
Chapter 20

Spectrum of Quantization Noise
and Conditions of Whiteness

When the input to a quantizer is a sampled time series represented by x1, x2, x3, . . . ,
the quantization noise is a time series represented by ν1, ν2, ν3, . . . Suppose that the
input time series is stationary and that its statistics satisfy the conditions for multi-
variable QT II (it would be sufficient that two-variable QT II conditions were satisfied
for x1 and x2, x1 and x3, x1 and x4, and so forth, because of stationarity). As such,
the quantization noise will be uncorrelated with the quantizer input, and the quanti-
zation noise will be white, i.e. uncorrelated over time. The PQN model applies. The
autocorrelation function of the quantizer output will be equal to the autocorrelation
function of the input plus the autocorrelation function of the quantization noise.

Fig. 20.1(a) is a sketch of an autocorrelation function of a quantizer input signal.
Fig. 20.1(b) shows the autocorrelation function of the quantization noise when the
PQN model applies. Fig. 20.1(c) shows the corresponding autocorrelation function
of the quantizer output.

Corresponding to the autocorrelation functions of Fig. 20.1, the power spectrum
of the quantizer output is equal to the power spectrum of the input plus the power
spectrum of the quantization noise. This spectrum is flat, with a total power of q2/12.

When it is known that the PQN model applies perfectly or otherwise applies
to a very close approximation, one can infer the autocorrelation function and power
spectrum of the quantizer input from knowledge of the autocorrelation function and
power spectrum of the quantizer output, since the autocorrelation function and power
spectrum of the quantization noise are known, these only need to be subtracted.

Spectral analysis of quantization is very simple when the quantization noise
is white and uncorrelated with the quantizer input signal. We will present methods
for determining the whiteness condition based on the multivariable characteristic
function of the quantizer input. Other methods for doing this exist in the literature,
and it is the purpose of this chapter to to explore these methods, and in some cases,
to enhance them.
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Figure 20.1 Autocorrelation functions when the PQN model applies: (a) input autocorre-
lation function, (b) quantization noise autocorrelation function, (c) output autocorrelation
function.

20.1 QUANTIZATION OF GAUSSIAN AND SINE-WAVE
SIGNALS

In this chapter the spectra of the quantized signal and of the quantization noise will
be examined. For this, the correlation functions and the power spectral density (PSD)
functions will be examined.

In order to obtain an overall impression about the spectral behavior of a quan-
tized signal and quantization noise, let us consider two examples: quantization of a
bandlimited Gaussian signal and of a sine wave.

Example 20.1 Quantization of a Bandlimited Gaussian Signal
A bandlimited Gaussian signal may be quantized by a rather rough quantizer, as
illustrated in Fig. 20.2. The quantum size q as shown is approximately equal to
the standard deviation σ of the input signal.

The most important difference between the shapes of x(t) and that of x ′(t) and
ν(t) is that the latter two contain many discontinuities. It is known from signal
theory that discontinuities in the time function result in a relatively broad and
slowly decaying spectrum.

The sparsely sampled version of the quantization noise ν(ti1) in Fig. 20.2(c)
consists of seemingly independent (that is, uncorrelated) samples. Uncorrelated
samples correspond to a white spectrum. Thus, if sampling is not too dense,
whiteness may be a reasonable assumption.

Uncorrelatedness of the samples depends on the density of sampling. When
sampling is denser, the samples are obviously correlated, as in Fig. 20.2(d).
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Figure 20.2 Quantization of a bandlimited Gaussian signal: (a) the input
signal x(t) and the quantized signal x ′(t); (b) the quantization noise ν(t);
(c) sampled quantization noise, sparse sampling; (d) sampled quantization
noise, dense sampling.

Example 20.2 Uniform Quantization of a Sine Wave
In Fig. 20.3 a sine wave of amplitude A is quantized using a quantum size q =
A/3.5. It is clear that both x ′(t) and ν(t) are periodic, and, consequently, their
spectra are discrete. Spectral broadening in the quantization noise means in this
case that an infinite number of harmonics are produced, with a total power of
about q2/12.

Furthermore, though the samples of ν(t) do not exhibit a clear interdependence,
periodicity yields a discrete spectrum, thus whiteness in the strict sense certainly
does not hold. We will see instead that the power of the harmonics in a not too
narrow frequency band, selected between 0 and the sampling frequency fs/2, is
more or less proportional to the bandwidth. This is also a kind of “whiteness”.

In this chapter the above observations are investigated in detail. First, the possibil-
ities for an exact mathematical treatment will be discussed, then some results from
the literature will be summarized. Either the power spectral density (PSD) function
or the autocorrelation function will be examined. They contain the same information
since they are Fourier transforms of each other:
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Figure 20.3 Quantization of a sine wave: (a) the input signal x(t) and
the quantized signal x ′(t); (b) the quantization noise ν(t); (c) sampled
quantization noise, sparse sampling; (d) sampled quantization noise, dense
sampling.

S( f ) = F{R(τ )} . (20.1)

After this, a more practical approach is used to develop simple approximate formulas
for design purposes. The aim is to derive expressions that enable the estimation of
the impact of quantization on signal spectra, in order to promote the proper design
of measurement, control, and signal-processing systems.

20.2 CALCULATION OF CONTINUOUS-TIME CORRELATION
FUNCTIONS AND SPECTRA

20.2.1 General Considerations

When dealing with spectra, in some derivations we deal with the PSD of x ′(t), in
others with the PSD of ν(t). In most cases this is not of great consequence, since
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Rx ′x ′(τ )= E{x ′(t)x ′(t + τ)} = E
{(

x(t)+ ν(t)
)(

x(t + τ)+ ν(t + τ)
)}

= Rxx (τ )+ Rνν(τ )+
(

Rxν(τ )+ Rνx (τ )
)

(20.2)

and thus

Sx ′x ′( f ) = Sxx ( f )+ Sνν( f )+
(

Sxν( f )+ Sνx ( f )
)
. (20.3)

When x and ν are uncorrelated, and the mean value of ν is zero, that is, the PQN
noise model is valid, the last term vanishes both in Eq. (20.2) and in Eq. (20.3), thus
Sx ′x ′( f ) and Sνν( f ) depend only on each other, since Sxx ( f ) is given. In the case
of correlated x and ν, Sx ′x ′( f ) cannot be obtained by simple addition of Sxx ( f ) and
Sνν( f ).

Before going into details, two very general results will be presented. First, if the
quantization noise is uniformly distributed, that is, either QT I or QT II or QT III/A
is satisfied, the variance of the quantization noise, that is, the integral of its power
spectral density is known, and depends on q only:

∞∫
−∞

Sνν( f ) d f = Rνν(0) = var{n} = q2

12
. (20.4)

Second, since x ′(t) contains a series of finite discontinuities (“jumps”), the en-
velope of its Fourier transform (if this exists) vanishes for f → ∞ as O(1/ f )
(Bracewell, 1986, pp. 143–146). Similarly, the envelopes of Sx ′x ′( f ) and Sνν( f )
vanish as O(1/ f 2).

Example 20.3 Power Spectral Density of a Random Bit Sequence
A random bit sequence is a stochastic process which may change its sign at
equidistant time instants T (see Fig. 20.4). One can show that the autocorrelation
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Figure 20.4 Random bit sequence.

function of the random bit sequence has the following form:

Rxx (τ ) =
⎧⎨⎩
(

1 − |τ |
T

)
, if |τ | < T

0 elsewhere.
(20.5)
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The power spectral density is the Fourier transform of the autocorrelation func-
tion:

Sxx ( f ) = F {Rxx (τ )} = T
(

sin(π f T )
π f T

)2

. (20.6)

Sxx ( f ) vanishes like O(1/ f 2), as it is expected.

Example 20.4 Power Spectral Density of a Random Telegraph Signal
The random telegraph signal is a binary (two-valued) stochastic process where
the time instants of changes of the sign form a Poisson point process (that is, in
any time interval the number of changes of the sign is a random variable with
Poisson distribution). A time record is shown in Fig. 20.5. Let us determine the
power spectral density function.

t
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−1

Figure 20.5 Random telegraph signal.

First the autocorrelation function will be calculated. The result of the multipli-
cation of two samples can be ±1:

• x(t)x(t + τ) = 1 if in the interval τ the number of sign changes was even.

The probability is p1 =
∞∑

k=0
P2k(τ ), where P2k(τ ) is the probability of

having exactly 2k changes of sign in the interval τ .

• x(t)x(t + τ) = −1 if in the interval τ the number of sign changes was odd.

The probability is p−1 =
∞∑

k=0
P2k+1(τ ).

From the above expressions,

Rxx (|τ |)= (1) · p1 + (−1) · p−1

=
∞∑

k=0

(
(λ|τ |)2k

(2k)!
− (λ|τ |)

2k+1

(2k + 1)!

)
e−λ|τ |

=
∞∑

n=0

(−1)n
(λ|τ |)n

n!
e−λ|τ |

= e−2λ|τ | . (20.7)
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The PSD is the Fourier transform of the autocorrelation function:

Sxx ( f ) = F{Rxx (τ )} = 4λ
4λ2 + (2π f )2

. (20.8)

The power spectral density function vanishes like O(1/ f 2), as was expected
from the jumps in the time record.

20.2.2 Direct Numerical Evaluation of the Expectations

It is possible to give mathematically correct general formulas for the correlation func-
tions and the spectra. Let us introduce the following notation (see also Fig. 20.6):

• Q(x) is the quantization characteristic: x ′ = Q(x)

• Qν(x) is the quantization noise characteristic: ν = Qν(x)

• f (x1, x2, τ ) is the joint probability density function of x(t) and x(t + τ), where
x(t) is a stationary random process.

(a)

(b)

x

x

x ′ = Q(x)

q

−q

q
2

− q
2

q
2

− q
2

ν = Qν(x)

Figure 20.6 Quantizer characteristics of a rounding quantizer: (a) characteristic of the
input–output quantizer; (b) characteristic which generates the quantization noise from the
input.

Using this notation, the correlation functions are by definition
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Rx ′x ′(τ ) = E
{

Q
(

x(t)
)

Q
(

x(t + τ)
)}

=
∞∫

−∞

∞∫
−∞

Q(x1)Q(x2) f (x1, x2, τ ) dx1 dx2 ,

(20.9)

Rνν(τ ) = E
{

Qν
(

x(t)
)

Qν
(

x(t + τ)
)}

=
∞∫

−∞

∞∫
−∞

Qν(x1)Qν(x2) f (x1, x2, τ ) dx1 dx2 .

(20.10)
The spectra can be obtained by Fourier transformation of the above expressions.

These expressions are theoretically correct. However, closed-form results usu-
ally do not exist because of the nonlinearity of Q and Qν . Therefore, their analytic
evaluation can be troublesome.

Computer evaluation seems to be more hopeful because Q is piecewise constant
and Qν is piecewise linear. The power of PQN (Eq. (20.4)) can be used to check the
quality of approximations and numerical calculations. However, special care should
be taken when evaluating Eq. (20.9) or Eq. (20.10) for τ = 0: f (x1, x2, τ = 0) is a
Dirac impulse sheet. Direct numerical computation may only be performed on the
basis of Eq. (20.9) and Eq. (20.10) for τ �= 0, otherwise these equations must be
modified as:

Rx ′x ′(0) =
∞∫

−∞
Q2(x) f (x) dx , (20.11)

and similarly,

Rνν(0) =
∞∫

−∞
Q2
ν(x) f (x) dx . (20.12)

Nevertheless, since the computation is three-dimensional (two independent variables
and the parameter τ ), it may need much computing effort. Moreover, numerical
results are generally appropriate for the purpose of analysis. To obtain usable results,
restrictions (special distribution, special form of spectra, etc.) and approximations
have to be introduced for well-defined cases.

20.2.3 Approximation Methods

Approximations are usually based on one of two key ideas.
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Approximation Based on the Characteristic Function

The first one makes use of the fact that correlation, as a second-order joint moment,
can be obtained from the joint characteristic function:

R(τ ) = 1
j2
∂2�(u1, u2, τ )

∂u1∂u2

∣∣∣∣∣
u1=u2=0

, (20.13)

where

�(u1, u2, τ ) =
∞∫

−∞

∞∫
−∞

f (x1, x2, τ ) e j (u1x1+u2x2) dx1 dx2 . (20.14)

Equation (20.13) can be applied to the quantized signal or to the quantization noise
(see Eqs. (8.23) and (9.4), respectively). From these expressions, the desired mo-
ments can be obtained for a rounding quantizer (Sripad and Snyder, 1977):

Rx ′x ′(τ )= Rxx (τ )

+ q
2π j

∞∑
l1=−∞

l1 �=0

∂ �xx

(
2πl1

q , u2, τ
)

∂u2

∣∣∣∣∣
u2=0

(−1)l1

l1

+ q
2π j

∞∑
l2=−∞

l2 �=0

∂ �xx

(
u1,

2πl2
q , τ

)
∂u1

∣∣∣∣∣
u1=0

(−1)l2

l2

+ q2

4π2

∞∑
l1=−∞

l1 �=0

∞∑
l2=−∞

l2 �=0

�xx

(
2πl1

q
,

2πl2
q
, τ

)
(−1)l1+l2+1

l1l2
,(20.15)

and

Rνν(τ ) = q2

4π2

∞∑
l1=−∞

l1 �=0

∞∑
l2=−∞

l2 �=0

�xx

(
2πl1

q
,

2πl2
q
, τ

)
(−1)l1+l2+1

l1l2
. (20.16)

Eqs. (20.15) and (20.16) usually cannot be given in closed form, but the higher-order
terms in the infinite sums are often negligible (depending on the form of the CF), and
an approximate closed form can be obtained.
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Approximation Based on the Modulation Principle

The noise spectrum can directly be obtained as follows (Claasen and Jongepier,
1981). The quantization noise as a function of the signal amplitude (see Fig. 20.6(b))
can be developed into a Fourier series. For a rounding quantizer,

Qν(x) = q
π

∞∑
n=1

(−1)n
sin
(

2πnx

q

)
n

. (20.17)

Since x = x(t) is a time function, Eq. (20.17) is a sum of phase-modulated sine
waves. This phase modulation is usually wide-band, since the signal amplitude is
generally larger than q. The spectrum can be approximated as follows. Each term
can be expressed with the PDF of the derivative of the signal x(t) (Claasen and
Jongepier, 1981),

Sνν( f ) ≈ q2

π2

∞∑
n=1

1
2n2

fẋ
(

f q
n

)
d
(

f q
n

)
d f

≈ q3

2π2

∞∑
n=1

fẋ
(

f q
n

)
n3 . (20.18)

The quality of approximation depends on the signal shape (Peebles, 1976, pp. 238–
246).

20.2.4 Correlation Function and Spectrum of Quantized Gaussian
Signals

For Gaussian signals several methods can be used. We will discuss five different
approaches. We will need the PDF and CF of two jointly normal random variables,
given in Appendix F.3.

Bennett’s Direct Analysis

Bennett (1948) dealt with zero mean Gaussian signals. He accomplished a rather
lengthy derivation for rounding quantizers, by directly evaluating Eq. (20.10). He
obtained the following expression:

Rνν(τ )= σ 2
x
γ

π2

∞∑
n=1

1
n2 e− 4n2π2

γ sinh
(

4n2π2ρ(τ)

γ

)

+ σ 2
x
γ

π2

∞∑
n=1

∞∑
m=1

n �=m

1
m2 − n2 e− 4(m2+n2)π2

γ sinh
(

−4(m2 − n2)π2ρ(τ)

γ

)
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− σ 2
x
γ

π2

∞∑
n=1

∞∑
m=1

n �=m

1
(m − 0.5)2 − (n − 0.5)2

e−
4

(
(m−0.5)2+(n−0.5)2

)
π2

γ

× sinh

⎛⎝−
4
(
(m − 0.5)2 − (n − 0.5)2

)
π2ρ(τ)

γ

⎞⎠ , (20.19)

where ρ(τ) = Rxx (τ )/Rxx (0) and γ = q2/σ 2
x .

The complicated formula in Eq. (20.19) can be well approximated, noticing
that |ρ| ≤ 1, and usually γ � 1. The value of Rνν(τ ) significantly differs from zero
only if |ρ| ≈ 1. Let us determine an approximation for ρ ≈ 1:

Rνν(τ ) ≈ σ 2
x
γ

2π2

∞∑
n=1

1
n2 e−4n2π2(1−ρ)

γ . (20.20)

Note that Eq. (20.20) gives the values of Rνν(τ ) as a function of ρ (or of Rxx (τ )). Its
behavior is illustrated in Fig. 20.7, for

√
γ = q/σx = 1/16, exhibiting a strikingly

rapid decrease as ρ moves away from 1. As a consequence of this behavior, the
autocorrelation function of ν(t) will be much sharper at τ ≈ 0 than that of x(t), and
this corresponds to a much broader spectrum. We will come back to this observation
later.
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Figure 20.7 Correlation of quantization noises (“errors”) as a function of the correlation
coefficient of the signal samples. 27q ≈ 2 · 4σx → q ≈ σx/16. After Bennett (1948).
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Example 20.5 Spectrum of the Quantization Noise of a Bandlimited Gaussian
Signal
Equation (20.20) can be used to obtain the spectrum of the bandlimited white
noise, substituting the first two terms of the power series expansion (τ ≈ 0 since
ρ ≈ 1),

ρ(τ) = sin(2πBτ)
2πBτ

= 1 − (2πBτ)2

3!
+ · · · , (20.21)

where B is the bandlimit of the input signal.

The result is as follows:

Sνν( f ) ≈ q2

4π3 B

√
3γ
2π
η

(
3γ f 2

8π2 B2

)
, (20.22)

where

η(y) =
∞∑

n=1

e−y/n2

n3 . (20.23)

Figure 20.8 illustrates the spectra obtained from Eq. (20.22) for some values of
γ . The curves are parametrized by the bit number of the A/D converter: by
setting the input range equal to (−4σx , 4σx ), the bit number can be expressed as
b = log2(8σx/q).

Application of the Characteristic Function Method

An alternative form of the correlation of the quantization noise was obtained for zero
mean Gaussian signals by Sripad and Snyder (1977) by using Eq. (20.16):

E{ν1ν2} = q2

π2

∞∑
l1=1

∞∑
l2=1

(−1)l1+l2

l1l2
e
−2π2 σ2

x
q2 (l

2
1+l2

2) sinh
(

4π2l1l2ρσ 2
x

q2

)
, (20.24)

To prove the equivalence of formulas (20.19) and (20.24), consider the single sum in
Eq. (20.19) as a special case of the first double sum with m = 0, and write both sums
into a form where the indices run from −∞ to ∞. By the following substitutions: in
the first double sum l1 = m + n, l2 = m − n; in the second one l1 = m + n − 1,
l2 = m − n, thus Eq. (20.24) is obtained. The equivalence of the different terms is
illustrated in Fig. 20.9. The figure highlights the method by which Bennett (1948)
summed the terms in his three sums, and shows why the sum of Sripad and Snyder
(1977) is much simpler.
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Figure 20.8 Quantization noise spectra of a bandlimited Gaussian signal
(after (Bennett, 1948)). Frequency unit: bandwidth B of the original signal.
Power unit: mean signal power (σ 2). The interval (−4σx , 4σx ) is equal to
the input range of the A/D converter.

Analysis of the Autocorrelation Function of the Noise

Katzenelson (1962) obtained the same results by investigating the autocorrelation
function. He made use of Eqs. (20.13) and (8.23), with the assumption that the
conditions of QT II are approximately fulfilled. Accordingly,

Rνν(τ ) ≈ Rx ′x ′(τ )− Rxx (τ ) (20.25)

may be used.1

By using the joint CF of the two-dimensional normal distribution (see Eq. (F.17)),
he obtained Eq. (20.20) for ρ ≈ 1. He suggested the following approximation for
this expression:

Rνν(τ ) ≈ q2

2π2

∞∑
k=1

1
k2 e

−4n2π2(1−ρ(τ)) σ2
x

q2 ≈ q2

12
e
−4π2(1−ρ(τ)) σ2

x
q2 . (20.26)

1It is possible to make the first steps of his derivation exact, using Eq. (20.13) and (8.23). However,
the infinite sum will need to be approximated in any event, and the final result will be the same.
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Figure 20.9 Illustration of the equivalence of the infinite sums (20.19) and (20.24):
◦ = terms of the simple sum in (20.19); • = terms of the first double sum in (20.19);
× = terms of the second double sum in (20.19).

The last expression can be obtained by realizing that for ρ ≈ 1 the exponentials in
the first few terms of the sum in Eq. (20.26) are all approximately equal to one, and
that the following sum converges rapidly:

∞∑
k=1

1
k2 = π2

6
. (20.27)

Series Representation of the Joint Normal PDF

For Gaussian signals there is still another possibility to compute spectra, based on
(Amiantov and Tikhonov, 1956). Based on their work, Velichkin (1962) used the
following series representation of the two-dimensional Gaussian probability density
with zero mean:

fx1,x2
(x1, x2) =

∞∑
k=1

dk fx1
(x1)

dxk
1

dk fx2
(x2)

dxk
2

ρk

k!
σ 2k

x . (20.28)

This formula can be proved e.g. by using Price’s theorem (Papoulis, 1991, p. 161).
From Eqs. (20.28) and (20.9), by using ρ(τ)kσ 2k

x = Rk
xx(τ ), and assuming a station-

ary input signal (fx1
(x) = fx2

(x) = fx (x)),
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Rx ′x ′(τ ) =
∞∑

k=1

⎛⎝ ∞∫
−∞

Q(x)
dk fx (x)

dxk dx

⎞⎠2
Rk

xx (τ )

k!
=

∞∑
k=1

Ak

σ 2k
x

Rk
xx (τ ) , (20.29)

and

Sx ′x ′( f ) =
∞∑

k=1

Ak

σ 2k
x

F
{

Rk
xx (τ )

}
=

∞∑
k=1

Ak

σ 2k
x

Ck−1 {Sxx ( f )} , (20.30)

where Ck{ } denotes the (k − 1)th self-convolution.
This is a very interesting expression of the spectrum. The coefficients Ak do not

depend on the spectrum (or the autocorrelation) of the input signal. This means that
the spectral behavior of Sx ′x ′( f ) directly depends on the F{Rk

xx (τ )} terms. When
k = 1, the corresponding component is the original input spectrum multiplied by
A1/σ

2
x . It can be shown that

lim
q→0

A1

σ 2
x

= 1 . (20.31)

For other values of n, the Fourier transform of Rn
xx (τ ) corresponds to an (n−1)th self-

convolution of Sxx ( f ). That is, with the increase of n the spectrum is increasingly
“smeared” along the frequency axis. This is related to the large bandwidth of the
quantization noise.

Equation (20.30) can be used for the calculation of spectra, though its conver-
gence is rather slow (Robertson, 1969). This convergence can be supervised on-line,
realizing that on the one hand

Rx ′x ′(0) =
∞∑

k=1

Ak

(
μ2

x + σ 2
x

σ 2
x

)k

, (20.32)

and on the other hand

Rx ′x ′(0) =
∞∫

−∞
Q2(x) fx (x) dx . (20.33)

Equation (20.33) can be quickly evaluated, and the result can be used for checking
the convergence of the sum in Eq. (20.32). Another possibility for checking the
convergence is to use

Rx ′x ′(0) ≈ μ2
x + σ 2

x + q2

12
, (20.34)
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which is a good approximation of the mean square value for q < σx .

Use of the Modulation Principle

Let us use Eq. (20.18) to obtain the quantization noise spectrum. The approximation
is very good, since for bandlimited Gaussian signals the so-called RMS modulation
index (Peebles, 1976, pp. 245–246), which is approximately equal in our case to
βrms ≈ 22σx/q, fulfills

βrms > 5 . (20.35)

This condition is amply fulfilled in practical cases.
The derivative of a Gaussian process is Gaussian too. The standard deviation

can be obtained for the bandlimited white noise from the integral of the spectrum of
the derivative:

σ 2
ẋ =

∞∫
−∞

Sẋ ẋ ( f ) d f =
∞∫

−∞
(2π f )2 Sxx ( f ) d f = 4π2

3
B2σ 2

x . (20.36)

By substituting the Gaussian probability density with parameter σẋ into Eq. (20.18)
we obtain

Sνν( f ) ≈ q3

2π2
1√

2π 2π√
3

Bσx

∞∑
k=1

1
k3 e

− 1
2

( f q
k

)2

(
2π√

3
σx B

)2

(20.37)

which is the same as Eq. (20.22). This is by no means surprising, since Peebles used
the same second-order approximation of the autocorrelation function as we did when
deriving Eq. (20.22).

20.2.5 Spectrum of the Quantization Noise of a Quantized Sine
Wave

Quantization of sine waves presents a much more difficult problem to analyze than
the quantization of Gaussian signals. The CF of a sinusoidal signal decreases slowly
(see Appendix I.6, Fig. I.6), therefore the autocorrelation function and the spectrum
cannot be approximated by just a few terms of the series representations. Moreover,
the quantization noise is periodic having the same period length as the signal, so its
spectrum is discrete, with a lot of harmonics.

Example 20.6 Autocorrelation Function of the Quantization Noise of a Sine
Wave
The quantization noise of a sine wave can be analyzed numerically. In Fig. 20.10
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the autocorrelation function is evaluated for A = 4q. Let us observe the irregular
form of the autocorrelation function. This illustrates why is it difficult to handle
analytically.

τ

Rνν(τ )

− q2

12

0

q2

12

− T1
2 0 T1

2 T1
3T1

2

Figure 20.10 Calculated autocorrelation function of the quantization noise
of a sine wave. A = 4q , T1 = 1/ f1.

Example 20.7 Power Spectral Density of the Quantization Noise of a Sine
Wave
The power spectral density function of the quantization noise of a sine wave can
be analyzed using a computer, performing numerical Fourier series expansion.

The spectrum is full of harmonics, placed in a rather irregular manner. However,
some strange “periodic” form shows up in the envelope, and this phenomenon
can be described analytically, although providing a rough approximation only.

In the following considerations a reasonable approximation of the quantization noise
spectrum will be obtained. Since the characteristic function vanishes very slowly,
the approximation of Eq. (20.15) or (20.16) by the first terms will not work, and so
the method of phase-modulated sine waves will be used instead.

The Fourier spectrum of a sine wave which is phase-modulated by another
sine wave, is given in the literature (Peebles, 1976, p. 237). It consists of an in-
finite sum of harmonics, weighted with values of Bessel functions. For x(t) =
A cos (2π f0t + β cos(2π fmt)),

Sxx( f ) = A2

4

∞∑
k=−∞

J 2
k (β)

(
δ( f − f0 − k fm)+ δ( f + f0 + k fm)

)
. (20.38)
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Figure 20.11 Numerical calculation of the power spectral density of the
quantization noise of a sine wave. A = 15.5q . The mark on the ver-
tical axis shows the value of the analytical approximation (Eq. (20.41),
Fig. 20.13).

By using Eq. (20.17), a second summation is to be accomplished, and an absolute
squaring of the obtained coefficients at every frequency line is necessary, in order to
obtain power values (Fujii and Azegami, 1967). It is obvious that the result is not
fruitful, thus another approach is to be chosen.

The spectrum of a quantized sine wave was investigated by Claasen and Jongepier
(1981), using Eq. (20.18).

If x(t) is a sine wave,
x(t) = A sin(2π f1t + ϕ) , (20.39)

its derivative is also sinusoidal, and the PDF of the derivative is

fẋ (x) = 1
2π2 f1 A

1√
1 −

(
x

2π f1 A

)2
, for |x | < 2π f1 A . (20.40)

By substituting Eq. (20.40) into Eq. (20.18), the desired formula is obtained:

Sνν( f ) ≈ q3

4π4 f1 A

∞∑
n=1

1√√√√1−
( f q

2π f1 An

)2

n3 , for | f q| < 2π f1 An , (20.41)
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where the condition means that for each value of f only those terms are summed for
which the condition is satisfied.

Equation (20.18) is clearly a rather rough approximation in this case, since this
is continuous, while the quantization noise is in reality periodic with the fundamental
frequency f1 (see Fig. 20.10), and has a discrete spectrum (see Fig. 20.11). However,
Eq. (20.18) was successfully verified by Claasen and Jongepier, using a spectrum
analyzer. The character of a measured spectrum is shown in Fig. 20.12.

f

Sνν( f ) [dB]

−70
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−40
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0
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b

Figure 20.12 Verification of the model of Eq. (20.18) for the case of a sine wave (after
Claasen and Jongepier (1981), c©1981 IEEE). Signal amplitude: A = 15.5q . a – spectrum
obtained from Eq. (20.18), after smoothing; b – spectrum measured by a spectrum analyzer,
with 
 f = 4.9 f1.

The analyzer had a resolution of


 f ≈ 1
20

2π A
q

f1 ≈ 4.9 f1 . (20.42)

The infinite peaks in both the true spectrum and in Eq. (20.41) (see Fig. 20.13) were
smoothed by the finite resolution. Verification was successful, because the smoothed
versions of the two spectra are very similar. The approximate spectrum obtained
from Eq. (20.41) and Eq. (20.40) contains about the same power as the true spectrum
in a given bandwidth, if 
 f > f1 and A � q. In this sense this is a successful
attempt to provide a more or less accurate, usable expression of the spectrum of a
quantized sine wave.
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Figure 20.13 Approximate spectrum of the quantization noise of a sine wave, based on
Eq. (20.41). A = 15.5q .

20.3 CONDITIONS OF WHITENESS FOR THE SAMPLED
QUANTIZATION NOISE

Before going into details, let us briefly survey why a white noise spectrum is favor-
able:

(a) The white spectrum does not depend on the form of the input spectrum, thus
the spectral behavior of the quantization noise does not depend on that of the
input signal.

(b) The white spectrum means that the noise samples are uncorrelated, thus well-
known design formulas elaborated for measurements with uncorrelated sam-
ples can be used.

(c) The power of the quantization noise is uniformly distributed between 0 and
fs/2, and this is advantageous in the measurement of spectra.

Example 20.8 Quantization Noise in Audio
In digital audio techniques it is of outstanding importance that the quantization
noise does not result in an annoying audible noise superimposed on the music.
With present technology the noise level is not reduced below the hearing thresh-
old, thus at soft parts of music the noise is audible. There are two conditions that
should to be fulfilled:
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• The noise spectrum should be white, so that the noise is heard and it is not
a “tone” due to a more or less concentrated frequency spectrum.

• The noise should be uncorrelated with the input signal, otherwise it would
act as a kind of distortion component.

The first condition will be studied in the next part of this chapter. The second
one was treated in Chapter 6.

It should be mentioned here that by appropriate feedback the noise spectrum can be
modified in such a way that, at the price of remarkably higher variance, a large part
of the quantization noise power is “transferred” to higher frequencies. More details
can be found in (Spang and Schultheiss, 1962).

We have already seen in the previous sections that the spectrum of the quan-
tization noise is usually broad and flat in a relatively wide band. If only this band
is of interest, the spectrum can be considered as being white. However, the quan-
tization noise, considered as a continuous-time stochastic process, cannot have a
white spectrum, since its variance is approximately q2/12 (see Eq. (20.4)), while a
continuous-time white spectrum would in theory have an infinite variance.

On the other hand, quantization is usually performed in connection with sam-
pling, or on already sampled data. The effect of sampling a signal is the repetition of
its original spectrum. From Fig. 20.14 it is obvious that in the case of smooth spec-
tra and significant overlapping (sufficiently small fs values) the resulting spectrum
of the samples is more or less white. Thus, to provide a white spectrum, an upper
bound for fs must be determined.

f

S( f )

Sνν( f ) Sνν( f − fs) Sνν( f − 2 fs)

Sνν�( f )

− fs 0 fs 2 fs 3 fs

0

Figure 20.14 The effect of sampling in frequency domain.

In the time domain, white spectrum means uncorrelated samples. This feature
will be useful in understanding the following discussions; on the other hand, this ex-
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plains why whiteness of the spectrum is advantageous when the effect of quantization
is investigated in many systems.

Let us formulate now the conditions for a white quantization noise spectrum.
The general condition of whiteness was given by Sripad and Snyder (1977). Using
the characteristic function method they showed that the necessary and sufficient con-
dition for the uncorrelatedness of noise samples is that the characteristic function of
the sample pair of x(t) fulfills the equation

�x1x2

(
2πl1

q
,

2πl2
q

)
= 0 (20.43)

for every integer value of l1 and l2, except (l1, l2) = (0, 0).
Independence implies uncorrelatedness, thus Eq. (20.43) is a sufficient condi-

tion. The exact expression of E{ν1ν2} = Rν1ν2(τ ) was given in Eq. (20.16), and this
has to be equal to zero for |τ | > 0 in order to provide uncorrelatedness.

However, to formulate a usable general condition on the basis of Eq. (20.16)
seems to be very difficult. Thus, in the following considerations Eq. (20.43) will be
used, or Eq. (20.16) will be evaluated for special cases.

In the following sections we will deal first with the conditions for a white quan-
tization noise spectrum in the case of the two most often investigated signal types,
the Gaussian noise and the sine wave, based on the previous considerations. Then a
uniform condition will be formulated, which does not rely on the signal shape.

20.3.1 Bandlimited Gaussian Noise

A Condition Based on Approximate Correlation

First let us consider expression Eq. (20.16) of the noise autocorrelation as applied
in the Gaussian case (see Appendix F, Eq. (F.17)). The highest quantization noise
correlation occurs for ρ ≈ 1, where

�x1x2(u1, u2) ≈ e
−4π2(1−ρ) σ2

x
q2 . (20.44)

Under this condition, the dominating terms in expression (20.16) belong to l1 =
−l2 = ±1, that is, u1 = −u2 = ±2π/q.

To ensure that the correlation coefficient of the quantization noise samples is
less than, say, 0.1,

E{ν1ν2}
q2/12

≈ 1
q2/12

2
q2

4π2 e
−4π2(1−ρ) σ2

x
q2 < 0.1 , (20.45)

the inequality

ρ < 1 − 1.8
4π2

q2

σ 2
x

= 1 − 0.046
q2

σ 2
x

(20.46)
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has to be fulfilled, and, using the first two terms of the power series expansion of the
correlation function of a bandlimited white noise again (see Eq. (20.21)):

ρ(τ) = sin(2πBτ)
2πBτ

= 1 − (2πBτ)2

3!
+ · · · , (20.21)

the desired condition can be obtained, using fs = 1/τ :

fs <
2π√

3! · 0.046

σx

q
B = 12

σx

q
B . (20.47)

An exact formula for the correlation of the quantization noise can be obtained using
Eq. (9.7). This was obtained by Sripad and Snyder (1977) as Eq. (20.24).

However, this is a rather complicated formula. Widrow (1956b) and Korn
(1965) presented a first-order approximation of E{ν1ν2} for ρ ≈ 1:

E{ν1ν2} ≈ q2

12
e
−(1−ρ)4π2 σ2

x
q2 , (20.48)

which is the same as Eq. (20.26).
Using Eq. (20.48), the condition of approximate uncorrelatedness can be for-

mulated as follows:

Rνν(τ )
Rνν(0)

< 0.1 if ρ < 1 − 0.058
q2

σ 2
x
. (20.49)

In the case of quantization of a bandlimited Gaussian white noise, the first two terms
of Eq. (20.21) can be used again, and applying fs = 1/τ , the following condition is
obtained:

fs <

√
(2π)2

3! · 0.058
σx

q
B ≈ 10.7

σx

q
B , (20.50)

which is in very good agreement with Eq. (20.47).
Equation (20.50) can be re-written as

q
σx
< 10.7

B
fs
. (20.51)

The Nyquist sampling frequency in this case is fN = 2B. Accordingly, for whiteness
of the quantization noise,

q
σx
< 5.3

fN

fs
. (20.52)

This is a useful result.
When sampling with fs = fN, Eq. (20.52) is weaker than its application condi-

tion q < σx , therefore, as an example, we will discuss the use of fs = 10 fN. When
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sampling at this frequency, the quantization noise will be white if the quantization
grain size q is less than 0.5 standard deviations of the quantizer input signal x . One
should note that meeting the condition for whiteness (20.52) does not guarantee that
the quantization noise will be uncorrelated with signal x . In fact, the grain size q
should be less than about 0.25σx , in order to have very low crosscorrelation between
the quantization noise and signal x .

A Condition Based on the Bandwidth of the Spectrum

By considering Fig. 20.8 it can be observed that the quantization noise spectra are
more or less smooth, and, by decreasing the quantum step size, they broaden and flat-
ten. Sampling repeats the spectrum at integer multiples of the sampling frequency.
To have a white spectrum for the sampled quantization noise, the spectral replicas
should sufficiently overlap. It seems to be reasonable to choose the sampling fre-
quency not greater than, e.g., double the frequency spacing of the 3 dB (half-power)
points of the quantization noise spectrum, since in this case, the summed replicas
everywhere will yield a large enough spectrum.

In Eq. (20.23), η(y) has its 3 dB-point at y ≈ 0.8, and thus from

y =
3 q2

σ 2
x

(
fs
2

)2

8π2 B2 < 0.8 , (20.53)

the following condition can be given:

fs < 9.2
σx

q
B , (20.54)

which is practically equivalent to Eq. (20.47) or (20.50). The condition for q/σx is
q
σx
< 4.6

fN

fs
, (20.55)

very close to (20.52).
The equivalent quantization noise bandwidth (Bendat and Piersol, 1986) can be

calculated as follows:

Be =

∞∫
−∞

Sνν( f ) d f

2 Sνν(0)
≈

q2

12

2
q2

4π3 B

√
3γ
2π

∞∑
n=1

1
n3

≈ 6.3
σx

q
B , (20.56)

from which once again practically the same condition as above,

fs < 12.6
σx

q
B (20.57)

is obtained.
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The condition for the quantization grain size, expressed similarly to (20.52), is
q
σx
< 6.3

fN

fs
. (20.58)

A Condition Based on Computer Evaluation of Spectra

On the basis of computer evaluation of the series expansion of the spectrum of the
quantized variable, Eq. (20.30), Robertson (1969) gave a simple rule of thumb: pro-
vided that σx > q, the noise spectra will be white even in the case of colored sig-
nal spectra, if the sampling frequency is not much greater (e.g. fs < 6B) than the
Nyquist rate for the signal being quantized. For the quantization of bandlimited white
noise, in the case of σx � q, the limit on sampling frequency is to be increased by
the factor σx/q (the density of the jumps in the quantization noise increases in pro-
portion with σx/q, which means that its spectrum broadens similarly), the resulting
condition,

fs < 6
σx

q
B (20.59)

is again in good agreement with Eq. (20.54) etc. Condition (20.59) is stricter, since
it is derived from a condition valid for colored spectra as well.

The condition for the quantization grain size is, similarly to (20.52),

q
σx
< 3

fN

fs
. (20.60)

Robertson’s result can be used in the case of narrow-band Gaussian noise, too. Refer
to Fig. 20.15. The center frequency of the Gaussian noise spectrum is f0. The limit
on the sampling frequency is

fs < 2 · 2 f0
σx

q
= 4

σx

q
f0 . (20.61)

However, this should be taken with due precaution, since this is based on a rather
qualitative statement of Robertson.
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Figure 20.15 Spectrum of narrow-band noise: 
 f � f0. The area of each rectangle is
σ 2

x /2.
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The center frequency of the input signal is f0, and the Nyquist sampling fre-
quency for this case is approximately

fN = 2 f0 . (20.62)

Accordingly, for whiteness of quantization noise,
q
σx
< 2

fN

fs
. (20.63)

This is a useful result. It is a tighter condition than (20.52), and it reflects the idea
that the lowpass Gaussian signal is, at its Nyquist rate, more uncorrelated over time
than the bandpass Gaussian signal is at its Nyquist rate.

20.3.2 Sine Wave

Using the results of Claasen and Jongepier (1981), a condition for the sampling rate
can be formulated when a sine wave is quantized (see also Section 20.2.5). From
Fig. 20.12 one can see that Sνν( f ) is flat for

| f | < π A
q

f1 . (20.64)

Claasen and Jongepier (1981) suggested this or an even smaller upper bound for the
sampling frequency. Considering that the first peak at f = 2π A f1/q contains about
10% of the total signal power, the condition

fs < 0.5
π A
q

f1 (20.65)

may be suggested.2 The resulting spectrum will contain some ripples for any value
of fs. However, the power associated with them will be small in comparison to the
total power of the quantization noise.

The Nyquist frequency of the sine wave of frequency f1 is
fN = 2 f1 . (20.66)

Substituting, the whiteness condition for quantization noise with a sinusoidal input
becomes

q
A
< 0.25π

fN

fs
. (20.67)

This is a useful result.
It is interesting to compare (20.67) with the corresponding condition for the

narrow-band bandpass Gaussian case given by (20.63), since both the Gaussian sig-
nal and the sinusoidal signal are narrow-band. The sine wave amplitude is bounded
between ±A. The Gaussian signal is not bounded, but almost all of its probability

2This coincides well with (G.6), obtained using the characteristic function
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lies between ±2.5σx . So let the narrow-band Gaussian signal have an “amplitude”
of

AG = 2.5σx . (20.68)

Substituting this into (20.63), we have
q

AG
<

2
2.5

· fN

fs
. (20.69)

Whiteness condition (20.69) for the narrow-band Gaussian signal is almost the same
as (20.67) for the sinusoidal signal since

0.25π = 0.7854, and
2/2.5 = 0.8 .

This is a very nice result.

Example 20.9 Quantization Noise in a Spectrum Analyzer
In a spectrum analyzer with the bandwidth of 25 kHz (Pendergrass and Farn-
bach, 1978), a 27 kHz sine wave of amplitude Ad ≈ 11.5q is used at the input
as an additive dither3 to linearize and thus improve the performance of the ana-
lyzer’s 12-bit A/D converter. The dither creates approximate conditions for the
satisfaction of QT II at the quantizer input and allows the PQN model of quanti-
zation to apply to a very close approximation.

Let us calculate the bias of the spectral estimate due to quantization noise, if the
sampling frequency is fs ≈ 100 kHz. Let us compute the signal-to-quantization-
noise ratio in the analyzer bandwidth for the case of the maximal amplitude input
sine wave, if the number of processed samples is N = 512. Note that the dither
itself does not distort the spectrum since its frequency of 27 kHz is outside the
frequency range of the analyzer.

The worst case occurs when a useful signal of very low level is analyzed. From
the point of view of quantization, in this case, practically the dither itself is quan-
tized. According to (20.65), the quantization noise spectrum is white if

fs = 100 kHz < 1.6
Ad

q
f1 = 1.6 · 11.5 · 27 ≈ 497 kHz , (20.70)

which is amply fulfilled. Thus, the whole power, q2/12, will be approximately
uniformly distributed between zero and fs, thus the increase in the PSD due to
quantization is


S = q2

12 fs
, (20.71)

3Dither is the subject of Chapter 19. It is briefly mentioned here to illustrate an application of the
theory of sine wave quantization.
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where 
S is the bias in the spectrum due to quantization noise. This is the
“noise floor” of the spectrum analyzer.

Let us compare this to the spectral peak belonging to the maximal input sine
wave. Suppose that the sampling frequency is approximately an integer multiple
of the sine frequency so that the “picket fence effect” does not show up. Using
Amax ≈ 211q, the dynamic range of the spectrum analyzer is

d = 10 log

⎛⎜⎜⎝
A2

max
4

N

q2

12

⎞⎟⎟⎠ ≈ 98 dB . (20.72)

20.3.3 A Uniform Condition for White Noise Spectrum

In the previous sections different techniques were used to derive upper bounds of the
sampling frequency for the quantization of certain signal types. In this section we
formulate an approximate uniform condition which is independent of concrete signal
parameters.

In Fig. 20.2 the quantization of a Gaussian noise is illustrated. We observe that
the waveform of the quantization noise is in most time intervals very similar to a
“saw-tooth” signal, with varying slope.

It seems to be quite natural to assume that the samples of the quantization
noise are uncorrelated, if not more than 1–2 samples are taken from a “period” (see
Fig. 20.2(c)). The average length of these periods depends on the average slope of
the signal, and can be expressed as follows:

Tp = q
E {|ẋ(t)|} , (20.73)

where ẋ(t) is the first derivative of the signal, and x(t) is assumed to be stationary.
From Eq. (20.73) an upper bound can be given for the sampling frequency:

fs < K
E {|ẋ(t)|}

q
, (20.74)

where the constant K may be somewhere in the range (1, 2).
Let us check this condition for the cases treated in the previous sections. For

zero mean Gaussian variables,

E{|x |} =
√

2
π
σx . (20.75)
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Differentiation of the time domain signal causes a factor ( j2π f ) to appear in the
Fourier domain. Therefore, the expression of the variance of the derivative is

σ 2
ẋ =

∞∫
−∞
(2π f )2 Sxx ( f ) d f , (20.76)

and from this, we obtain for the bandlimited (lowpass) input signal

E {|ẋ(t)|} =
√

2
π
σẋ ≈

√
8π
3
σx B , (20.77)

and for the narrow-band (bandpass) input signal

E {|ẋ(t)|} =
√

2
π
σẋ ≈ √

8πσx f0 . (20.78)

For the sine wave,

E {|ẋ(t)|} = 4 f1 A . (20.79)

By comparing Eqs. (20.77), (20.78), and (20.79) with Eqs. (20.54), (20.61), and
(20.65), it is clear that in each case Eq. (20.74) can be used, with K = 3.2, 0.8, 0.4,
respectively. It can be observed that K is of the same order of magnitude for each
type of signal (though its value varies more than it was supposed above; it is not
surprising that the “worse” the signal behaves (“bad” means in our interpretation to
have very spiked spectra, as in the case with the latter two signals), the smaller is the
value of K that must be chosen within the approximate range from 3.2 to 0.4.

On the basis of the above results, Eq. (20.74) turns out to be very useful, espe-
cially because E {|ẋ(t)|} can usually be measured directly. The appropriate value of
K depends slightly on the waveform, nevertheless since Eq. (20.74) is an inequality,
K can be chosen to be sufficiently small in order to have a safe upper bound on the
sampling frequency.

It has been shown in this section that Eq. (20.74) can be used for two types
of Gaussian signals and also for sinusoidal signals, to provide white quantization
noise spectra. There are further examples (see e.g. Example 20.10 below), in which
quantization noises behave similarly. However, it is an open question, what is the
maximum value of K for a class of signals? Intuitively it is clear that if the input
signal does not have broad nearly constant sections or nearly constant-slope sections
(as the square wave and the triangle wave), then Eq. (20.74) can be used e.g. with
K = 0.4. Greater values of K can be used if the signal is of stochastic nature. More-
over, dithering (see Chapter 19) can always be effective in assuring the necessary
randomness of the signal to be quantized.
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Example 20.10 Signal Processing in an Industrial Weightchecker
This is an illustrative example to show the use of the general condition of white-
ness in a real-life problem.

In many measurements like the measurement of temperature or weight, the sys-
tem has a limited bandwidth which does not allow quick readout. The classical
approach is to wait long enough to allow the transients to die out. However, if
the system dynamics is known, the steady-state value can be predicted by using
LS estimation.

Trigger Detectors

Accelerator
belt

Deplacement
sensorx(t)

(a)
x(t)

t0

x∞

0 0.05 0.1 0.15
(b)

Figure 20.16 Transient response of a weightchecker: (a) schematic dia-
gram; (b) measured response.

The signal model for the output of an industrial weightchecker illustrated in
Fig. 20.16 is as follows:

x(t) = x∞ + A e− t
T cos(ω0t)+ B e− t

T sin(ω0t)+ n(t) . (20.80)

where x∞ is the desired steady-state value, ω0 = 60 Hz, the natural frequency of
the system, T = 0.083 s, n(t) is the measurement noise. A and B are unknown
parameters corresponding to the slightly random initial conditions of each mea-
surement. For the initial conditions the following equations hold:

E{x(0)} = 0 , E{ẋ(0)} = 0 ⇒ E{A} = −x∞ , E{B} = − x∞
ω0T

.

(20.81)
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For samples of the measured signal this model takes the following form,

x(tk)= x∞ + A e− tk
T cos(ω0tk)+ B e− tk

T sin(ω0tk)+ k(tk) ,
k = 0, 1, 2, . . . , N − 1 , (20.82)

or in matrix form

x = U

⎡⎢⎣ x∞
A
B

⎤⎥⎦+ n , (20.83)

where N is the number of samples, and

U =

⎡⎢⎢⎢⎢⎢⎣
1 e− 0
t

T cos(ω00
t) e− 0
t
T sin(ω00
t)

1 e− 1
t
T cos(ω01
t) e− 1
t

T sin(ω01
t)
...

...
...

1 e− (N−1)
t
T cos(ω0(N − 1)
t) e− (N−1)
t

T sin(ω0(N − 1)
t)

⎤⎥⎥⎥⎥⎥⎦
(20.84)

The LS estimate can be obtained from the discrete model in the form

x̂∞ = eT
1 (U

TU)−1UTx =
N∑

k=1

ak x(tk) , (20.85)

with eT
1 = [1 0 0].

Suppose that Eq. (20.85) will be evaluated, with data obtained by using an 8-bit
A/D converter with input range (0, 2x∞). Equation (20.85) is a weighted average
of the samples, therefore it effectively reduces the variance due to quantization
noise, at least when the noise samples are uncorrelated. The roundoff noise of
the representation of the coefficients ak and that of the calculations will be ne-
glected. Therefore, it is reasonable to increase the sampling frequency in order
to reduce the uncertainty of the estimate. What is the maximum number of sam-
ples to be taken in a given measurement time Tm = 0.15 s that already provides
optimal suppression of the quantization noise? We need to determine the mini-
mum standard deviation of Eq. (20.85) with respect to q if only the quantization
noise is taken into account as a source of variance.

Let us use the general formula Eq. (20.74). Since the spectral behavior of x(t) is
lowpass, K ≈ 3 seems to be a reasonable choice.

First the average of |ẋ(t)| has to be calculated:

|ẋ(t)| = Total variation
Measurement time

≈ 2.3x∞
Tm

. (20.86)
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The total variation was calculated from the data derived from simulation of the
system pictured in Fig. 20.16.

From Eq. (20.71) we obtain for the number of samples:

N = fsTm < K
|ẋ(t)|

q
Tm ≈ 3

2.3x∞
0.15
2x∞
28

0.15 ≈ 883 . (20.87)

Simulation results give for the limit of effective averaging N ≈ 1300, which
corresponds to a value of K ≈ 5. Our calculated upper bound is consequently
somewhat low, however, it is a safer limit. Equation (20.87) provides in fact inde-
pendent noise samples. On the other hand, the value of K given for bandlimited
Gaussian noise (K = 3.2) lies in the near neighborhood of K ≈ 5. Accordingly,
from the point of view of quantization, the function given in Eq. (20.80) behaves
similarly to a bandlimited Gaussian noise.

The variance of the quantization noise is equal to approx. q2/12. Let us use the
result numerically obtained (Kollár, 1983) for the case illustrated in Fig. 20.16:

N−1∑
k=1

a2
k ≈ 1.13

N
. (20.88)

Assuming that the noise samples are uncorrelated, for N = 1300

√
var{x̂∞} =

√√√√q2

12

N∑
k=1

a2
k ≈

√
q2

12
1.13

N
≈ 0.008q . (20.89)

Because of the nonlinear error of the ADC, this result is somewhat smaller than
experienced in practice, but well illustrates the validity of the theory.

20.4 SUMMARY

If the sampled input to a quantizer is x1, x2, x3, . . . , and if two-variable QT II condi-
tions are satisfied for x1 and x2, x1 and x3, x1 and x4, and so forth, the quantization
noise will be white with zero mean and a variance of q2/12, and it will be uncorre-
lated with the signal being quantized. This situation occurs in practice in many cases,
and is closely approximated in many more cases. Spectral analysis of quantization
noise is especially simple under these circumstances because the autocorrelation of
the quantizer output is equal to the autocorrelation of the quantizer input plus the
autocorrelation of the quantization noise, and the spectrum of the output of the quan-
tizer is equal to the spectrum of the input plus the spectrum of the quantization noise.
The spectrum of the noise is flat, with total power of q2/12.
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Conditions for whiteness of the quantization noise based on the characteristic
function were derived by Widrow (1956b) and Sripad and Snyder (1977). Based on
a number of different approaches, other conditions for whiteness were derived by
Bennett (1948), Claasen and Jongepier (1981), Peebles (1976), Katzenelson (1962),
Bendat and Piersol (1986), Robertson (1969), and Kollár (1986). The basic issue is,
when performing analog-to-digital conversion on an input signal, how fine must the
quantization be in order that the quantization noise be white?

In general, the higher the sampling rate, the finer the quantization must be to
achieve whiteness of the quantization noise. When a bandlimited lowpass Gaussian
signal is quantized, relation (20.47) gives a limit on the sampling frequency to insure
whiteness, with the application condition q < σx . Other approximations lead to
similar limits such as (20.50), (20.54), and (20.57). The most conservative is (20.54),

fs < 9.2
σx

q
B . (20.54)

This leads to
q
σx
< 4.6

fN

fs
, (20.55)

with fN being the Nyquist sampling frequency.
When sampling with fs = 10 fN, the quantization noise will be white if the

quantization grain size q is less than 0.5 standard deviations of the quantizer input
signal x . However, the grain size q should be less than about 0.25σx , in order to have
very low crosscorrelation between the quantization noise and signal x .

If the Gaussian signal is more oversampled, for example if the sampling rate
is 100 times the Nyquist rate, expression (20.52) tells us that the quantization grain
size q should be smaller than 0.05σx for the quantization noise to be white. Under
these circumstances, the quantization noise would be highly uncorrelated with the
input signal x .

Quantization of a narrow-band bandpass Gaussian signal has the whiteness con-
dition

fs < 4
σx

q
f0 , (20.61)

with the application condition q < σ . From this,
q
σx
< 2

fN

fs
. (20.63)

Quantization of a sine wave has the whiteness condition

fs < 0.5π
A
q

f1 , (20.65)
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with the application condition q � A. This condition can be rearranged as
q
A
< 0.25π

fN

fs
. (20.67)

This is usually fulfilled as a consequence of q � A, if oversampling is not very high.

20.5 EXERCISES

20.1 A sine wave of amplitude A = 3.5 V is sampled and quantized with a 10-bit A/D
converter working over the range [±5 V]. The sampling frequency is fs, and the sine
wave frequency is f1.

(a) Determine numerically the amplitude spectrum of the quantization noise for fs =
3000 f1, using a DFT with N = 4096. Plot the spectrum with logarithmic ampli-
tude scale (dB).

(b) Determine the highest sampling frequency fs such that the approximate condition
for quantization noise whiteness is satisfied.

(c) Plot the amplitude spectrum of the quantization noise, sampling with the fre-
quency determined in (b), with N = 4096.

(d) Repeat the above calculations applying white dither with uniform distribution
between ±0.0049 V.

20.2 The DFT of a random white Gaussian sequence with variance σ 2 is calculated.

(a) Determine the probability distribution at frequency k of the result for 0 < k <
N/2.

(b) Calculate the 95% upper bound of the magnitude parametrically, and evaluate it
for N = 1024.

20.3 The N -point digital Fourier transform of an input signal is calculated with double pre-
cision floating-point arithmetic. This calculation may be considered to be perfectly
accurate. The input signal is uniformly quantized with a quantum step size of q.

(a) At frequency index k, 0 < k < N/2, calculate the theoretical bounds on the real
and imaginary parts of the quantization noise.

(b) Calculate the theoretical bound on the magnitude of the quantization noise.
(c) At frequency index k, calculate the variance of the real and imaginary parts of the

quantization noise, and calculate the standard deviation of the quantization noise.
(d) For N = 1024, calculate the theoretical bound of the magnitude of the quantiza-

tion noise, and the standard deviation of it at frequency index k = 128. Compare
these values.

(e) Give the distribution of the magnitude square of the quantization noise (|Xqk |2),
and of the magnitude.


