Appendix L

Simulating Arbitrary-Precision
Fixed-Point and Floating-Point
Roundoff in Matlab

Matlab is a natural environment for scientific and engineering simulations. Its work-
space concept, interactivity, easy programming and visualization capabilities all sig-
nificantly facilitate the user’s task.

There are different levels to simulate roundoff. Here we will briefly discuss
four such possibilities:

e simple, straightforward programming of approximate roundoff,

e use of advanced quantizers and roundoff tools freely available from the site of
this book,!

e use of the quantized DSP simulation toolbox, freely available from the site of
this book,'

e use of the Fixed-Point Toolbox, commercially available from The MathWorks.2

The basic idea of the first two possibilities is to evaluate each operation in
Matlab, and follow each by a roundoff operation. For example, if @ and b are two
finite wordlength numbers which are to be multiplied, the result is evaluated as ¢ =
Q(a * b). This is a fast and simple approach, and generally provides good results.
There are, however, some limitations which will be discussed below.

The last two possibilities are based on objects. The methods provided by the
object libraries allow precise simulation of virtually any finite wordlength operation
occurring in practice, at the cost of slower execution.

lhttp: //www.mit .bme.hu/books/quantization/
thtp: //www.mathworks.com/

711

712 L Simulating Arbitrary-Precision Roundoff in Matlab

L.1 STRAIGHTFORWARD PROGRAMMING
L.1.1 Fixed-point roundoff

Fixed-point roundoff is simplest to simulate in Matlab by executing

xg=gxround (x/q) ; (L.1)

where ¢ is the quantum size. Matlab which uses IEEE double-precision representa-
tion of numbers, executes calculations “infinitely precisely”, compared to step size
q. In many cases, this is sufficient: operation (L.1) returns the multiple of g closest
to the result.

This method is simple and straightforward. However, several possible proper-
ties of roundoff cannot be treated by it, like

e amplitude limits (saturation or overflow),

bit numbers over 53,

treating values at equal distance from two representable values in a selected
way,

e different number representations,

quantization replaced for simulation purposes by PQN,

different roundoff strategies,

e ctC.

To treat these properties, more advanced methods are necessary, as to be dis-
cussed in Section L.2 and further.

L.1.2 Floating-Point Roundoff

In floating-point rounding, it is not the quantum size which is fixed, but rather the
precision of the mantissa (see page 343), that is, its number of bits. A simple Matlab
implementation of floating-point quantization with any p less than 53 is:3

[£,e] = log2(x); dxp = sign(x).* pow2(max(e,-1021)+ 52 — p);
xqgfl = (x + dxp) — dxp; (L.2)

3This is implemented in the function M-file roundfloat . m, available from the book’s web page.
roundfloat .m works not only for real numbers, but also for complex numbers and arrays.

L.2 The Use of More Advanced Quantizers 713

For p = 53 one uses Matlab itself. For p > 53, Matlab simulation of floating-point
quantization is possible but it is rather complicated to implement (see Section L.3).

Algorithm (L..2) is simple and straightforward. However, there are some limi-
tations, like:

e albeit rarely, errors can be slightly larger than half of the quantum size, the
error limit required by the IEEE standards. This phenomenon is called “double
rounding,” see Example L.1 in page 716.

e it works only for precisions p < 53,
e quantization cannot be replaced for simulation purposes by PQN,
o the roundoff strategy cannot be easily modified,

e the range of the possible values of the exponent is limited by the range of the
exponents of the IEEE double-precision number representation,

e ctc.

If these properties are important, more advanced tools have to be used.

L.2 THE USE OF MORE ADVANCED QUANTIZERS

In Matlab, numbers are handled and stored in IEEE double-precision representation.
When simulation is executed making use of these numbers, numbers rounded by the
arithmetic processor are re-quantized to conform with the desired bit length.

However, there is a small problem in re-quantization to fixed-point, when the
probability of the occurrence of the input values (k + 0.5)g is not negligible* (this
is the case e.g. when executing the FFT with block-float number representation, see
e.g. page 394). Matlab’s round operation rounds every number at (k + 0.5) upward
for positive numbers, and downward for negative numbers. Quantization theory, on
the other hand, tacitly assumes that for these numbers with a tie of the distance to the
two neighboring quantized values, quantization happens with probability 0.5 in each
direction.

Rounding which corresponds to the latter (in a pseudo-randomized way) can
be simulated for fixed-point by the Matlab function roundrand, written for this
book, and available from the book’s web page. Randomization, however, has the
disadvantage that it is irreproducible unless the random generator is reset before each
run of the same procedure.

Another approach is as follows. In some DSP processors, the clever algo-
rithm of convergent rounding (see page 396) is executed: numbers with two possible
roundoff results in equal distance are rounded to the nearest number with LSB zero.

4k is an integer.

714 L Simulating Arbitrary-Precision Roundoff in Matlab
X representation x’ representation x/
-15 —1.111-23 -1.00-2* —16
-2 —1.000 - 2! —1.00 - 2! -2
-1 —1.000 - 2° —1.00-2° -1
0 +0.000 . 2Emin +0.00 - 2Emin 0
0.5 +1.000-27! +1.00-271 0.5
0.8125 +1.101-27! +1.10-27" 075
0875 +1.110-271 +1.11-271 0.875
0.9375 +1.111-271 +1.00 - 29 1
1 +1.000 - 20 +1.00 - 20 1
7 +1.110 - 22 +1.11-22 7
8 +1.000 - 23 +1.00 - 23 8
9 +1.001 - 23 +1.00 - 23 8
10 +1.010 - 23 +1.01-23 10
11 +1.011-23 +1.10- 23 12
12 +1.100 - 23 +1.10- 23 12
13 +1.101 - 23 +1.10-23 12
14 +1.110-23 +1.11-23 14
15 +1.111-23 +1.00- 24 16

TABLE L.1 Convergent rounding of a few numbers to representation with p = 3.

This can be simulated for fixed-point by the Matlab function roundconv, written for
this book and also available from the book’s web page. The formula (L.2) executes
convergent rounding for floating-point.

Convergent rounding can be understood by examining Table L.1, evaluated for
a few numbers with (L.2), with p = 3.

For the fine-tuning of quantizers, their properties can be defined and used in the
functions of the roundoff toolbox.> Here are the basic properties:

%$Quantizer properties and values:
type = type of quantizer (’fixed-point’ or ’'floating-point’)
rdir or roundingdirection = direction of rounding:
Irl, lfl, Icl IXI, Iil, ltl
for round, ceil, toinf, trunc

floor, fix,

5Seehttp://www.mit.bme.hu/books/quantization/

L.2 The Use of More Advanced Quantizers 715

treath or treathalf = way of treating x.5 values for round:
rf£r, e, 'x', 'e’, o', 'r’
for floor, ceil, fix, toinf, toeven, toodd, rand
coding = coding of mantissa, ’'s’, 'o’, 't’
for sign-magnitude, one’s complement, two’s complement
dither = adding dither, ’'on’ or ’'off’
operation = way of operation, ’quantize’ or 'PQON’ to add PON
Fixed-point quantizers only:
B or bits = number of bits of the number, sign included
xnmin or minimum = minimum representable (negative) number
xpmax or maximum = maximum representable number
fb or fractionbits = number of fractional bits
ovf or overflow = overflow handling, ‘c¢’, 'm’, 't’, ’i’, ’'n’
for clip, modular, triang, inf, none
Floating-point quantizers only:
P or precision = precision number of bits of the significand,
sign not included, but hidden bit is included

lb or leadingbit = leading bit representation, ’'h’ or
"hidden’ for hidden, ’"s’ or ’shown’ for shown
ufl or underflow = underflow, ‘g’ for gradual, ’'f’ for flush

Emin or Expminimum = min. value of exponent (al least -1022)
Emax or Expmaximum = max. value of exponent (at most 1023)
Ebias or Expbias = bias in exponent representation

An example of the use is as follows:

Q = gstruct ('p’,24); %define a quantizer

a = roundqg(l.1,Q); b = roundg(2.3,Q); S%rounded input numbers
c = roundg(axb,Q); %operation and subsequent roundoff

num2bin(c,Q) %$show contents of binary number

[)

Q_PQON=gstructset (Q, ' operation’,’PQN’); S$replace Q by PQON
c2 = roundg(axb,Q_PON); %operation and addition of PQN
num2bin (c2,Q_PQON) $%$show contents of binary number

This tool is quite versatile, and can be used to simulate many practical cases.
However, for accurate simulation of DSP hardware, there are some difficulties which
can be overcome with object-based programming only, at the price of slower execu-
tion of the more complicated code. We enumerate three of these here.

The first problem is that even with IEEE double precision, the result of not all
operations can be precisely obtained. The small roundoff error in double-precision
execution can be enough to bring the result to the border of two quantum bins in the
number representation, and subsequent roundoff of a number on the border may act
in the same direction as with double precision, increasing the total error slightly over
half of the quantum size.

716 L Simulating Arbitrary-Precision Roundoff in Matlab

Example L.1 Erroneous Result Due to Double Rounding
Let us evaluate in floating-point, precision p = 28, the following expression:

1.0000 0000 0000 0000 0000 0000 001-23+1.1111 1111 11111111 1111 1111000-2726
The mathematically precise result is
1.0000 0000 0000 0000 00000000001/ 0 1111 1111 11111111 1111 1111 1-23.

In IEEE double precision (Matlab’s native number representation), this is rep-
resented with precision p = 53, that is, it needs to be rounded to the nearest
representable number:

1.0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000-23.

The quantizer with precision p = 28 rounds this, according to the convergent
rounding rule (see page 396), to

1.0000 0000 0000 0000 0000 0000 010-23.
The proper result would be the representable number closest to the precise result:

1.0000 0000 0000 0000 0000 0000 001-23

The second problem is that precision of this solution is limited to p = 53, thus
accumulator wordlengths larger than this cannot be simulated, moreover, the round-
off of IEEE double precision cannot be evaluated due to lack of higher-precision
reference values.

The third problem is that the implementation of each roundoff needs the explicit
call of the rounding routine. This is tedious to implement, and is prone to certain
roundings left out from simulation.

L.3 QUANTIZED DSP SIMULATION TOOLBOX (QDSP)

The most precise freely available tool is the so-called Quantized DSP Simulation
toolbox.% It makes use of the possibility of using objects in Matlab.
First, a few quantizers are defined.

qmake (' name’,’Qs’,"type’,’ floating-point’,’'precision’,24);
qmake (' name’,’Qd’,"type’,’ floating-point’,’precision’, 53);
gmake (' name’ ,’Q_PQON’ , "precision’, 24, ' operation’, " PQN’) ;

6See http://www.mit.bme.hu/books/quantization/

L.3 Quantized DSP Simulation Toolbox (QDSP) 717

Then the algorithm is described in the usual way as algorithms are described in
Matlab, like

u=0.25%sin([1:100]1/100x2xpi*5);

Q="0s";

%$Define coefficients and inputs as gdata objects:
bl=gdata(0.6,Q); al=gdata(0.8,Q); a2=gdata(0.21,0Q);
ug=gdata (u,Q); y=gdata(zeros(size(u)),Q);

)

for k=3:length (uqg)

y(k)=—-alxy(k-1)-az2xy (k-2)+blxuqg(k-1);
end
ysingle=y;

Now by changing 0 to 0="0d’, and writing the result into ydouble, the dif-
ference of the y’s (ydouble-ysingle) gives the difference between evaluation of
the algorithm in single precision and double precision, without changing anything in
the program of the algorithm. 0='Q_PQN’ allows running the algorithm with PQN
added in the place of each quantization, allowing the verification of quantization
theory.

In order to simulate DSP’s with accumulator bitlength exceeding memory bit-
length, the accumulator may be predefined with its proper bitlength. At each oper-
ation, the bit length of the left operand is retained. Meanwhile, assignment to an
element of a vector retains the properties of the quantizer of the target: this allows
direct storage “to the memory”:

gqmake (' name’,’Qm’ ,"type’,’ fixed-point’,’Bits’,16,’ fract’,15);
gmake (' name’, "’ Qacc’,’'type’,’ fixed-point’,’Bits’,40,’ fract’,30);
u=0.25%sin([1:100]/100%2xpix5);

$Define coefficients and inputs as gdata objects:
bl=gdata(0.6,’Qm’); al=gdata(0.8,’Qm’); a2=gdata(0.21,’Qm’);
ug=qgdata (u,’Qm’); y=gdata(zeros(size(u)),’Om’);

$Increase precision of coefficients to the accumulator:
bl=gdata (bl,’Qacc’); al=gdata(al,’Qacc’); a2=qgdata(a2,’Qacc’);

%

%$This is the simulation cycle:

for k=3:length (uq)
y(k)=-alxy(k-1)-a2xy (k-2) +blxuqg(k-1);

end

More details are available by running the toolbox (e.g. and typing ' help gdsp’, or
"gqdspstart’), or from the home page

http://www.mit.bme.hu/books/quantization/Matlab-files.html.

718 L Simulating Arbitrary-Precision Roundoff in Matlab

L.4 FIXED-POINT TOOLBOX

For those who have access to the Fixed-Point Toolbox which is commercially avail-
able with Matlab, similar possibilities are available for fixed-point number represen-
tation as described in Section L.3. In Matlab, see ' help fixedpoint’, or 'doc
fixedpoint’, or see the general description of the toolbox.

The example shown in Section L.3 can be executed with 16-bit fixed-point
numbers in the interval (—1, 1 —2~15) (16 bits, 15 fractional bits, two’s complement
number representation) as given below.

Qlé=quantizer (struct ('mode’,’ fixed’,’ format’, [16,15], ...
"roundmode’ , ' convergent’));

u=0.25+%sin([1:100]/100%2xpix5);

bl1=fi(0.6,Q016); al=fi(-0.8,Q016); a2=fi(-0.21,Q016);

ug=fi(u,Ql6); y=fi(zeros(size(u)),Ql6);

[

for k=3:length (uq)
$round results to the prec. of y by subscripted assigment:
v (k)=alsy (k-1);
y (k) =y (k) +a2xy (k-2);
y (k) =y (k) +blxuqg(k-1);
end
yiix=y;

The result can be directly compared to the result of the double-precision calculation:

u=0.25+%sin([1:100]/100x2xpi*5);
bl1=0.6; al=0.8; a2=0.21;
y=zeros(size(u)); ug=u;

%

for k=3:length (uq)

y (k) =—alsy (k-1) ;
v (k) =y (k) —a2*y (k-2) ;
y (k) =y (k) +bl*uqg (k-1) ;
end
ydouble=y;
erry=double (yfix) -ydouble;

Notice that the algorithm is executed with exactly the same code in both cases. This
offers a reliable testing method for algorithms.

It is also possible to use the increased precision of the accumulator:
$Type definitions:

Qmem=quantizer (' fixed’, [16,15], ' convergent’) ;
racc=fimath; racc.OverflowMode='wrap’;

L.4 Fixed-Point Toolbox

719

racc.ProductMode='KeepLSB’;
racc.ProductWordLength=40;
racc.SumMode='KeepLSB’ ;
racc.SumWordLength=40;

%$Variable definitions:
u=0.25%sin([1:100]/100%2xpix5);
bl=£fi(0.6,Qmem,’ fimath’, racc);
al=fi(-0.8,Qmem,’ fimath’, racc);
a2=fi(-0.21,Qmem, " fimath’, racc);

ug=£fi (u,Qmem, ' fimath’, racc);
y=fi(zeros(size(uq)),Qmem,’ fimath’, racc);

%$Algorithm
for k=3:length (uq)
y(k)=al*y (k=1)+a2+y (k-2)+blruqg(k-1);
end
yfix=y;

More examples are available from the home page

http://www.mit .bme.hu/books/quantization/Matlab-files.html.

