
© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and Ambient Systems
2023. 10. 31.

Special C language elements

© BME-MIT 2.slide

inline functions
 Inline functions: the compiler “picks out” the inside of the function

and actual function call does not happen, instead, the code found
in the function is used and substituted into our code
o Faster than normal functions since no overhead of function call
o It is only worth when the function contains only few instructions
o Even if the function is marked as inline the compiler may use it in a different

way (inline feature of the function may be ignored by the compiler)
o Static keyword is usually used with inline function since that are restricted

to the same compilation unit (e.g. C file) in which they are defined
• Note: the functions in C are by default global. If we want to limit the scope of the function,

we use the keyword static before the function

o Generally they are found in the header files

 Example: uint32_t adder_fn(uint32_t x, uint32_t y) {
return (x+y);

}

static inline __attribute__((always_inline)) uint32_t adder_fn(uint32_t x, uint32_t y){
return (x+y);

}

© BME-MIT 3.slide

inline functions
 Without inline: 23 instr with inline: 11 instr

Function call

© BME-MIT 4.slide

inline functions
 Even if the function is marked as inline the

compiler may use it in a different way
o Can be forced, e.g.: __attribute__((always_inline))
o In general leave the compiler to do its job, forcing the

compiler is acceptable only if speed is the largest
concern

 In some cases the compiler recognizes that a
function cannot be inline

© BME-MIT 5.slide

Container classes
 auto:

o Default container type in functions and blocks (not needed to be specified)
o Available only inside the code block and disappears at the end of the block

 static:
o Inside a function: Stores its value until the end of the program (even among

function calls)
o With global variable: visible only in the given compilation unit (in that C file)

(note: extern type is the opposite – see later)

 register:
o The variable is stored in a certain register
o Use if a variable has to be accessed fast and frequently
o Rarely used, leave it for the comopiler…

© BME-MIT 6.slide

Container classes
 extern:

o It marks that a certain variable or function is found in an other compilation
unit, i.e., other C file.

o Compilation units, i.e., all C files must belong to the same project
o During compilation the compiler assigns a general label for the variable or

function and the linker searches in which object file that certain variable or
function can be found

o It can be initialized at one place. At other places only declarations are found
o Example:

o The extern variable can be referred at both places
o It is used generally in case of shared variables
o When a function of C syntax found in an external file and called from a C++

file then extern “C” must be used during declaration

=10 =10

© BME-MIT 7.slide

bitfield structures
 If a variable does not require at least 8 bit it is possible to assign values bitwise
 Advantages:

o Memory saving (especially important if only a small amount of memory is available)
o Can be applied to a function register and manipulate its content bitwise at C level

(WARNING! Take care of compiler settings: do not change them)
 Since different compilers may handle bitfield structures in a different way

therefore double-checking is necessary
 When defining the fields of the structure use colons to set the size in bits

-> data is stored by 1 byte for each element, i.e., total 5 bytes

-> data is stored by 1 bit for each element, i.e., total 5 bits

struct data_array1_strct{
char data_11;
char data_12;
char data_13;
char data_14;
char data_15;
} data_array1;

struct data_array2_strct{
char data_21:1;
char data_22:1;
char data_23:1;
char data_24:1;
char data_25:1;
} data_array2;

© BME-MIT 8.slide

bitfield structures
 Example: two sturctures: in structure data_array2 field

size is 1-bit
 Size of data_array1 is 5 byte, size of data_array2 is 1

byte (5 bit, but 1 byte is minimal).
 Structure data_array2 is able to store only 1-bit data (the

last bit is kept the rest is cut off)

It can be seen that in
the memory really
10101b = 15hex value
can be found at address
0x200009C

struct data_array1_strct{
char data_11;
char data_12;
char data_13;
char data_14;
char data_15;
} data_array1;

struct data_array2_strct{
char data_21:1;
char data_22:1;
char data_23:1;
char data_24:1;
char data_25:1;
} data_array2;

data_array1.data_11 = 11;
data_array1.data_12 = 12;
data_array1.data_13 = 13;
data_array1.data_14 = 14;
data_array1.data_15 = 15;
data_array2.data_21 = 21;
data_array2.data_22 = 22;
data_array2.data_23 = 23;
data_array2.data_24 = 24;
data_array2.data_25 = 25;

data_array1_size = sizeof (data_array1) ;
data_array2_size = sizeof (data_array2) ;

© BME-MIT 9.slide

union type
 Different type of variables can be assigned to a

memory part (once the structure is defined it has to
be filled up with data and handled accordingly)

 Useful when the data type is unknown during
compilation time since using union type it will not be
necessary to reserve different variables for the
unknown data

 Example:
union UnionType {

int i;
float f;
char str[5];

} union_var;

union_var.i = 5;
union_var.f = 5.0;
strcpy(union_var.str, "5.0");

© BME-MIT 10.slide

Union + bitfield
 In embedded environment at C language level it is easy to handle a

register at both bit and byte level as well
 Example (Simplicity Studio diagnostic.h):

o Inside union type variable:
• There exist a bitfield structure used to access the configuration bits in a bitwise

manner
• There exists a 32-bit variable named word used to access the whole 32-bit

register content
• HalCrashAfsrType.bits.WRONGSIZE= 1; the same as

HalCrashAfsrType.word|=1 << 3;
but more elegant and simplemore clear code, less possibility of errors

© BME-MIT 11.slide

Structured handling of register arrays
 1st step: definition of a structure according to the register

arrays - Example: register set for ADC (C code + datasheet):

/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */

Application of volatile type is
important otherwise the optimizer
may remove non-used fields that
results a shift of the whole structure

© BME-MIT 12.slide

Structured handling of register arrays
 2nd step: search the base address of register array of the certain

peripheral

 3rd step: set a pointer to the appropriate memory address pointing
to the certain type of structure:

 4th step: application of certain element of the structure:
ADC0->CMD |= 1<<12; // set bit 12 into high

o So bit 12 of register with address 0x40002004 is set into 1 (this is the
memory address of the command register of ADC, or you can also see it as
the bit 4 of register at address 0x40002005)

© BME-MIT 13.slide

Structured handling of register arrays

 4th step: application of certain
element of the structure:
ADC0->CMD |= 1<<12; // set bit 12
into high

 So bit 12 of register with address
0x40002004 is set into 1 (this is the
memory address of the command
register of ADC)

 Registers are 32-bit (4 bytes)

memory

0x40002008

0x40002004

CMD

CTRL
0. bit 7. bit
8. 9. 10. 11.

0x40002000

© BME-MIT 14.slide

Attributes of functions and variables
 In C language keyword __attribute__ ((…)) is used to

assign special features to functions or variables. Examples
(not valid for all processors or compilers):
o __attribute__ ((interrupt ("IRQ"))); IT function
o __attribute__((always_inline)): function is used always inline
o __attribute__((weak)): function can be redefined.

• E.g.: IT handling, the default IT function is weak, so a function with the same
name can be defined anywhere in the code to be the IT function (this way the
default function is overdefined)

o __attribute__((section("name"))): if section called name is
given in the linker file then variable will be placed there

o __attribute__ ((__cleanup__(__iRestore))): when a variable
diasappears a function is called

© BME-MIT 15.slide

Compilation directives(pragma)
 #pragma or _pragma: compilation directives/keywords
 Either general or HW-specific instructions can be used,

e.g.:
o #pragma once: a function is included only once
o #pragma interrupt: marks an IT function
o #pragma align(4): start address should be always an integer

multiple of 4 bytes
• Can be especially important in case of DSP

o #pragma pack: fields of a structure are ordered directly one
after the other

 Compiler specific, documentation has to be checked
 Several similar functions can be implemented just like by

keyword __attribute__ (e.g.: interrupt, pack…)

© BME-MIT 16.slide

Idiom recognition
 Idiom recognition

o The look of the command is recognized by the compiler and can compile it
according to the instructions of the certain processor

o Examples (depends on the compiler):
• Saturation (Cortex SSAT asm command): Y = (x<-8)? -8 : (x>7 ? 7:x)
• Circular buffer (DSP): a+=w[j]*x[i % N]

– Modulo operation is not performed, instead, the HW supported circular buffer is used

o No need to use special functions therefore the program can be compiled on
other processors as well but despite of this fact the code can be efficient and
well fit for the certain processor

o It is not sure that all compilers can recognize them
o The programmer guy must know what are the possibilities
o In case of FPGAs it is also important to use general HW description to

recognize the syntheser what the developer wants to implement

© BME-MIT 17.slide

Use of integer data type
 In C language the minimum required number representation has to

be defined for many data types (e.g. unsigned integer must cover
0 … 65535 but it can be larger…).
o Embedded systems: many architectures exist therefore type int can be 16-bit

or even 32-bit

 Problem: in embedded systems it is important to know the exact
data-width (16-bit or 32-bit, etc.)
o Mapping variables into registers
o Estimation of computation needs

 C99 standard: use of inttypes
o #include <stdint.h>
o Defines types with exact data-width, e.g.:

• int16_t : 16-bit signed integer
• uint32_t : 32-bit unsigned integer (e.g. long unsigned int)

© BME-MIT 18.slide

define
 Special symbols: # and ##
 # symbol: certain character set is substituted as

string (stringizing operator)
 ## merges two character set (Token-Pasting /

merging Operator)
o Example:

• #define set(var, num, value) var##num = #value
• Calling the function in your code: set(def_var, 3, 2)
• Processed by the preprocessor to what?

– def_var3 = "2"; ->found only in the pre-processed code not in your
code

 Be careful since it may result in a messy code

© BME-MIT 19.slide

enum data type
 enum data type application

o List is mapped into integer numbers
• Default start value is 0 but other value can also be defined

o In C no type check is used but it is done in C++
o Example:

© BME-MIT 20.slide

Application of library functions
 It must be known that a function:

o Uses peripherals at what level
o Needs what resources
o Whether requires initialization (e.g. before sending data)

 Blocking/non-blocking functions
o Whether the function returns or not before the end of running
o E.g. sending data via serial port:

• Function returns after the entire data set has been sent
• Or the whole array containing the data to be transmitted is handled and

sending is done in the background while running can be continued in the main
program

sendData(data)

Data is being sent

Next instruction

sendData(data)

Data is being sent

Next instruction

Blocking data sending: entire data set has to be
sent before return of the function:

Non-blocking sending: after initialization of
sending, the function returns and data is being

sent in the background:

	Embedded and Ambient Systems�2023. 10. 31.
	inline functions
	inline functions
	inline functions
	Container classes
	Container classes
	bitfield structures
	bitfield structures
	union type
	Union + bitfield
	Structured handling of register arrays
	Structured handling of register arrays
	Structured handling of register arrays
	Attributes of functions and variables
	Compilation directives(pragma)
	Idiom recognition
	Use of integer data type
	define
	enum data type
	Application of library functions

