
Appendix K

Roundoff Noise in Scientific
Computations

Roundoff errors in calculations are often neglected by scientists. The success of
the IEEE double precision standard makes most of us think that the precision of a
simple personal computer is virtually infinite. Common sense cannot really grasp the
meaning of 16 precise decimal digits.

However, roundoff errors can easily destroy the result of a calculation, even if
it looks reasonable. Therefore, it is worth investigating them even for IEEE double-
precision representation.

K.1 COMPARISON TO REFERENCE VALUES

Investigation of roundoff errors is most straightforwardly based on comparison of the
results to reference values, that is, to the outcome of an ideally precise calculation.

First of all, we need to note that the way of comparison is not well defined. It
is usually done by looking at the difference of the finite precision result and of the
reference value. This is very reasonable, but cannot be applied in all cases. If, for
example, we investigate a stand-alone resonant system, the reference and the finite
precision results could be two similar sine waves, with slightly different frequency.
In such a case, the difference of the imprecise result and precise result grows signif-
icantly with time, although the outputs are still very similar. Therefore, the basis of
comparison needs to be chosen very carefully.

Secondly, having infinitely precise reference values seems to be a dream only.
However, this is sometimes quite reasonable.

K.1.1 Comparison to Manually Calculable Results

Relying on calculable results seems to be applicable in trivial cases only, but this is
not true. The general condition of usability is to have

697

698 K Roundoff Noise in Scientific Computations

• the possibility to calculate the exact output or at least a part of the exact output,

• complex enough input which can represent the set of typical data.

A good example is the evaluation of the FFT or of any digital filter by using random
phase multisine excitation (Paduart, Schoukens and Rolain, 2004). We use integer
periods of a periodic signal containing certain harmonic components with phases
randomly set, and certain harmonic components set to exactly zero. Random phases
make the amplitude distribution of the time domain signal more or less Gaussian
(Pintelon and Schoukens, 2001). Zero amplitudes make the steady-state result at the
corresponding frequencies contain roundoff noise only. Evaluation of these gives a
measure of the roundoff noise variances at the output.

K.1.2 Increased Precision

When theoretically correct results are not available, the most precise determination
of the reference value is available by using increased precision. This is however a
paradoxical requirement, since when extended precision is available for calculation
of the reference values, why would somebody be interested in the lower-precision
result at all?

We may want to characterize the error of usual-precision calculations, accept-
ing slower determination of the reference value. When an overall roundoff analysis
of an algorithm with given precision is to be performed, having a reference value
available we can compare the results of several runs to this value.

There are two major ways to obtain increased-precision results on an IEEE
double-precision machine.

(a) Use the so-called long double numbers available in certain compilers (e.g. Bor-
land C, or Microsoft C and so on). These define operations on numbers with
extra long bit numbers, so the result has a much lower roundoff error than usual
ones. Their use however requires special care, since the precision is only in-
creased significantly if all the operations (like trigonometric functions etc.) are
done in long double precision, and it is also difficult to extract the results in
extended precision.

(b) Use the so-called multiple-precision arithmetic packages. These implement
increased precision calculations on double-precision machines.

Both solutions are rather slow, since they are not directly supported by the fast arith-
metic co-processors.

K.1.3 Ambiguities of IEEE Double-Precision Calculations

In many cases, IEEE double precision is sufficient for calculating a reference value.
One of the aims of IEEE double precision (page 343) as a standard was that people

K.1 Comparison to Reference Values 699

needed reproducible results: the same computer code executed on two different, but
IEEE-compatible arithmetic processors was assumed to yield the same result. There-
fore, the results in IEEE double precision are accurately defined in the standard.

This aim was almost reached with the appearance of IEEE-compatible ma-
chines, like the personal computer. However, there is one significant difference
between these machines, and sensitive calculations must consider this. Certain op-
erations, like “fused multiply and add” or “multiply and accumulate”, MAC (A =
A + B ∗ C), can be directly evaluated in the accumulator. The IEEE standard al-
lows the use of extended-precision arithmetic, with longer than usual significand
(mantissa) and exponent (IEEE, 1985), which is usually implemented as increased
precision of the accumulator. Certain processors, like the Pentium processors in PCs
make use of this, so that operations executed in the accumulator are calculated with
64 mantissa bits. 53 mantissa bits are used in memory storage.

However, it is determined not by the processor itself if this extended precision
is utilized or not. The compiler has the ultimate decision about the implementation of
certain operations. For example, in Matlab, earlier versions of the program calculated
intermediate results of fused multiply and add operations (e.g. the scalar product of
vectors, or matrix multiplications) in the accumulator, and therefore on a PC the
result was more precise than e.g. on a Sun computer. However, in Matlab this is
not done any more (Kahan, 1998). Every operation is executed with the same, that
is, non-extended precision. This has the advantage that Matlab produces exactly the
same results on every machine, let it be a PC, a Sun, or a Macintosh, that is, even the
roundoff errors are the same, so the results are directly interchangeable. On the other
hand, it is a pity that while the processor of a PC could work with less roundoff in
certain operations, we do not make use of this possibility.

The standard clearly defines the result of multiplications, additions, subtrac-
tions and divisions, even of the square root function. They must be as close as pos-
sible to the theoretical results. This is expressed as “the error may not be larger than
0.5 ULPs” (units in the last place1). However, this is not the case for more general
functions, such as sin(·), or log(·). Because of difficulties of hardware realization, it
is accepted in the evaluation of transcendental functions to have an error of 1 ULP,
which allows a small hardware-dependent ambiguity in these evaluations.

Furthermore, for results theoretically at (integer+0.5) LSB, the result of round-
ing is not uniquely defined. Although the standard contains a description, and most
modern arithmetic processors implement round-to-even, this is not ubiquitous. There-
fore, arithmetic units may differ even in this. Even Matlab, which has become a
de facto standard program in scientific calculations, implements a round(·) function

1Unit in the Last Place (ulp(x)) “is the gap between the two finite floating-point numbers nearest
x , even if x is one of them.” For definitions of the ulp function, see (Muller, 2005). In other words,
ulp is the smallest possible increment or decrement that can be made using the machine’s floating point
arithmetic. For representable numbers, this is almost always equal to 1 LSB (Least Significant Bit) of
the number, except for non-underflow powers of 2, where it equals 0.5 LSB.

700 K Roundoff Noise in Scientific Computations

which rounds all halves towards ±∞ (round([−3.5 : 1 : 3.5])=[−4,−3,−2,−1, 1,
2, 3, 4]), while the processor itself executes round-to-even. This is probably inher-
ited from earlier Matlab implementations, and stays so. Therefore, simulations in
Matlab need extra care if these 0.5 LSB values often occur.

K.1.4 Decreased-Precision Calculations

When increased precision is not directly available, we may also evaluate the algo-
rithm with decreased precision. This means that the same operation is performed
with quantizers of lower bit numbers inserted into the signal path. We can recognize
that for fixed-point number representation the magnitude of the roundoff error is ap-
proximately proportional to q/2, and for floating-point the magnitude of the relative
error is proportional to 2−p. When a certain algorithm is performed with different bit
length, the tendency of the roundoff error can be estimated. Then, double-precision
results can be handled as reference values, and the lower-precision results can yield
the roundoff errors which allow extrapolation to double precision or further.

Since the roundoff errors can usually be considered as random, a desirable
method would calculate a set of independent results, and make a statistical analy-
sis. This would usually give a precise indication of the error levels.

K.1.5 Different Ways of Computation

An easy and useful way can be followed when the inverse of an algorithm can also
be evaluated. When the algorithm and its inverse are repeatedly calculated, like the
FFT and the IFFT, the differences of the results of the sequences FFT, FFT–IFFT–
FFT, FFT–IFFT–FFT–IFFT–FFT and so on is a characteristic of the roundoff errors.
In open-loop calculations like the FFT, the roundoff errors will accumulate, but the
error level can be evaluated directly in successive differences of the results (Fig. K.1).
The only difficulty is that we cannot distinguish between the error of the FFT and of
the IFFT.

Figure K.2 illustrates the errors obtained by the execution of Matlab’s
fft/ifft pair (these are IEEE double-precision floating-point algorithms).

In general, a good test of the calculation result is to calculate the same quantity
in two or more ways, possibly with different algorithms, and compare the results.
Even when one algorithm is available, application to different signals and analysis
of the results can yield a reasonable estimate of the roundoff error. For example, for
linear operations the input signal can be decomposed into two or more parts, while
for nonlinear operations the input signal may be slightly perturbed. An example for
the linear case is when the roundoff error of an FFT algorithm is to be checked. The
decomposition of the input sequence into two sequences: {xi } = {yi } + {zi }, and
comparison of {Xk} with {Yk}+ {Zk} will give a picture of the order of magnitude of

K.1 Comparison to Reference Values 701

FFT

FFT

FFT

IFFT

IFFT

X

X ′

X ′′

Y

Y ′

Y ′′

′ = Y ′ − Y

′′ = Y ′′ − Y ′

Figure K.1 IFFT–FFT pairs yielding roundoff errors.

0 200 400 600 800 10000

10−14

2 · 10−14

Figure K.2 The absolute value of the error after execution of Matlab’s fft/ifft com-
mand pair on an N = 1024-point white Gaussian sequence, with zero mean and σ = 1.

the roundoff errors, at least when {yi } and {zi } have significantly different nature. The
basic requirement is that the roundoff errors of the two calculation methods be at least
approximately independent. Therefore, the choice {yi } = {zi } = {xi }/2 is obviously
wrong, {yi } = (1/π){xi } and {yi } = (1 − 1/π){xi } is better. We might recommend

702 K Roundoff Noise in Scientific Computations

e.g. the selection of a sequence {ri } whose members are all randomly distributed
between (0,1), and use the decomposition {yi } = {ri }.∗{xi } and {zi } = {1−ri }.∗{xi },
where .∗ denotes pointwise multiplication. Fortunately, there are infinitely many
such decompositions, depending on the sequence, which provide varying roundoff
errors.

K.1.6 The Use of the Inverse of the Algorithm

Sometimes the inverse algorithm can be evaluated more reliably than the forward
algorithm. In such cases error feedback calculations can be applied, where the error
in the restoration of the input is used to generate a correction of the result (Fig. K.3).
The simplest examples are the correction of the result of division by calculating the
product of the divisor and the ratio and subtraction of this from the dividend:

Y (k + 1) = Y (k)+ (X − Y (k) ∗ D)/D , (K.1)

or Newton’s algorithm to calculate the square root of X :

Y (k + 1) = 1
2

(
Y (k)+ X

Y (k)

)
. (K.2)

Algorithm
(Imprecise)

Correction
Y (k)→ Y (k + 1)

Y (1)

Inverse

+

−
�

Algorithm

Storage

Y (k + 1)

X

X (k)

X (k)

Figure K.3 Evaluation based on the inverse algorithm (e.g. division based on multiplica-
tion).
X (1) = 0.

K.2 The Condition Number 703

K.2 THE CONDITION NUMBER

Modern engineering is often based on solutions of linear equations. In such cases,
the usual measure of reliability of the results is the condition number defined as
||A|| · ||A−1||. For || · || being the l2 norm, the condition number equals the ratio
of the largest and smallest singular values of the system matrix A. Since the work
of Wilkinson (1994) we know that the solution of a linear equation is only reliable
if the condition number is reasonably smaller than the reciprocal of the machine
precision.2

While the condition number seems to be a universal measure for the calculabil-
ity of the solution of linear matrix equations, sometimes it may be misleading, even
in simple cases. The following example which illustrates that the condition number
alone is not a sufficient indicator of roundoff problems, is due to De Moor (1991).

Example K.1 Non-associative Matrix Product
The machine precision is equal in IEEE double precision to eps = 2.2204 · 10−16.
Let us define now εm as the largest number for which 1 + εm is rounded to
1. This is thus smaller than eps. On machines that implement ‘round to even’
or ‘convergent’ rounding for the numbers whose fraction (mod LSB) is exactly
0.5 LSB, εm is equal to the half of eps. For IEEE double precision, εm = eps/2 =
1.1102 · 10−16.

Let us choose now a value α for which the following two inequalities hold:

α2 < εm < α , (K.3)

and that can be represented on the given computer.

The largest such value is α = fl(
√
εm∗(1−eps)), where fl(·) denotes the floating-

point rounding operation. For IEEE double precision, e.g. α = 10−8 meets these
conditions.

Let us define now the following matrices:

A1 =
(

1 α 0
1 0 α

)
A2 =

⎛⎜⎝ 1 1
α 0
0 α

⎞⎟⎠ , (K.4)

A3 =
(

−1 α 0
1 0 α

)
A4 =

⎛⎜⎝−1 1
α 0
0 α

⎞⎟⎠ . (K.5)

Let us evaluate the product A1A2A3A4. The theoretical value is

2Machine precision is the resolution in the given number representation: the size of the step from 1
to the next larger representable number.

704 K Roundoff Noise in Scientific Computations

 = A1A2A3A4 =
(

2α2 + α4 0
0 2α2 + α4

)
= (2α2 + α4)

(
1 0
0 1

)
. (K.6)

From linear algebra we know that the product can be evaluated executing the
matrix multiplications in arbitrary order (associativity), as long as the order of
the matrices themselves is maintained. However, for the above case, the order of
the execution of the multiplications significantly changes the result, due to the
arithmetic rounding performed after each scalar multiplication and addition. Let
us notice that

fl(A1A2) = fl

((
1 + α2 1

1 1 + α2

))
=
(

1 1
1 1

)
, (K.7)

fl(A3A4) = fl

((
1 + α2 −1

−1 1 + α2

))
=
(

1 −1
−1 1

)
, (K.8)

fl(A2A3) =
⎛⎜⎝ 0 α α

−α α2 0
α 0 α2

⎞⎟⎠ . (K.9)

Evaluating the product as A1A2A3A4 = (A1A2)(A3A4):

 fl1 = fl
(
fl(A1A2)fl(A3A4)

) =
(

0 0
0 0

)
. (K.10)

The “natural order” of evaluation, A1A2A3A4 = ((A1A2)A3
)
A4 gives

 fl2 = fl
(

fl
(
fl(A1A2)A3

)
A4

)
=
(
α2 α2

α2 α2

)
. (K.11)

A1A2A3A4 = (A1(A2A3)
)
A4 yields

 fl3 = fl
(

fl
(
A1fl(A2A3)

)
A4

)
=
(

2α2 0
0 2α2

)
. (K.12)

The ranks of the calculated products are equal to 0, 1, 2, respectively!

Because of the roundoff errors, associativity of multiplications does not precisely
hold in practical realizations. The example illustrates this for small matrices, but
numerical imprecision in the associativity can be shown even for scalar numbers.

K.3 Upper Limits of Errors 705

The difference is in most cases so small that we do not care. However, in the exam-
ple, the results qualitatively differ (observe the rank of the matrices). The important
difference between the three calculated products is surprising because the condition
number of each that used matrix Ai is 1/α, far below the reciprocal of the machine
epsilon (108 � 1/eps = 4.5 · 1015 for IEEE double precision), and the nonzero
elements in the first two products are all ±1, so no one would suspect any serious
problem. Therefore, a check of the condition numbers of the multiplicands and an
examination of the results do not reveal the danger, unless we require the very con-
servative condition that the product of the condition numbers of the multiplicands
must be lower than the reciprocal of the machine epsilon, a rule which is almost
never followed.

The cause of the trouble is that at certain stages we calculate the difference
of numbers which are very close to each other, and rounding errors can bring the
difference to either positive, negative or zero value.

A simple example illustrates that the condition numbers of the multiplicands is
not really relevant to the problem.

Example K.2 Good and Bad Conditioning of Product
Define two products:

 a =
(

1 0
0 10−8

)(
1 0
0 10−8

)
=
(

1 0
0 10−16

)
, (K.13)

 b =
(

1 0
0 10−8

)(
10−8 0

0 1

)
=
(

10−8 0
0 10−8

)
. (K.14)

The first product is extremely badly conditioned, while the second one is ex-
tremely well conditioned, while the condition numbers of the multiplicands are
exactly the same.

Does this mean that we should stop looking at the condition numbers? Not at all.
The condition number is a very useful indication of possible problems in the solution
of linear equations, calculating the eigenvalues, and so on. But a good condition
number alone does not guarantee the correctness of the result of a linear or nonlinear
operation.

Unfortunately, there is no general recipe. Each calculation needs to be con-
sidered individually, and reasonable approximations and estimations must be made.
Some general principles can however be formulated.

K.3 UPPER LIMITS OF ERRORS

In most cases, we are interested not in the actual value of the error, but in the upper
limit of it. We are then content to know that the error is certain or likely to be smaller

706 K Roundoff Noise in Scientific Computations

than a given quantity. In some cases a good theoretical upper bound of the roundoff
errors is available, for example: (Wilkinson, 1994; Forsythe and Moler, 1967).

Another possibility is performing the calculations with interval arithmetic. This
means that instead of obtaining the error, its upper and lower bounds are calculated,
assuming worst-case conditions. Since roundoff errors are very unlikely to act all in
the same direction, the obtained upper and lower bounds of the results are usually
very pessimistic, so we obtain a very wide interval which contains the true result
with 100% certainty. Interval arithmetic assures that the true value will be in any
case between these bounds, but cannot account for the fact that the result is likely to
be close to the middle of the interval rather than close to the bounds. This makes the
results practically unusable for most iterative algorithms (e.g. for the output of IIR
filters or of control loops).

A more realistic, although theoretically not perfectly correct bound can be
obtained using the PQN model in the calculations. The basic idea is to perform
increased-precision calculations, and instead of quantization, to add independent
PQN noise at every quantizing step. Evaluation can be done by using Monte Carlo
experiments, or by evaluation of the accumulation of variances.

The “QDSP Toolbox for Matlab”, available from the website of the book pro-
vides basic tools to perform PQN-based Monte Carlo evaluation of the error.

Since we usually want to evaluate the roundoff error of a given precision on the
same machine, the theoretically correct result is not available. We cannot eliminate
quantization noise during evaluation. However, we can make it independent (uncor-
related) by adding dither at every step.3 The results will be obtained for the roundoff
noise and dither.

Sometimes the effect of roundoff errors may be significantly magnified by the
algorithm itself, and then linear error models may not apply. Such a case is the
minimization of cost functions approximately quadratic around the minimum xmin
(Press, Flannery, Teukolsky and Vetterling, 1988, Section 10.2), as in least squares or
maximum likelihood estimation. We look for argument values whose small change
does not cause significant changes in the cost function. If, for example, the cost
function can be expressed as C(xmin + dx) = Cmin + c · dx2, a change of dx causes a
change of c · dx2 in it. Since only a relative change larger than eps/2 can be detected,
with eps being the machine precision, the location of the minimum (the argument
value) can be determined only to the following precision:

c · dx2

Cmin
>

eps
2

dx
xmin

>
1

xmin

√
Cmin

2c
√

eps . (K.15)

3In order to have uncorrelated error, triangular dither in (±q) can be recommended.

K.4 The Effect of Nonlinearities 707

This relative error is usually much larger than the machine precision eps. The lo-
cation of the minimum can be less precisely calculated than the value of the cost
function at the minimum, although we are interested in the former value.

K.4 THE EFFECT OF NONLINEARITIES

Special care should be taken when applying nonlinear operations.
With statistics at hand, one might consider the mean value of the set as a ref-

erence value, and calculate the deviation from it as the error. This is often wrong.
The mean value is consistent (the arithmetic mean converges to the true value when
increasing the number of different calculations) only if the mean value of the errors
is zero. This may not be true if nonlinear operations are involved.

Depending on the form of nonlinearity, quantization theorems may not hold any
more, and quantization noise becomes highly non-uniformly distributed. A simple
example is the use of the logarithm function. For the number x = 8.94 · 10306, the
expression 10log10 x -x which is theoretically zero, gives −1.04·10294, that is, the error
relative to x is −1.16·10−13 ≈ −523·eps. The cause of this deviation is certainly not
an error in evaluation of the functions. The problem is that the logarithm contracts
the numbers to a grid finer than representable in IEEE double precision. Quantization
which is necessary to store the result in this format rounds to the nearest integer, and
this error is magnified back when applying the function 10(·).

It is very difficult to give general rules which apply to many cases. There are
problems which are numerically difficult to handle, and there are cases which require
special care. Instead of further discussion, we present here two more examples.

Example K.3 Roots of Wilkinson’s Polynomial
A well-known problem with bad conditioning is due to Wilkinson, the great
numerical mathematician, involving polynomials whose roots are successive in-
teger numbers. We will discuss a related case. For sake of simplicity, we give
the Matlab code of the calculations.

Define a polynomial whose roots are 1,2,. . . ,10, and solve it, then calculate the
errors.

r=[1:10]’; err=flipud(roots(poly(r)))-r;
%Roots and their errors:
1 -5.8842e-015
2 1.2226e-012
3 -2.9842e-011
4 2.7292e-010
5 -1.2226e-009
6 3.0459e-009
7 -4.4523e-009
8 3.8089e-009

708 K Roundoff Noise in Scientific Computations

9 -1.7700e-009
10 3.4584e-010

These errors are well above eps = 2.2204 · 10−16.

Let us look at a similar problem with one more root at 10.

r=[1:10,10]’; err=flipud(roots(poly(r)))-r;
%Roots and their errors:
1 -5.2514e-014
2 1.7337e-012
3 -2.5234e-011
4 2.2806e-010
5 -1.2284e-009
6 3.8950e-009
7 -7.4407e-009
8 8.7565e-009
9 -6.7227e-009

10 1.2679e-009 -2.9784e-005i
10 1.2679e-009 +2.9784e-005i

The double root at 10 seemingly causes increased error. It is well known that
numerical polynomial solvers have difficulties in solving for multiple roots. Here
the double root became a complex pair, with an error much higher than above
with single roots. But is this error large or it is not large?

The answer depends on our point of view. If the question is whether the poly-
nomial has complex poles or only real ones, this error is obviously not tolerable.
If the question is whether there are double poles or all poles are different, the
criterion needs to be carefully chosen. We can e.g. look for pole pairs not further
than 10−4 from each other, and recognize the first two poles as a pole pair. But
how can we set the error limit properly? This is a very difficult question, the
answer depending on the actual requirements.

This example emphasizes a general problem of numerical calculations. In practice,
virtually every numerical result is prone to roundoff errors. In most cases, this is
not a big problem, but when the results qualitatively change because of the roundoff,
like the nature of the roots above, puzzling situations may occur. It is even more
problematic when the nature of the results serves as a basis of further decisions.

Example K.4 LS Solution of an Overdetermined Linear Equation
In system identification, an often occurring task is to find the solution p of

z = Xp (K.16)

when the system matrix X and the observation vector z are known. The size of
the system matrix X is nz × n p, where nz > n p. The solution is usually sought
in the LS sense: |z − Xp|2 should be minimal. Theoretically, the solution is

p̂ = (XTX)−1XTz . (K.17)

K.4 The Effect of Nonlinearities 709

This expression is usually not evaluated as it is, but a numerical approximation is
given using a matrix factorization of X. In the following, we will use the singular
value decomposition of X (Golub and van Loan, 1989):

X = USVT , (K.18)

where U and V are unitary matrices: UTU = E and VTV = E, and S is a
diagonal matrix of nonnegative singular values. With these, the LS solution
(K.17) becomes:

p̂ = VS−1UTz . (K.19)

If the rank of X is less than n p, the inverse does not exist. In such cases the
so-called Moore–Penrose pseudoinverse is used. In terms of the SVD, (K.19)
is modified: degenerate rank means that at least one singular value equals zero,
and the pseudoinverse is defined by replacing the reciprocals of the zero singular
values by zero in the inverse of the diagonal matrix S.

The numerical problem arises in practice since none of the theoretically zero
singular values really equals zero, because of roundoff errors. We need to de-
cide however, which are the singular values which are equal to zero, that is, their
numerically evaluated value contains roundoff noise only. Since the algorithm
needs to be changed by this decision, careful consideration is needed. Bad deci-
sions cause significant changes in the estimated parameter vector p̂.4

On the basis of PQN theory, the power of the roundoff noise on the singular
values can be estimated. From this, a reasonable upper bound can be obtained.
If a singular value is below this level, then there is no reason to think that this
singular value differs from zero. If it is above the level, we consider it as nonzero.

4Although the solution in p̂ may significantly change, the value of the least squares cost function
is practically insensitive to this change. This is a phenomenon similar to that discussed considering
Eq. (K.15).

