise power. Expressed in dB, the
SNR is

SNR, dB ≈ 10 log
(
(5.55)22p

)
= 7.44 + 6.02p . (12.30)

If only ν obeys a PQN model, then Eq. (12.27) can be used to bound the SNR:

12 · 22p ≥ SNR ≥ 3 · 22p . (12.31)

This can be expressed in dB as:

4.77 + 6.02p ≤ SNR, dB ≤ 10.79 + 6.02p . (12.32)

From relations Eq. (12.29) and Eq. (12.31), it is clear that the SNR improves as the
number of bits in the mantissa is increased. It is also clear that for the floating-
point quantizer, the SNR does not depend on E{x2} (as long as ν and νEXP act like
PQN). The quantization noise power is proportional to E{x2}. This is a very different
situation from that of the uniform quantizer, where SNR increases in proportion to
E{x2} since the quantization noise power is constant at q2/12.

When ν satisfies a PQN model, νFL is uncorrelated with x . The floating-point
quantizer can be replaced for purposes of least-squares analysis by an additive inde-
pendent noise having a mean of zero and a mean square bounded by (12.27). If in ad-
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dition νEXP satisfies a PQN model, the mean square of ν will be given by Eq. (12.24).
Section 12.6 discusses the question about νEXP satisfying a PQN model. This does
happen in a surprising number of cases. But when PQN fails for νEXP, we cannot
obtain E{ν2

FL} from Eq. (12.24), but we can get bounds on it from (12.27).

12.6 HOW GOOD IS THE PQN MODEL FOR THE EXPONENT
QUANTIZER?

The PQN model for the hidden quantizer turns out to be a very good one when the
mantissa has 8 bits or more, and: (a) the dynamic range of x extends over at least
several times 
, (b) for the Gaussian case, σx is at least as big as 
/2. This model
works over a very wide range of conditions encountered in practice. Unfortunately,
the range of conditions where a PQN model would work for the exponent quantizer
is much more restricted. In this section, we will explore the issue.

12.6.1 Gaussian Input

The simplest and most important case is that of the Gaussian input. Let the input x
be Gaussian with variance σ 2

x , and with a mean μx that could vary between zero and
some large multiple of σx , say 20σx . Fig. 12.16 shows calculated plots of the PDF of
νEXP for various values of μx . This PDF is almost perfectly uniform between ±1

2 for
μx = 0, 2σx , and 3σx . For higher values of μx , deviations from uniformity are seen.

The covariance of νEXP and x , shown in Fig. 12.17, is essentially zero for
μx = 0, 2σx , and 3σx . But for higher values of μx , significant correlation devel-
ops between νEXP and x . Thus, the PQN model for the exponent quantizer appears
to be intact for a range of input means from zero to 3σx . Beyond that, this PQN
model appears to break down. The reason for this is that the input to the exponent
quantizer is the variable |x |/
 going through the logarithm function. The greater the
mean of x , the more the logarithm is saturated and the more the dynamic range of
the quantizer input is compressed.

The point of breakdown of the PQN model for the exponent quantizer is not
dependent on the size of the mantissa, but is dependent only on the ratios of σx to 

and σx to μx .

When the PQN model for the exponent quantizer is applicable, the PQN model
for the hidden quantizer will always be applicable. The reason for this is that the
input to both quantizers is of the form log2(x), but for the exponent quantizer x
is divided by 
, making its effective quantization step size 
, and for the hidden
quantizer, the input is not divided by anything and so its quantization step size is q.
The quantization step of the exponent quantizer is therefore coarser than that of the
hidden quantizer by the factor




q
= 2p . (12.33)
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Figure 12.16 PDFs of noise of exponent quantizer, for Gaussian input x , with σx = 512
:
(a) μx = 0; (b) μx = σx ; (c) μx = 2σx ; (d) μx = 3σx ; (e) μx = 5σx ; (f) μx = 9σx .



282 12 Basics of Floating-Point Quantization

μx/σx

ρx,νEXP

1.0

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1.0
0 2 4 6 8 10 12 14 16 18 20

Figure 12.17 Correlation coefficient between νEXP and x versus μx/σx , for Gaussian
input x with σx = 512
.

With an 8-bit mantissa, this ratio would be 256. So if the conditions for PQN are met
for the exponent quantizer, they are easily met for the hidden quantizer.

For the Gaussian input case, the PQN model for the exponent quantizer works
to within a close approximation for 0 ≤ μx < 3σx . The correlation coefficient be-
tween νEXP and x , plotted versus μx/σx in Fig. 12.17, indicates very small correlation
with μx in this range. One would therefore expect formula (12.24) for E{ν2

FL} to be
very accurate in these circumstances, and it is.

Eq. (12.24) may be rewritten in the following way:

0.180 = 22p
(

E{ν2
FL}

E{x2}
)
. (12.34)

This form of (12.24) suggests a new definition:⎛⎜⎜⎜⎝
normalized

floating-point
quantization
noise power

⎞⎟⎟⎟⎠ 
= 22p
(

E{ν2
FL}

E{x2}
)
. (12.35)

The normalized floating-point quantization noise power (NFPQNP) will be equal to
the “magic number” 0.180 when a PQN model applies to the exponent quantizer
and, of course, another PQN model applies to the hidden quantizer. Otherwise the
NFPQNP will not be exactly equal to 0.180, but it will be bounded. From Eq. (12.27),
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Figure 12.18 Normalized floating-point quantization noise power (NFPQNP) versus
μx/σx , for Gaussian input x with σx = 512
 and 8-bit mantissas.

1
12

≤

⎛⎜⎜⎜⎝
normalized

floating-point
quantization
noise power

⎞⎟⎟⎟⎠ ≤ 1
3
. (12.36)

These bounds rely on the applicability of a PQN model for the hidden quantizer.
For the Gaussian input case, the NFPQNP is plotted versus the ratio of input

mean to input standard deviation in Fig. 12.18. The value of NFPQNP is very close
to 0.180 for 0 ≤ (μx/σx ) < 3. When μx is made larger, the NFPQNP departs from
its nominal value but, in any event, stays within the bounds.

Now that we have a good idea about the floating-point quantization noise power,
we need to determine the mean of the floating-point quantization noise and its cor-
relation with the input x . Fig. 12.19 is a plot of E{νFL}, normalized with respect to
E{x}, versus μx/σx , and Fig. 12.20 is a plot of the correlation coefficient ρνFL,x ver-
sus μx/σx . When the mean of x is not zero, the mean of νFL remains very close to
zero, never more than a tiny fraction of μx , less than one part in 105. The correlation
between νFL and x also remains very close to zero, generally less than 0.5% when μx
varies between zero and 20σx .

That the mean of νFL is very close to zero and that the correlation between νFL

and x is very close to zero results from the hidden quantizer behaving in accord with
the PQN model. This is illustrated in Figs. 12.21 and 12.22.
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Figure 12.19 Relative mean of the floating-point noise: μνFL/μx versus μx/σx , for
Gaussian input x , with σx = 512
, and 8-bit mantissas.
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Figure 12.20 Correlation coefficient of floating-point quantization noise and input x :
ρνFL,x versus μx/σx , for Gaussian input x , with σx = 512
, and 8-bit mantissas.
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Figure 12.21 Correlation coefficient of the hidden quantization noise and input y: ρν,y
versus μx/σx , for Gaussian input x , with σx = 512
, and 8-bit mantissas.

For purposes of analysis, it is clear that the floating-point quantizer can be
replaced by a source of additive independent noise with zero mean and mean square
given by Eq. (12.24) or bounded by (12.27).

12.6.2 Input with Triangular Distribution

A similar set of calculations and plots have been made for an input x having a triangu-
lar PDF with variable mean. The results are shown in Figs. 12.23–12.28. Fig. 12.23
shows PDFs of νEXP for various mean values of input x . The amplitude range of x
is ±A + μx . The correlation coefficient between νEXP and x is moderately small for
0 ≤ μx < A, the PDFs of νEXP are close to uniform in that range, and they become
non uniform outside this range.

Thus, the PQN model works well for the exponent quantizer in the range 0 ≤
μx < A. Outside this range, the PQN model begins to break down. This is confirmed
by inspection of the normalized floating-point quantization noise power which has
been calculated and plotted in Fig. 12.25.

The mean of νFL is very close to zero. When normalized with respect to the
mean of x , the relative mean remains less than a few parts per 105 over the range of
input means from 0 < μx < 20A. The correlation coefficient between νFL and x is
of the order of 1% over the same range of input means.

With a triangular input PDF, the floating-point quantizer may be replaced for
purposes of moment analysis by an independent source of additive noise having zero
mean and a mean square given by Eq. (12.24) or otherwise bounded by (12.27).
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Figure 12.22 Noise PDFs for hidden quantizer, Gaussian input PDF with σx = 512
, and
8-bit mantissas, (a) μx = 0; (b) μx = 5σx ; (c) μx = 14.5σx ; (d) μx = 17σx .

12.6.3 Input with Uniform Distribution

A more difficult case is that of input x having a uniform PDF. The abrupt cutoffs
at the edges of this PDF cause the CF of x to have wide “bandwidth.” A study of
the floating-point quantizer having an input of variable mean and a uniform PDF has
been done, and results are shown in Figs. 12.29–12.35. The width of the uniform
PDF is 2A.

Fig. 12.29 gives PDFs of the noise of the exponent quantizer for various mean
values of x . Fig. 12.30 shows the correlation coefficient of νEXP and input x for μx
in the range 0 < μx < 20A. Both the PDFs and the correlation coefficient show that
the PQN model for the exponent quantizer works for a zero-mean input. However,
even with a mean of μx = A, the exponent quantizer’s PQN model begins to break
down. This is confirmed by inspection of Fig. 12.31. The normalized floating-point
quantization noise power is reasonably close to the “magic value” of 0.180 for μx =
0, and this is reasonably so even for μx = A. Beyond that range, the values of
NFPQNP can differ significantly from 0.180, although they are still bounded.

The relative mean of νFL is plotted in Fig. 12.32 versus μx/A. The values are
larger than for the Gaussian and triangular cases, but are still very small, less than 6
parts per 105. The correlation coefficient between νFL and x , shown in Fig. 12.33, is
of the order of 2% or less until μx/A ≈ 6, but then it becomes quite a bit larger. To
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Figure 12.23 PDFs of noise of exponent quantizer, for triangular input PDF, with A =
400
: (a) μx = 0; (b) μx = A; (c) μx = 2A; (d) μx = 2.5A.

explore this, we plotted the correlation coefficient between the hidden quantization
noise ν and the hidden quantizer input y. This is shown in Fig. 12.34. The correlation
coefficient is less than 2% until μx/A ≈ 6. It appears that PQN for the hidden
quantizer is beginning to breakdown when μx/A becomes greater than 6.

PDFs of ν have been plotted to study the break down of PQN, and the results are
shown in Fig. 12.35. The PDFs are perfectly uniform or close to uniform, but irreg-
ularities appear for μx/A higher than 6. The correlation coefficients ρν,y and ρνFL,x
also indicate PQN break down for μx/A greater than 6. By increasing the number
of mantissa bits by a few, these breakdown indicators, which are slight, disappear
altogether.

For purposes of moment analysis, the floating-point quantizer can be replaced
by a source of additive zero-mean independent noise whose mean square is given by
Eq. (12.24) or is bounded by (12.27). One must be sure, however, that the mantissa
has enough bits to allow the PQN model to apply to the hidden quantizer. Then νFL

is uncorrelated with x , and the quantizer replacement with additive noise is justified.
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Figure 12.24 Correlation coefficient between νEXP and x versus μx/A, for triangular input
PDF with A = 400
.
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Figure 12.25 Normalized floating-point quantization noise power (NFPQNP) versus
μx/A, for triangular input PDF with A = 400
, and 8-bit mantissas.
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Figure 12.26 Relative mean of the floating-point noise: μνFL/μx versus μx/A, for trian-
gular input PDF with A = 400
, and 8-bit mantissas.
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Figure 12.27 Correlation coefficient of floating-point quantization noise and input x :
ρνFL,x versus μx/A, for triangular input PDF with A = 400
, and 8-bit mantissas.
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Figure 12.28 Correlation coefficient of the hidden quantization noise and input y: ρν,y
versus μx/A, for triangular input PDF with A = 500
, and 8-bit mantissas.

12.6.4 Sinusoidal Input

The PDF of the sinusoidal input, like the uniform PDF, has abrupt cutoff at its edges.
Its shape is even worse than that of the uniform PDF from the point of view of
satisfying conditions for PQN. Results of a study of a floating-point quantizer with
a sinusoidal input and a variable mean are shown in Figs. 12.36–12.42. The zero-to-
peak amplitude of the sinusoidal input is A.

Fig. 12.36 gives PDFs of the noise of the exponent quantizer for various mean
values of x . None of these PDFs suggest PQN conditions for the exponent quantizer,
even whenμx = 0. This is testimony to the difficulty of satisfying PQN condition for
the case of the sinusoidal input. Fig. 12.37 shows the correlation coefficient between
νEXP and input x for various values of the input mean μx . The correlation coefficient
is most often very far from zero, further indicating that PQN conditions are not met
for the exponent quantizer. Accordingly, it will not be possible to get an accurate
value of E{ν2

FL} from Eq. (12.34), but it will be possible to bound E{ν2
FL} by using

(12.36).
Fig. 12.38(a) shows the normalized floating-point quantization noise power for

a variety of input mean values. The mantissa has p = 8 bits. As long as PQN
is satisfied for the hidden quantizer, the normalized quantization noise power stays
within the bounds. This seems to be the case. With the mantissa length doubled
to p = 16 bits, the normalized floating-point noise power measurements, plotted in
Fig. 12.38(b), came out the same. PQN is surely satisfied for the hidden quantizer
when given such a long mantissa. More evidence will follow.
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Figure 12.29 PDFs of noise of exponent quantizer, for uniform input PDF with A =
400
: (a) μx = 0; (b) μx = 1.5A; (c) μx = 2.5A; (d) μx = 4A.
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Figure 12.30 Correlation coefficient between νEXP and x versus μx/A, for uniform input
PDF with A = 400
.
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Figure 12.31 Normalized floating-point quantization noise power (NFPQNP) versus
μx/A, for uniform input PDF with A = 400
 and 8-bit mantissas.
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Figure 12.32 Relative mean of the floating-point noise: μνFL/μx versus μx/A, for uni-
form input PDF with A = 400
 and 8-bit mantissas.
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Figure 12.33 Correlation coefficient of floating-point quantization noise and input x :
ρνFL,x versus μx/A, for uniform input PDF with A = 400
 and 8-bit mantissas.
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Figure 12.34 Correlation coefficient of hidden quantization noise ν and hidden quantizer
input y: ρν,y versus μx/A, for uniform input PDF with A = 400
 and 8-bit mantissas.
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Figure 12.35 Noise PDFs for hidden quantizer, uniform input PDF with A = 200
, 8-bit
mantissas, (a) μx = 0; (b) μx = 10A; (c) μx = 15A; (d) μx = 16A.
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Figure 12.36 PDFs of noise of the exponent quantizer, for sinusoidal input with A =
400
: (a) μx = 0; (b) μx = A; (c) μx = 2A; (d) μx = 4A.
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Figure 12.37 Correlation coefficient between νEXP and x versus μx/A, for sinusoidal
input, A = 400
.

The relative mean of νFL with an 8-bit mantissa is plotted in Fig. 12.39(a) for a
variety of input mean values. The relative mean is very small, a few parts in 10 000
at worst. The mean of νFL being close to zero is consistent with PQN being satisfied
for the hidden quantizer. Doubling the length of the mantissa to 16 bits, the relative
mean, plotted in Fig. 12.39(b), becomes very very small, a few parts in 10 000 000,
for a range of input mean values.

Fig. 12.40 shows the correlation coefficient of νFL and x for various mean val-
ues of x . Fig. 12.40(a) corresponds to p = 8 bits. The correlation coefficient is
highly variable as μx is varied, and at worst could be as high as 25%. As such, one
could not replace the floating-point quantizer with a source of additive independent
noise. PQN for the hidden quantizer fails. So the correlation coefficient was re-
evaluated with a 16-bit mantissa, and the result, shown in Fig. 12.40(b), indicates a
corresponding worst-case correlation coefficient of the order of 1%. With this man-
tissa, it seems reasonable that one could replace the floating-point quantizer with a
source of additive independent noise. The resulting analysis would be a very good
approximation to the truth. PQN for the hidden quantizer is a good approximation.

Fig. 12.41 shows correlation coefficients between the hidden quantization noise
and the hidden quantizer input for various values of μx . These figures are very
similar to Figs. 12.40(a)-(b), respectively. Relationships between ρνFL,x and ρν,y
will be discussed below.

One final check will be made on the PQN hypothesis for the hidden quantizer.
Fig. 12.42 shows the PDF of ν for the hidden quantizer for various values of input
mean. These PDFs are not quite uniform, and in some cases they are far from uni-
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Figure 12.38 Normalized floating-point quantization noise power (NFPQNP) vs. μx/A,
for a sinusoidal input with A = 400
: (a) 8-bit mantissa; (b) 16-bit mantissa.
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Figure 12.39 Relative mean of the floating-point noise, νFL/μx versus μx/A, for sinu-
soidal input with A = 400
: (a) 8-bit mantissa; (b) 16-bit mantissa.



12.6 How Good is the PQN Model for the Exponent Quantizer? 299

μx/A

ρx,νFL

0.25

0.20

0.15

0.10

0.05

0

−0.05

−0.10

−0.15

−0.20

−0.25
0 2 4 6 8 10 12 14 16 18 20
(a)

μx/A

ρx,νFL

0.010

0.008

0.006

0.004

0.002

0

−0.002

−0.004

−0.006

−0.008

−0.010
0 2 4 6 8 10 12 14 16 18 20
(b)

Figure 12.40 Correlation coefficient of floating-point quantization noise and input x ,
ρνFL,x versus μx/A for sinusoidal input, with A = 400
: (a) 8-bit mantissa; (b) 16-bit
mantissa.
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Figure 12.41 Correlation coefficient of hidden quantization noise ν and hidden quantizer
input y, ρν,y versus μx/A for sinusoidal input with A = 400
: (a) 8-bit mantissa; (b) 16-
bit mantissa.
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Figure 12.42 Noise PDFs for the hidden quantizer, sinusoidal input, A = 400
, 8-bit
mantissas: (a) μx = 0; (b) μx = 1.75A; (c) μx = 6.5A; (d) μx = 12A.
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Figure 12.43 Noise PDFs for the hidden quantizer, sinusoidal input, A = 400
, 16-bit
mantissas: (a) μx = 0; (b) μx = 1.75A; (c) μx = 9.5A; (d) μx = 12A.

form. PQN is not really satisfied. Fig. 12.43 shows PDFs of ν with a 16-bit mantissa.
These PDFs are almost perfectly uniform, and it is safe to say that the PQN hypoth-
esis for the hidden quantizer is very close to being perfectly true. Using it will give
excellent analytical results.

12.7 A FLOATING-POINT PQN MODEL

When the hidden quantizer behaves in accord with a PQN model, the floating-point
quantization noise νFL has zero mean, zero crosscorrelation between νFL and x , and
a mean square value bounded by Eq. (12.27). For purposes of analysis, the floating-
point quantizer can be replaced by a source of additive noise, i.e. floating-point PQN.
This comprises a PQN model for the floating-point quantizer.

When the input x is zero-mean Gaussian, the mean square of νFL is given by
Eq. (12.24). The normalized floating-point quantization noise power (NFPQNP),
defined by Eq. (12.35), is equal to the “magic number” 0.180. When the input x
is distributed according to either zero-mean triangular, zero-mean uniform, or zero-
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mean sinusoidal, the NFPQNP is close to 0.180. For other cases, as long as the
floating-point PQN model applies, the NFPQNP is bounded by

1/12 ≤ NFPQNP ≤ 1/3 . (12.37)

Comparing the PQN model for floating-point quantization with that for uniform
quantization, two major differences are apparent: (a) With floating-point quantiza-
tion, νFL has a skyscraper PDF, while with uniform quantization, ν has a uniform
PDF. Both PDFs have zero mean. (b) With floating-point quantization, E{ν2

FL} is pro-
portional to E{x2}, while with uniform quantization, E{ν2} = q2/12, which is fixed.
Both νFL and ν are deterministically related to their respective quantizer inputs, but
they are both uncorrelated with these inputs. The fact that the quantization noises
are uncorrelated with the quantizer inputs allows the quantizers to be replaced with
additive PQN for purposes of calculating moments such as means, mean squares,
correlation coefficients, and correlation functions.

12.8 SUMMARY

By modeling the floating-point quantizer as a compressor followed by a uniform
quantizer followed by an expander, we have been able to analyze the quantization
noise of the floating-point quantizer. Quantizing theorems, when satisfied, allow the
use of a PQN model. When conditions for the PQN model are met, floating-point
quantization noise has zero mean and it is uncorrelated with the input to the floating-
point quantizer. Its mean square value is bounded by

1
12

· 2−2p · E{x2} ≤ E{ν2
FL} ≤ 1

3
· 2−2p · E{x2} . (12.27)

When, in addition, PQN conditions are met for the “exponent quantization”

Q1
(

log2(|x |/
)+ 0.5
)
,

the actual mean square of the floating-point quantization noise is given by

E{ν2
FL} = 0.180 · 2−2p · E{x2} . (12.24)

When the input signal to a floating-point quantizer occupies a range of values so that
the quantizer is neither underloaded or overloaded, PQN conditions are almost al-
ways met very closely. The bounds (12.27) will therefore apply. When the mantissa
is sufficiently long, for example 16 bits or more, the exponent quantization condition
will be almost always met very closely, and equation (12.24) will closely approxi-
mate E{ν2

FL}.
The signal-to-noise ratio of the floating-point quantizer is defined by

SNR

= E{x2}

E{ν2
FL}
. (12.28)
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When the bounds (12.27) apply, the SNR is bounded by

12 · 22p ≥ SNR ≥ 3 · 22p . (12.31)

When the more exact equation (12.24) applies, the SNR is given by

SNR = 5.55 · 22p . (12.29)

12.9 EXERCISES

12.1 Two floating-point numbers are added. The first one is approximately 2, the other one is
approximately 1. What is the probability that before roundoff for storage the fractional
part of the sum exactly equals 0.5 times the least significant bit (LSB)? What is the
probability of this when both numbers are approximately equal to 1.5?

12.2 For zero-mean Gaussian noise with σ = 12.5
 applied to the input of the floating-
point quantizer with an 8-bit mantissa (see page 343), determine numerically

(a) the PDF of y,
(b) the PDF of ν,
(c) the variance of ν,
(d) the correlation coefficient of y and ν,
(e) from the results of (b)–(d), does the PQN model apply to the hidden quantizer?

12.3 Verify the results of Exercise 12.2 by Monte Carlo.

12.4 For zero-mean Gaussian noise with σ = 12.5
 applied to the input of the floating-
point quantizer with an 8-bit mantissa, determine numerically

(a) the PDF of νFL,
(b) the PDF of νEXP.

Do these correspond to PQN?

12.5 Verify the results of Exercise 12.4 by Monte Carlo.

12.6 Repeat Exercise 12.2 with μ = 15
.

12.7 Verify the results of Exercise 12.6 by Monte Carlo.

12.8 Repeat Exercise 12.4 with μ = 150
.

12.9 Verify the results of Exercise 12.8 by Monte Carlo.

12.10 Is it possible that the distribution of νFL is uniform, if x extends to more than one linear
section of the compressor (that is, its range includes at least one corner point of the
piecewise linear compressor)? If yes, give an example.

Is it possible that both x and νFL have uniform distributions at the same time ?

12.11 How large is the power of νFL when an input with normal distribution having parameters
μ = 2p+1 and σ = 2p+3 is applied to a floating-point quantizer with 6-bit mantissa
(p = 6)? Determine this theoretically. Verify the result by Monte Carlo.
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12.12 The independent random variables x1 and x2 both are uniformly distributed in the in-
terval (1,2). They are multiplied together and quantized. Determine a continuous ap-
proximation of the distribution of the mantissa in the floating-point representation of
the product x1x2. Note: this non-uniform distribution illustrates why the distribution
of mantissas of floating-point calculation results usually cannot be accurately modeled
by uniform distribution.
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