
© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and ambient systems
2023.10.17.

Interrupts

© BME-MIT 2.slide

Interrupts
 Running of the program is interrupted due to an

external event, and the code that belongs to the
interrupting event starts running

 The code of the interrupting event is “inserted” into the
main program

 Returning of the main program from the interrupted
state the main program should not “notice” that it had
been interrupted. To assure that:
o Work registers have to be restored
o Processor status registers have to be restored
o Stack has to be restored
o In short: context change has to be done

 In embedded systems: several different architectures
and solutions exist, therefore general considerations
have to be completed in a device-specific manner

M
ai

n
pr

og
ra

m

IT

© BME-MIT 3.slide

Hierarchy of interrupts
 Process for execution of interrupts:

o IT event created IT flag belonging to the event (e.g. pushbutton is
pushed) is set to 1

o If IT is enabled for the event, than global IT flag is also set to 1
o If global IT flag is enabled than interrupt can take effect

• In case of priority-based interrupt service routine IT of higher priority can
interrupt that of lower one (preemptive)

• In case of non priority-based interrupt service routine IT-s cannot interrupt
each other

Interrupt Flag (IF)
Interrupt Enable (IE)

Global Interrupt Enable
No higher priority IT

Interrupt service

© BME-MIT 4.slide

Interrupt Service Routine
 In general IT-s are vector-based

o A table of vectors is found in the memory. Interrupt service can
be operated in different ways, e.g.:

• In case of interrupt commands are executed placed in the IT vector table
– Jump (or Call) command to the memory address where function of interrupt

service routine is placed
– Rare case to handle IT rapidly by asm operation placed in the vector table

• In case of interrupt the program continue running on the address placed
in the IT vector table (this is faster in case of longer service since the
program jumps where the whole IT routin can be executed)

o It is possible even in case of vector-based interrupt that more
than one event belong to a single IT

• E.g.: on EFM32 development board two IT belongs to GPIOs: an even and
an odd. It has to be given in the interrupt service routine which GPIO was
the source

© BME-MIT 5.slide

Example: IT of EFM32 + Cortex-M3
 Two-level IT:

o Peripheral
• Interrupt condition (e.g. a button is pushed)
• IFS: Interrupt Flag Set: IT generated by SW
• IFC: Interrupt Flag Clear
• IEN: Interrupt ENable

o Cortex-M3 core (NVIC: Nested Vector Interrupt Controller)
• IT events from the peripherals are mapped into a given IRQ (Interrupt Request) line
• In case of IT, PEND bit becomes 1, and deleted when stepped into IT routine

© BME-MIT 6.slide

Example: IT of EFM32 + Cortex-M3
 IT table of processor core

o Negative IRQ# belong to the
processor core

o Positive IRQ# belong to the
peripherals

o A priority belong to the ITs that can
be set

© BME-MIT 7.slide

Example: AVR (ATmega128)
 Simple vector-based IT
 In case of IT the program continues

running based on the program
address found in the IT table

 Global IT is disabled automatically
 In ASM code RETI command is used to

return from IT (global IT is
automatically enabled), and C
compiler has to be informed about
the return (see later).

 When IT routine is called the
corresponding IT flag is disabled
automatically

Interrupt Flag (IF)
Interrupt Enable (IE)

Global Interrupt Enable

© BME-MIT 8.slide

Example: BF537 (DSP)
 IT hierarchy of BF537 type DSP

from Analog Devices
 SIC: System Interrupt Controller
 IT lines of peripherals wired

from the left side
 SIC_ISR: storing the primary ITs

(IT flag)
 SIC_IWR: enabling to wake up

the processor
 SIC_MASK: enabling primary IT

sources
 Switch matrix: which line is

mapped into which input IT
vector (programmable)

 ILAT: IT latch register
 IMASK: IT mask register
 IPEND: IT pending
 IVGnn: IT lines

© BME-MIT 9.slide

Example: BF537 (DSP)
 In case of IT, the appropriate bit of SIC_ISR (Interrupt Status

Register) set to 1
 SIC_ISR register cannot be cleared in SW, but when the peripheral

IT request has been handled the appropriate bit of SIC_ISR is
disabled automatically (peripheral clears it)

 Even more than one input IT sources can be connected to an
output IT line (IVGnn), the processor has to determine the source
o During development if the number of ITs are only a few (we try to achieve

this in general), then every source can be assigned to a distinct IT vector,
therefore the source will be unambiguous

 RTI instruction is used to return from the function belonging to a
certain IT line and that IT line will be enabled (during handling an IT
is disabled to avoid the generation further interrupts) and IPEND
register is also cleared

 Some special ITs: NMI (non-maskable), reset, HW error, core timer

© BME-MIT 10.slide

IT initialization for a peripheral
 Initialization of IT in a general case:

o Enabling peripheral (turn peripheral on, config., etc.)
o Implementation of IT-handling function
o Clear of IT flag belonging to the certain IT

• An IT request may be stuck from a previous state
that can cause problem since after enabling IT a
false interrupt can take action. A stuck IF can be the
consequence of a non-initialized peripheral (e.g. IT
occurs on a floating-level GPIB input)

o Enabling the IT of a certain peripheral
o Clearing of global IT flag (if needed)
o Enabling of global IT

© BME-MIT 11.slide

IT handling for a peripheral
 Execution of IT, the proposed way:

o Rapid execution inside a function
o Larger tasks are handled outside the function
o When a peripheral is used more than only once in the program

mutual exclusion has to be assured (e.g. when part of our code
sends data using UART, and data is also sent in an IT routine,
then the two data can be messed up)

• It is advised to use flags for such kind of tasks, and execute them in the main
program it they are not time-critical

o Tightly connected tasks for IT handling (take care of the order!):
• Peripheral handling (e.g. data of UART must be read or GPIO state must be read,

etc.),
• Clearing the corresponding IT flag (not needed when done automatically, but

better done twice than never),
• Enabling the IT (done automatically in most cases)

© BME-MIT 12.slide

IT handling example
 Example
volatile bool button_IT_flag = false;
int buttonpushed;

// somehow we define that this function will handle interrupt: see later…
void Button_IRQ(void){ // IT handling function

button_IT_Flag = true; // rapid handling = a flag is set when an IT happened
clear_button_IF(); // clear button IT flag

}

int main(void){

initButtons(); //1. init of buttons
clear_button_IF(); //2. IT flag clear
Button_IT_enable(); //3. IT enable for buttons
clear_global_IF(); //4. IT flag clear
global_IT_enable(); //5. enable global IT

while(1){
if (button_IT_Flag){

button_IT_Flag = false;
printLCD(”buttonpush: %d”, buttonpushed++); // putting on LCD screen is slow -> done in the main program

} // (not in the IT function otherwise uC may be blocked until
} // writing on the display is not done)

}

volatile type is important: program calling of Button_IRQ function is
not seen by the compiler in the program, therefore unaware of it so
it may change in the background. But it may happen that when
reading of button_IT_flag comes, new data is not read and the
compiler may consider this flag constant not variable. To avid this
every variable that appears in an IT function MUST be volatile.

IT function: this function is not called
in the main program anywhere

Done at the beginning of the main program for initialization purposes
Run only onece in the main program

© BME-MIT 13.slide

Implementation of IT handling
 Basic rule: „No rule”

o Lots of solution exist
o Always has to be check how IT handling should be

done depending on the compiler/processor (RTFM)

 IT handling is not supported by C compiler by
default, therefore as many solution may exist as
many compiler and uC-based system available
 Despite the fact that general rule cannot be given,

there exist some recipes, and best practices

© BME-MIT 14.slide

Implementation of IT handling– EFM32
 Startup code provided by the uC

manufacturer defines the addresses of IT
vector

 A default IT handler is assigned to every
address (an infinite loop)

 In our own code a non-parametric function
has to be given owing the same name as the
one in the vector table

 In the startup code the functions have weak
attribute. Attribute weak means repeated
implementation of the function in our code
will cause no error

 When IT event occurs our own function is
called from the vector table (the linker will
substitute the default function with weak
attribute defined in the startup code with
our own function address)

Only labels: linker defines
where to put them in memory

It is a
that generates
a default
handler for all
IT labels

E.g. in our code:
void NMI_Handler(…){
does something
}

© BME-MIT 15.slide

Implementation of IT handling– EFM32
 Simple IT handling:

o Cortex – M3 processors save several important registers when IT occurs
(R0…R3, R12, PC, Link Reg.) therefore IT handling can be done by a simple
function

o Interrupt latency (time elapsed between IT occurrence and starting of IT
handling) is short

o Example (GPIO IRQ handling):

void GPIO_ODD_IRQHandler(void){ …
Function-implementation…}

© BME-MIT 16.slide

Implementation of IT handling– EFM32
 Safe solution: let the compiler be informed somehow that this is a

special IT handling function, since this way it is sure that all register
state will be saved that have been modified
o Mainly important to do so if the program is planned to be run on other type

of processors as well

 How to inform the compiler about an IT handling function?
o Using __attribute__ special option different features of functions and

variables can be set that are processed by the compiler
o Definition of IT routine (e.g. GPIO IRQ handler):

void GPIO_ODD_IRQHandler(void) __attribute__ ((interrupt ("IRQ")));
void GPIO_ODD_IRQHandler(void){ …

Function-implemetation…}

© BME-MIT 17.slide

Implementation of IT handling– EFM32
 What code is compiled in case of a normal function and that of a function with IRQ attribute?

o Several registers are saved (see push instruction), some of them in a redundant way since processor saves
them by default

o If the user does not know the processor well it is a more safe solution (it may happen that C code will use
such a register which had not been saved…)

__attribute__ ((interrupt ("IRQ"))) normal function

© BME-MIT 18.slide

Implementation of IT handling– AVR
 Example: ATmega128 (8-bit uC)
 IT name and program code must be given:
ISR(IT_vector_name) – this is a macro with IT vector name in its

argument
Example:
ISR(USART1_RX_vect) {

UART1_read_data();
… // other things to do is possible but be rapid
crear_IF();

}

 Other options may exist, e.g. „ISR_NOBLOCK”: in IT routine the
compiler enables the interrupt of this IT routine (not to block other
ITs).
o Example: ISR(USART1_RX_vect, ISR_NOBLOCK){…}

© BME-MIT 19.slide

Implementation of IT handling– AVR
 How it works?
define ISR(vector, ...) \

void vector (void) __attribute__ ((signal,__INTR_ATTRS)) __VA_ARGS__; \
void vector (void)

So using „ ISR(USART1_RX_vect){…}” command the following is compiled
after extracting the macro:

void __vector_30 __attribute__ ((signal)); //function declaration with attribute
void __vector_30{ //function implementation

code
}

Explanation (somewhere else the following definitions can be found):
#define USART1_RX_vect _VECTOR(30)
…
#define _VECTOR(N) __vector_ ## N

Address __vector_30 is found in crtm128.o startup file, which are re-defined

© BME-MIT 20.slide

Implementation of IT handling – BF537
 The development environment provided by the manufacturer

offers functions that can be used to register IT handling functions:
register_handler_ex(interrupt_kind kind, ex_handler_fn fn, int enable);

Example:
register_handler_ex(ik_timer, timer_handler, EX_INT_ENABLE);

Funtion has to given in the following way, e.g.:
EX_INTERRUPT_HANDLER(timer_handler){

Timer_IT_Number ++;
}

As an IT handler of the timer_handler function named
timer_handler is given and IT is enabled.

 How it works?

© BME-MIT 21.slide

Implementation of IT handling – BF537
 How the function is inserted into the vector table? (crt\reghdlr.h

and sys\exception.h)
o A function pointer is set to the start address of the vector table
o Function pointer defines an array whose interrupt_kind element has to be

replaced by the address of the given function. From now it will be called by
the processor

register_handler_ex(interrupt_kind kind, ex_handler_fn fn, int enable);

typedef void (*ex_handler_fn)(); // definition of type of function pointer
#define EX_EVENT_VECTOR_TABLE 0xFFE02000 // start address of IT vector table
// function array is set to the start address of the vector table
ex_handler_fn *evt = (volatile ex_handler_fn *)EX_EVENT_VECTOR_TABLE;
// the specific element of the vector table (depending of the type of the IT) is replaced by

the function pointer of our own function
evt[kind] = fn;

© BME-MIT 22.slide

Implementation of IT handling – BF537
 How IT handling function declaration works? Now it is “known” by the processor

which function has to be called (the address of that one has been stored in the
vector table) but how the compiler will know that that function should be
compiled in a different way? Lets see the following macros (\sys\exception.h)

#define EX_INTERRUPT_HANDLER(NAME) EX_HANDLER(interrupt,NAME)
#define EX_HANDLER(KIND,NAME) \
_Pragma(#KIND) \
void NAME ()
Therefore
EX_INTERRUPT_HANDLER(timer_handler){

Timer_IT_Number ++;
}
Expanding of function definitions are the following after substitution of the macros
_Pragma(interrupt) // now the compiler knows that it is an IT handling function
void timer_handler(){ // here the function is given by the normal mode

Timer_IT_Number ++;
}

© BME-MIT 23.slide

Implementation of IT handling – BF537
 Interruptable function can also be given by the following macro:
EX_REENTRANT_HANDLER(NAME)
 After expanding the macro:
#define EX_REENTRANT_HANDLER(NAME) \
_Pragma("interrupt_reentrant") \
EX_HANDLER(interrupt,NAME)
 So,

_Pragma("interrupt_reentrant")
compiling directive is used to let the compiler be informed that this
function is such an IT handling function that can be interrupted

© BME-MIT 24.slide

Implementation of IT handling – BF537
 Summary:

o There exists such a library function that replace (rewrite) the start address of
the IT routine found in the IT vector table with the function defined by us

o Using a macro provided by the manufacturer such function can be defined
that is known by the compiler to be an IT handler function (Pragma should
be used for that)

© BME-MIT 25.slide

Implementation of IT handling–ADSP21364
 Example: ADSP21364: 32-bit, floating-point DSP
 Callback function: functions called based on certain events (see e.g. Java)
 Manufacturer provides an IT dispatcher function. The function runs at every IT

event, saves the status of the processor and calls the function assigned (by us) to
the IT (similar to callback)

 IT handler is a normal function, context change is done by the dispatcher
 Several options exist. The following functions can be used to register the IT

handling functions:
o interruptcb(): during IT every special DSP HW status is saved (e.g. circular buffer, loop

counter, secondary registers), it takes approximately 200 CLK cycles
o interrupt(): during IT most special DSP HW status is saved it takes approximately 150

CLK cycles
o interruptf(): very fast handing only some special DSP HW status is saved
o Etc…: consequency is that the actual status of the processor can be saved at different

depth. The more processor registers are saved the more context change happens
(=slower) but the more reliable then. In case of rapid context change extra care is
needed what can be done by the function.

© BME-MIT 26.slide

Implementation of IT handling–ADSP21364
 Example: UART IT handling

o It has to be found in the documentation of the
compiler that in case of a certain processor how the
peripheral belonging to UART is named. In our case it
is SIG_SP4 (SP: serial port)

o Our function has to be registered, e.g. UARTrec
o Our function has to be implemented

interrupt (SIG_SP4 , UARTrec); // SIG_SP4 type and handling function

// handling function is given by:

void UARTrec(void){

// handling of IT comes here

}

© BME-MIT 27.slide

Implementation of IT handling - summary
 General tasks: configuring peripheral, clear of IT flags, enabling of IT (that of peripheral, and global),

handling of peripheral in IT routine (in many cases manual clear of IT flag is needed)
 EFM32-Cortex M3: find the name of IT handler in startup file and using this name an own function has

to be defined (interrupt attribute may used). E.g.:
void GPIO_ODD_IRQHandler(void) __attribute__ ((interrupt ("IRQ")));

void GPIO_ODD_IRQHandler(void){

Function-implementation…}

 AVR 8-bit uC: find the name belonging to a specific IT from documentation and using ISR() macro the
function can be defined. E.g.:

ISR(USART1_RX_vect) {

Function-implementation…}

 ADSP BF357 (DSP): The IT function has to be registered in the IT vector table and it has to be
implemented using macro EX_INTERRUPT_HANDLER:

register_handler_ex(ik_timer, timer_handler, EX_INT_ENABLE);

EX_INTERRUPT_HANDLER(timer_handler){

Function-implementation…}

 ADSP 21364 (DSP): The IT function has to be registered at the dispatcher:
interruptcb(SIG_IRQ1,IRQ1_handler); // IRQ1 type and handling function

void IRQ1_handler(int x){
Function-implementation…}

© BME-MIT 28.slide

Implementation of IT handling - summary
 It is necessary to always read the documentation of the processor and compiler:

o Is it necessary to indicate the special IT function? (pl. #pragma, __attribute__)
o Does the processor clear IT flag automatically? If not it must be done, but in general

it is a good idea to do so all the time
o Does the processor disable IT when an IT handling started?
o Multi level IT exist?
o Is it necessary to enable IT when return from IT handling?

 Is a special peripheral, variable used? If yes, than mutual exclusion is assured?
 IT routine should not be too long
 IT handling functions generally have no parameters. If a parameter is needed it

has to be solved by ourselves.
 The type of variables used in IT routines always has to be volatile

o Volatile variables are considered by the compiler such variables whose value can change any
time, therefore their value are always read even if they are not seem to have changed

	Embedded and ambient systems�2023.10.17.
	Interrupts
	Hierarchy of interrupts
	Interrupt Service Routine
	Example: IT of EFM32 + Cortex-M3
	Example: IT of EFM32 + Cortex-M3
	Example: AVR (ATmega128)
	Example: BF537 (DSP)
	Example: BF537 (DSP)
	IT initialization for a peripheral
	IT handling for a peripheral
	IT handling example
	Implementation of IT handling
	Implementation of IT handling– EFM32
	Implementation of IT handling– EFM32
	Implementation of IT handling– EFM32
	Implementation of IT handling– EFM32
	Implementation of IT handling– AVR
	Implementation of IT handling– AVR
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling – BF537
	Implementation of IT handling–ADSP21364
	Implementation of IT handling–ADSP21364
	Implementation of IT handling - summary
	Implementation of IT handling - summary

