
© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and ambient systems
2023.12.05.

Implementation of filtering operations

© BME-MIT 2023 2.dia

FIR filters
 FIR: Finite Impulse Response (this is a digital filer type)

o Finite impulse response: contains a finite number of samples
• Or at least can be truncated to a finite number if the samples “at the end” can be neglected

o During filter design the impulse response is calculated (wi), then the
convolution sum is evaluated:

o In practice: N*10 < number of samples < N*100
• Exclusions may exist, e.g., acoustic impulse response of a concert hall: N>10000
• Convolution with some 100 tap large computation capacity is required

o Feedback is not applied
• Remains stable regardless the number representation applied
• Characteristic depends on the number representation applied

o Linear-phase filter is possible to be designed: delay is frequency independent
• Signal components with different frequency do not suffer to relative delay: signal shape is

unchanged

o Design methods: MATLAB, Python, octave (MATLAB clone)

∑
−

=
−=

1

0

N

i
inin xwy

© BME-MIT 2023 3.dia

FIR filters: filter types
 Design methods: MATLAB functions , or Python, octave
 Remez algorithm: even fluctuation (ripple) around the specified region

o w = firpm(N, [f11 f12, f21 f22], [a11 a12, a21 a22]);
 LS algorithm: fits to a characteristic by least squares approach

o w = firls(N, [f11 f12, f21 f22], [a11 a12, a21 a22]);

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

f [Hz]

H
(f)

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

f [Hz]

H
(f)

 [d
B

]

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

0

f [Hz]

H
(f)

 [d
B

]

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

f [Hz]
H

(f)

f11=0Hz, f12=0.1kHz, a11=1, a12=1

f21=0.15Hz, f22=0.5kHz, a21=0, a22=0

© BME-MIT 2023 4.dia

IIR filters
 IIR: Infinite Impulse Response (type of filter)

o The impulse response is infinitely long
• In practice after a while the samples reach such small values that can be neglected

o Can be defined by finite number of parameters
• In practice: 1 ≤ tap number < 10
• Small tap number small computation capacity is enough

o Due to the feedback applied it is sensitive to the number
representation applied

• Not only the characteristic may change but may become instable due to the
rounding error of numbers

o Linear phase is not possible not even theoretically signal shape
is distorted even in the passband

• There exists some methods that optimize filter design to reach close-to-linear phase
characteristics

o Design methods: MATLAB functions , Python, octave

© BME-MIT 2023 5.dia

IIR filters: filter types
 Butterworth: maximally flat

o [B,A]=butter(N, fc): N: tap number, fc: corner frequency

 Chebysev {1,2}: even fluctuation (ripple) in the pass- or stopbands (Cheby I.-II.)
o [B,A]=cheby{1,2}(N,R): N: tap number, R: ripple around the specification

 Elliptic filter: given ripple around the pass-/stop bands. Steep suppression.
 Bessel filter: preserves signal shape, maximally flat

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0
Butterworth

f [Hz]

H
(f)

 [d
B

]

0 0.1 0.2 0.3 0.4 0.5
-80

-60

-40

-20

0
Chebyshev Type II

f [Hz]

H
(f)

 [d
B

]

Butterworth: maximally
flat characteristics.
Week steepness but
preserves the signal
shape

Cheby I: even
fluctuation (ripple) in
the passband

Cheby II: even fluctuation
(ripple) in the stopband
(minimal suppression can
be given, e.g.: 60 dB)

elliptic: ripple in both in the pass- and stop
bands. Steep suppression, but the signal is
distorted the most.

© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Implementation of FIR filter

© BME-MIT 2023 7.dia

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

f [Hz]

|H
(f)

|

10
2

10
3

10
4

-60

-50

-40

-30

-20

-10

0

10

f [Hz]

|H
(f)

| [
dB

]

Efficient implementation of FIR filter
 Design of filter coefficients: toolboxes in different programs available

(pl. MATLAB, Python, octave…)
o Example:

• Design of a 64-tap filter,
• Sampling frequency: fs=50 kHz
• Passband: 0…6000Hz,
• Stopbans: 8000Hz…fs/2

fs=50000; N = 64;
w=firpm(N-1, [0 6000 8000 fs/2]/(fs/2), [1 1 0 0]); % specified for each frequency region

© BME-MIT 2023 8.dia

Efficient implementation of FIR filter
 Design of filter coefficients: toolboxes in different programs available

(pl. MATLAB, Python, octave…)
o Example:

• Design of a 64-tap filter,
• Sampling frequency: fs=50 kHz
• Passband: 0…6000Hz,
• Stopbans: 8000Hz…fs/2

fs=50000; N = 64;
w=firpm(N-1, [0 6000 8000 fs/2]/(fs/2), [1 1 0 0]); % specified for each frequency region

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n

w
n

© BME-MIT 2023 9.dia

Practical example
 Filter specification:

o Design of a 64-tap filter,
o Sampling frequency: fs=50 kHz
o Passband: 0…6000Hz,
o Stopbans: 8000Hz…fs/2

N = 64;
w=firpm(N-1, [0 6000 8000 fs/2]/(fs/2), [1 1 0 0]);

0 10 20 30 40 50 60 70
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n

w
n

0 0.5 1 1.5 2 2.5

x 10
4

-70

-60

-50

-40

-30

-20

-10

0

10

X: 8000
Y: -57.57

f [Hz]

|H
(f)

| [
dB

]

© BME-MIT 2023 10.dia

Measurement
 Measurement by

network analyzer
o Designed specially for the

measurement of transfer
functions

o Using a constant
amplitude signal with
stepped frequency as the
excitation to the network
of interest, the instrument
plots the response of the
network (i.e. the transfer
function)

Excitation
signal

Response
signal

© BME-MIT 2023 11.dia

Measurement result

 Comparison the implemented and measured filter with
the designed filter
o Stopband starts at: 8 kHz (see markers)
o Suppression: ~60 dB (very close to the expected value)

kb. 60 dB

0 0.5 1 1.5 2 2.5

x 10
4

-70

-60

-50

-40

-30

-20

-10

0

10

X: 8000
Y: -57.57

f [Hz]

|H
(f)

| [
dB

]

© BME-MIT 2023 12.dia

Steps of filtering process
 Filtering operation (convolution):
 wi: filter coefficients (values the impulse response)
 xn–i: samples of the signal to be filtered (last N is

needed in the n-th “time” (better to say sample)
instant)
 Required operations in every sampling interval:

o Storing the samples
o Convolution

• Running a loop of size N
– Multiplication of wi and xn–i numbers
– Accumulation (addition to the previous) of results of multiplications

∑
−

=
−=

1

0

N

i
inin xwy

© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Implementation of IIR filters

© BME-MIT 2023 14.dia

Structure of IIR filters
 Transfer function of IIR filters:

 From this

 In time range:

N
N

M
M

zazaza
zbzbzbb

zX
zYzH −−−

−−−

++++
++++

==
...1
...

)(
)()(2

2
1

1

2
2

1
10

)...)(()...1)((2
2

1
10

2
2

1
1

M
M

N
N zbzbzbbzXzazazazY −−−−−− ++++=++++

NnNnMnMnnn yayaxbxbxby −−−− −−−+++= 11110

MnMnnNnNnn xbxbxbyayay −−−− +++=+++ 11011

∑∑
=

−
=

− −=
N

j
jnj

M

i
inin yaxby

10

© BME-MIT 2023 15.dia

Implementation of IIR filters
 In its structure, it is essentially similar to an FIR filter: the

current output data is given as a sum of products
o Difference: not only the input data xn, but also the output data

yn is also used

 The same speed-up techniques as for FIR filters
can be used
 Since the degree is usually low (usually N ≤ 10),

data storage is less critical

© BME-MIT 2023 16.dia

Simple implementation
 Tasks:

o Storage of incoming data
o Incoming and old outgoing data convolution
o Storage of current output data

 In the sample code, we do not use circular due to the small amount of data, instead the
data is continuously shifted in a register

 x_IIR: containing input data buffer, y_IIR: output data, B_IIR and A_IIR: numerator and
denominator of coefficients (filter coefficients).

// data shift
for(ii=N_IIR-1; ii>0; ii--){
x_IIR[ii] =x_IIR[ii-1];
y_IIR[ii] =y_IIR[ii-1];
}
x_IIR[0] = data_in; //first data storing

//filtering operation
out=x_IIR[0]*B_IIR[0];
for(ii=1; ii<N_IIR; ii++){
out+=x_IIR[ii]*B_IIR[ii];
out-=y_IIR[ii]*A_IIR[ii];
}
y_IIR[0] =out; //output data storing

x7 x6 x5 x4 x3 x2 x1 x0

x8 x7 x6 x5 x4 x3 x2 x1new data
(x8)

© BME-MIT 2023 17.dia

Biquad implementation
 Problem: IIR filters are very sensitive to coefficient quantization
 General solution: the transfer function is decomposed into a series of quadratic

terms (biquads)
 Example:

o Specifications: 6-tap elliptic, 1kHz corner frequency, 1dB ripple, 60dB suppression,
fs=50kHz sampling frequency

o 16-bit number representation
[B, A] = ellip(6, 1, 60, 1e3/(fs/2)); %freq(B,A,5000,50e3); : drawing transfer characteristic
[biq, gain] = tf2sos(B, A);

654321

654321

8907.04238.5786.13722.183276.148585.51
6449.56022.139144.176022.136449.51

34.973
1)(−−−−−−

−−−−−−

+−+−+−
+−+−+−

⋅=
zzzzzz

zzzzzzzH

21

21

21

21

21

21

9898.09741.11
9703.11

9635.09532.11
9529.11

934.09312.11
7217.11

34.973
1)(−−

−−

−−

−−

−−

−−

+−
+−

+−
+−

+−
+−

=
zz

zz
zz

zz
zz

zzzH

© BME-MIT 2023 18.dia

Biquadimplementation
 It can be seen, that the characteristic of the filter of coefficients with rounded to 16 bits is

significantly different from ideal (left figure: blue and red characteristics)
 For biquads decomposition even in the case of 16-bit number representation

characteristics are essentially the same as ideal (left figure: green and red characteristics)
 Figure on the right: transfer of the individual biquad members individually, and the value

of the gain (The gain of the individual members is 40dB, 13dB and 6dB. Therefore, for the
resulting unit gain of 0dB, a gain of approx. -60dB is needed: roughly a division of 1000)

10
1

10
2

10
3

10
4

-80

-70

-60

-50

-40

-30

-20

-10

0

10

f [Hz]

|H
(f)

| [
dB

]

IIR: direkt es biquad implementacio

eredeti
16 bit
biq 16 bit

10
1

10
2

10
3

10
4

-80

-60

-40

-20

0

20

40

biquadokra bontas

f [Hz]

|H
(f)

| [
dB

]

biq-1
biq-2
biq-3
gain

© BME-MIT 2023 19.dia

Biquad implementation
 Pay attention: for example, in the case of

biquad 1 (red characteristic), it has 100
times, i.e. 40dB, amplification.

 Problem: the number of bits is still too
large also in the case of biquads
(example:giant geckocard)

• 12 bit input data
• 16 bit coefficients
• 100x multiplier: 7 bits
• 12+16+7=35

o 35 bits: at least 64-bit number
representation

 Although the degree is low, a large bit
width is required due to the high dynamics

10
1

10
2

10
3

10
4

-80

-60

-40

-20

0

20

40

biquadokra bontas

f [Hz]

|H
(f)

| [
dB

]

biq-1
biq-2
biq-3
gain

© BME-MIT 2023 20.dia

Biquad implementation
 Generic function to be called with biquas-associated parameters

int64_t
IIR_biq(int64_t*x,int64_t*y,int64_t*B,int64_t*THE,int64_tin){
// input data shift
x[2] =x[1];
x[1] =x[0];
x[0] = in;

// output datas hift
y[2] =y[1];
y[1] =y[0];

//filtering operation
int64_t out= 0;
out=x[0]*B[0] +x[1]*B[1] +x[2]*B[2] -y[1]*THE[1] -y[2]*THE[2];

out= out >> (N_FIX_BIT-1);
y[0] =out;
returnout;
}

2
2

1
1

2
2

1
10

1)(
)()(−−

−−

++
++

==
zaza
zbzbb

zX
zYzH

221122110 −−−− −−++= nnnnnn yayaxbxbxby

© BME-MIT 2023 21.dia

Program code
 The implementation of the 6-tap filter by three biquads in series
 Store input and output data in x_biq and y_biq in blocks

o x_biq[bq][i] means i-th element of the the bq-th biquad
 Store the coefficients in coef_biqin array in the format given by MATLAB

o coef_biq[bq][0..2]: the bq-th biquad coefficients B
o coef_biq[bq][3..5]: the bq-th biquad coefficients A

int32_tprocess_IIR_biq(int32_t data_in){
int bq;
int64_t out= data_in;
int64_tbq_out_0=0, bq_out_1=0;
bq=0;
bq_out_0=IIR_biq(&x_biq[bq][0], &y_biq[bq][0], &coef_biq[bq][0], &coef_biq[bq][3], data_in);
bq=1;
bq_out_1=IIR_biq(&x_biq[bq][0], &y_biq[bq][0], &coef_biq[bq][0], &coef_biq[bq][3], bq_out_0);
bq=2;
out=IIR_biq(&x_biq[bq][0], &y_biq[bq][0], &coef_biq[bq][0], &coef_biq[bq][3], bq_out_1);
out= out /BIQ_GAIN_REC; //gain
out= out>((1<<12)-1)? ((1<<12)-1) : (out<0? 0 :out); //saturation
return out;
}

© BME-MIT 2023 22.dia

Measurement
 Measurement using a

network analyzer
o A device specially

developed for
measuring the transfer
function

o With a constant
amplitude signal, the
frequency is stepped
over a given band and
displays the output
value (transmission) of
the network at the
given frequency

response
signal stimulus

signal

© BME-MIT 2023 23.dia

IIR filter: measurement result
 Specifications met?:

o The beginning of the stop band is approx. 1365 Hz
o About 60 dB suppression: it is in good accordance with the design

 Runtime: 790 CLKs
o It is comparable to the runtime of the 64-tap FIR filter
o Fewer operations, but large number of bits are required requires a large computing capacity

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
-80

-70

-60

-50

-40

-30

-20

-10

0

10

X: 1365
Y: -73.35

f [Hz]

|H
(f)

| [
dB

]approx.
60 dB

	Embedded and ambient systems�2023.12.05.
	FIR filters
	FIR filters: filter types
	IIR filters
	IIR filters: filter types
	Slide Number 6
	Efficient implementation of FIR filter
	Efficient implementation of FIR filter
	Practical example
	Measurement
	Measurement result
	Steps of filtering process
	Slide Number 13
	Structure of IIR filters
	Implementation of IIR filters
	Simple implementation
	Biquad implementation
	Biquadimplementation
	Biquad implementation
	Biquad implementation
	Program code
	Measurement
	IIR filter: measurement result

