
© BME-MITBudapest University of Technology and Economics
Department of Measurement and Information Systems

Embedded and ambient systems
2023.10.11.

Practice 3

Peripheral handling at register level

© BME-MIT 2.slide

1) Peripheral handling at low level
 Useful to see how peripherals work at a register

level (hidden by the high-level functions)
 See the LED-blinking-by-button project built up

from empty code at a low level
 Source files needed:

o EFM32GG-BRD2200A-A03-schematic.pdf
• Board schematic: peripherals and their interconnection

o EFM32GG-RM.pdf (RM=reference manual)
• Use it as a reference, i.e., the necessary chapters are needed

only to be read
• It is a good way to understand general topics, e.g.,

communication (e.g. UART) used by the uC

© BME-MIT 3.slide

1) Physical connections on the board
 Find the connections between the uC and the

buttons based on the schematic
 Buttons: connected to ‘Port B’ of GPIO peripheral

o UIF_PB0 -> MCU_PB9
o UIF_PB1 -> MCU_PB10

© BME-MIT 4.slide

1) Physical connections on the board
 Find the connections between the uC and the

LEDs based on the schematic
 LEDs: connected to ‘Port E’ of GPIO

o UIF_LED0 -> MCU_PE2
o UIF_LED1 -> MCU_PE3

© BME-MIT 5.slide

1) Physical connections on the board

uC
.
.
.

.

.

.

.

.

.

GPIO ports

Po
rt

 A
 (P

A)
Po

rt
 B

 (P
B)

Po
rt

 C
 (P

C)

Port A Pin 2 (PA2)
0
1
2

31

© BME-MIT 6.slide

2) Start a new empty project
 File->New->Project:

© BME-MIT 7.slide

3) Start a new empty project

© BME-MIT 8.slide

3) Empty project created

 Comment out CHIP_Init(); function

© BME-MIT 9.slide

4) Get to know necessary peripherals
 Two peripherals are needed

o General Purpose Input Output (GPIO)
o Clock Management Unit (CMU)

 Check p.17 Fig.5.2 of EFM32GG-RM.pdf
oMemory map of the system
o 32-bit uC -> 4GB addressable memory theoretically

but only a small part is physically available
o Obviously only the physically available amount of

memory is shown in the map
o (see next slide for the map)

© BME-MIT 10.slide

4) Memory map (full)

© BME-MIT 11.slide

4) Memory map (CMU and GPIO regs.)

 The address space is important
o Starts from bottom and

increasing to the top
o Base addresses of peripheral

registers have to be determined
• CMU base address: 0x400c8000
• GPIO base address: 0x40006000

© BME-MIT 12.slide

5) Base address aliases in code
 Avoid memorizing memory addresses using

aliases in the code (use Tab instead of Space)

© BME-MIT 13.slide

6) Accessing registers using base addr.
 Base address is only the start address of a certain

kind of register array, like CMU registers
 To access a specific register (e.g. register for

REG_A of a register array) an offset address have
to be used relative to the base address
o The address of a specific register is the base + offset

address
• e.g. REG_A -> 0x400c8000+0x044

 Note, that registers usually contain configuration
bits to be set (see later)

© BME-MIT 14.slide

6) Explanation for setting reg. content
 32-bit registers are addressed
 Memory address is determined to store data there

o Remember: base address + offset = memory address
• Problem: this is a number for the compiler not an address
• Solution: to turn this number into a memory address it has to

be converted into a pointer (use * to mark a pointer)
– In C, pointer is a variable type that points to a certain part of the

memory (to a memory address where e.g. a register store data)
– Turning a number into a pointer means forcing the change of variable

type, called casting

 The way to refer to a certain register is uC
dependent, its implementation has to be checked
via examples, description, manual, etc.

© BME-MIT 15.slide

6) Explanation for setting reg. content
 In our case a pointer can be given by:

o (*(volatile long unsigned int *)(0x400c8000+0x044))
• First *: a value is to be written into the memory (register) at

the given address
• volatile: avoid to be optimized out
• long unsigned int: type of the pointer (note: 32-bit reg.)
• Second *: this is a pointer
• 0x400c8000+0x044 : this is the known memory address

o The pointer itself:
• (volatile long unsigned int *)(0x400c8000+0x044)
• To give a value for this pointer the first * is used

© BME-MIT 16.slide

6) Explanation for setting reg. content
 Useful to make it more structured looking

o #define REG_A (*(volatile long unsigned int *)(0x400c8000+0x044))

 Setting a bit, e.g., set Bit13
o REG_A |=1<<13

• |= : bitwise OR used for setting a bit
• bbbbbbbb |= 00100000 results bb1bbbb

where b is either 0 or 1

 Clearing a bit, e.g., clear Bit13
o REG_A &=~(1<<13)

• &=~ : bitwise AND of inverted values used for clearing
• bbbbbbbb &=~ 00100000 -> bbbbbbbb &= 11011111

-> bb0bbbbb

© BME-MIT 17.slide

7) Peripheral handling - CMU
 Check p.128 Fig.11.1 of EFM32GG-RM.pdf

o Clock distribution network is shown
o Clock has to be provided for the peripherals

• This is uC dependent but always has to be take care of
providing CLK for the peripherals and enabling the
peripherals

o Find HFRCO: high-frequency RC osc
• Not too much precise but readily available -> no external CLK

source is needed

o Check the signal path toward the GPIO peripheral

© BME-MIT 18.slide

7) Peripheral handling - CMU

CMU_HFPERCLKEN.GPIO

 Note: manual pages for a certain peripheral has to
be read carefully how to use them

© BME-MIT 19.slide

7) Peripheral handling - CMU
 Check p.136 of EFM32GG-RM.pdf

o Registers of CMU peripheral are shown with brief
description

o Register addresses are given relative to the base
address

• E.g. CMU_CTRL addr: from 0x000 to the next register
starting 0x004, which is 4bytes, i.e. 32 bits

© BME-MIT 20.slide

7) Peripheral handling - CMU
o Use copy-paste to put the register addresses into the

code
• 0x008 CMU_HFPERCLKDIV_OFFS
• 0x044 CMU_HFPERCLKEN0_OFFS

© BME-MIT 21.slide

7) Peripheral handling - CMU
 Check p.137 of EFM32GG-RM.pdf

o Bit-level description of CMU registers
o Check default values: values after Reset

© BME-MIT 22.slide

7) Peripheral handling - CMU
 Check p.140 of EFM32GG-RM.pdf

o Enable CLK

© BME-MIT 23.slide

7) Peripheral handling - CMU
 Check p.150 of EFM32GG-RM.pdf

o Enable CLK for GPIO

© BME-MIT 24.slide

7) Peripheral handling - CMU
 New #define for pointer to get access to CMU

register -> enabling
o #define CMU_ HFPERCLKDIV (*(volatile unsigned long

int*)(0x400c8000 + 0x008))
• Note: CMU_BASE_ADDR+ CMU_HFPERCLKDIV_OFFS

o #define CMU_HFPERCLKEN0 (*(volatile unsigned long
int*)(0x400c8000 + 0x044))

• Note: CMU_BASE_ADDR+CMU_HFPERCLKEN0_OFFS

 In the main function: CMU_HFPERCLKDIV |= (1<<8);
CMU_HFPERCLKEN0 |= (1<<13);

 Comment out all #include not to cause any trouble
 Check for errors by compiling

© BME-MIT 25.slide

8) Peripheral handling - GPIO
 See pp.756-758 and Fig. 32.1 of EFM32GG-RM.pdf

© BME-MIT 26.slide

8) Peripheral handling - GPIO
 Register map of GPIO (see p.764): offsets only!

 Use #define again
o #define GPIO_PB_MODEH_OFFS 0x02C
o #define GPIO_PB_DIN_OFFS 0x040
o #define GPIO_PE_MODEL_OFFS 0x094
o #define GPIO_PE_DOUT_OFFS 0x09C

Register for push button

Register for push button

Register for push LED

Register for LED

© BME-MIT 27.slide

8) Peripheral handling - GPIO
 Pointers to be used have to be created in the

same way as in case of CMU
o #define GPIO_PB_MODEH (*(volatile long unsigned int

*)(GPIO_BASE_ADDR+GPIO_PB_MODEH_OFFS))
o #define GPIO_PB_DIN (*(volatile …*)(…+…_OFFS))
o #define GPIO_PE_MODEL (*(…
o #define GPIO_PE_DOUT (*(…

© BME-MIT 28.slide

8) Peripheral handling - GPIO
 Check pp. 765-766, the GPIO_Px_CTRL (port

control) register: drive modes can be set

© BME-MIT 29.slide

8) Peripheral handling in general- GPIO
 Check pp. 766, the GPIO_Px_MODEL register

4bits->16 different modes

© BME-MIT 30.slide

8) Peripheral handling push button- GPIO
 Check pp. 767, the GPIO_Px_MODEH register

 Note: the MODEs are the same as before

Push buttons are conncted to pins 9 and 10 -> GPIO_Px_MODEH should be used

© BME-MIT 31.slide

8) Peripheral handling push button - GPIO
 Push button

o Pins has to be set as inputs
o Use MODEH register of port B

 After CLK enable, use GPIO_PB_MODEH |= ?
o Pin 9 (10) can be configured by bit group [7:4] [11:8]
o INPUT -> value is 1

o Use GPIO_PB_MODEH|=(1<<4); //PB9 conf as input
o Use GPIO_PB_MODEH|=(1<<8); //PB10 conf as input

© BME-MIT 32.slide

8) Peripheral handling LED - GPIO
 Check pp. 767, the GPIO_Px_MODEL register

 Note: the MODEs are the same as before

LEDs are conncted to pins 2 and 3 -> GPIO_Px_MODEL should be used

© BME-MIT 33.slide

8) Peripheral handling LED - GPIO
 LEDs

o Pins has to be set as outputs: pin 2 and 3 in Port E
o Use MODEL reg of port E

 After CLK enable, use GPIO_PE_MODEL |= ?
o Pin 2 (3) can be configured by bit group [11:8] [15:12]
o Pushpull mode has to be used whose value is a 4

o Use GPIO_PE_MODEL |= (4<<8); //PE2 conf as output
o Use GPIO_PE_MODEL |= (4<<12); //PE3 conf as output

© BME-MIT 34.slide

8) Peripheral handling - GPIO
 LEDs’ default value should be set

o Check p.768
• GPIO_Px_DOUT

– Data output on port

• GPIO_Px_DOUTSET
– Write bits to 1 to set corresponding bits in GPIO_Px_DOUT. Bits

written to 0 will have no effect.

• GPIO_Px_DOUTCLR
– Write bits to 1 to clear corresponding bits in GPIO_Px_DOUT. Bits

written to 0 will have no effect.

o GPIO_PE_DOUT|=(1<<2); //LED0 set
o GPIO_PE_DOUT|=(1<<3); //LED1 set

© BME-MIT 35.slide

9) Operation at a code level
 What should be written in the while loop?

o Read the status of the button (pushed/released) from
the corresponding register bit and control the LED
based on button state (on/off) Here it should be checked

based on the schematic
that what is the value of
the push button when
-pushed (->low)
-released (->high)

© BME-MIT 36.slide

10) Some extra
 Using GPIO_Px_CTRL register the drive strength

can be set to control the luminance of the LED
o Check p. 767

© BME-MIT 37.slide

11) Reference code
//#include "em_device.h"
//#include "em_chip.h"

#define CMU_BASE_ADDR 0x400c8000
#define GPIO_BASE_ADDR 0x40006000

#define CMU_HFPERCLKDIV (*(volatile unsigned long int*)(0x400c8000 + 0x008))
#define CMU_HFPERCLKEN0 (*(volatile unsigned long int*)(0x400c8000 + 0x044))

#define GPIO_PB_MODEH (*(volatile unsigned long int*)(0x40006000 + 0x02C))
#define GPIO_PB_DIN (*(volatile unsigned long int*)(0x40006000 + 0x040))

#define GPIO_PE_MODEL (*(volatile unsigned long int*)(0x40006000 + 0x094))
#define GPIO_PE_DOUT (*(volatile unsigned long int*)(0x40006000 + 0x09C))

int main(void)
{

/* Chip errata */
//CHIP_Init();

CMU_HFPERCLKDIV |= 1 << 8; // periferal clk enable
CMU_HFPERCLKEN0 |= 1 << 13; // GPIO clk enable

© BME-MIT 38.slide

11) Reference code (cont’d)
//

GPIO_PE_MODEL |= 4 << 8; // port E pin 2: pushpull output: page 766
GPIO_PE_MODEL |= 4 << 12;// port E pin 3: pushpull output

GPIO_PE_DOUT |= 1 << 2; // port E pin 2: high
GPIO_PE_DOUT |= 1 << 3; // port E pin 3: high

GPIO_PB_MODEH |= 1 << 4; // port B pin 9: input: page 67
GPIO_PB_MODEH |= 1 << 8;// port B pin 10: input

/* Infinite loop */
while (1) {

if (GPIO_PB_DIN & (1<<9)){
GPIO_PE_DOUT &= ~(1 << 3);

} else {
GPIO_PE_DOUT |= 1 << 3;

}

if (GPIO_PB_DIN & (1<<10)){
GPIO_PE_DOUT &= ~(1 << 2);

} else {
GPIO_PE_DOUT |= 1 << 2;

}

}
}

	Embedded and ambient systems�2023.10.11.
	1) Peripheral handling at low level
	1) Physical connections on the board
	1) Physical connections on the board
	1) Physical connections on the board
	2) Start a new empty project
	3) Start a new empty project
	3) Empty project created
	4) Get to know necessary peripherals
	4) Memory map (full)
	4) Memory map (CMU and GPIO regs.)
	5) Base address aliases in code
	6) Accessing registers using base addr.
	6) Explanation for setting reg. content
	6) Explanation for setting reg. content
	6) Explanation for setting reg. content
	7) Peripheral handling - CMU
	7) Peripheral handling - CMU
	7) Peripheral handling - CMU
	7) Peripheral handling - CMU
	7) Peripheral handling - CMU
	7) Peripheral handling - CMU
	7) Peripheral handling - CMU
	7) Peripheral handling - CMU
	8) Peripheral handling - GPIO
	8) Peripheral handling - GPIO
	8) Peripheral handling - GPIO
	8) Peripheral handling - GPIO
	8) Peripheral handling in general- GPIO
	8) Peripheral handling push button- GPIO
	8) Peripheral handling push button - GPIO
	8) Peripheral handling LED - GPIO
	8) Peripheral handling LED - GPIO
	8) Peripheral handling - GPIO
	9) Operation at a code level
	10) Some extra
	11) Reference code
	11) Reference code (cont’d)

