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Peripheral handling at register level
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1) Peripheral handling at low level
 Useful to see how peripherals work at a register 

level (hidden by the high-level functions)
 See the LED-blinking-by-button project built up 

from empty code at a low level
 Source files needed:

o EFM32GG-BRD2200A-A03-schematic.pdf 
• Board schematic: peripherals and their interconnection

o EFM32GG-RM.pdf  (RM=reference manual)
• Use it as a reference, i.e., the necessary chapters are needed 

only to be read
• It is a good way to understand general topics, e.g., 

communication (e.g. UART) used by the uC
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1) Physical connections on the board 
 Find the connections between the uC and the 

buttons based on the schematic
 Buttons: connected to ‘Port B’ of GPIO peripheral 

o UIF_PB0 -> MCU_PB9
o UIF_PB1 -> MCU_PB10
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1) Physical connections on the board 
 Find the connections between the uC and the 

LEDs based on the schematic
 LEDs: connected to ‘Port E’ of GPIO

o UIF_LED0 -> MCU_PE2
o UIF_LED1 -> MCU_PE3
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1) Physical connections on the board 
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2) Start a new empty project
 File->New->Project:
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3) Start a new empty project
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3) Empty project created

 Comment out CHIP_Init(); function
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4) Get to know necessary peripherals
 Two peripherals are needed

o General Purpose Input Output (GPIO)
o Clock Management Unit (CMU)

 Check p.17 Fig.5.2 of EFM32GG-RM.pdf
oMemory map of the system
o 32-bit uC -> 4GB addressable memory theoretically 

but only a small part is physically available
o Obviously only the physically available amount of 

memory is shown in the map 
o (see next slide for the map)
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4) Memory map (full)
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4) Memory map (CMU and GPIO regs.)

 The address space is important
o Starts from bottom and 

increasing to the top
o Base addresses of peripheral 

registers have to be determined
• CMU base address: 0x400c8000
• GPIO base address: 0x40006000



© BME-MIT 12.slide

5) Base address aliases in code
 Avoid memorizing memory addresses using 

aliases in the code (use Tab instead of Space)
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6) Accessing registers using base addr.
 Base address is only the start address of a certain 

kind of register array, like CMU registers
 To access a specific register (e.g. register for 

REG_A of a register array) an offset address have 
to be used relative to the base address
o The address of a specific register is the base + offset 

address
• e.g. REG_A -> 0x400c8000+0x044

 Note, that registers usually contain configuration 
bits to be set (see later)
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6) Explanation for setting reg. content
 32-bit registers are addressed
 Memory address is determined to store data there

o Remember: base address + offset = memory address
• Problem: this is a number for the compiler not an address
• Solution: to turn this number into a memory address it has to 

be converted into a pointer (use * to mark a pointer)
– In C, pointer is a variable type that points to a certain part of the 

memory (to a memory address where e.g. a register store data)
– Turning a number into a pointer means forcing the change of variable 

type, called casting

 The way to refer to a certain register is uC
dependent, its implementation has to be checked 
via examples, description, manual, etc.
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6) Explanation for setting reg. content
 In our case a pointer can be given by: 

o (*(volatile long unsigned int *)(0x400c8000+0x044))
• First *: a value is to be written into the memory (register)  at 

the given address
• volatile: avoid to be optimized out
• long unsigned int: type of the pointer (note: 32-bit reg.)
• Second *: this is a pointer
• 0x400c8000+0x044 : this is the known memory address

o The pointer itself: 
• (volatile long unsigned int *)(0x400c8000+0x044)
• To give a value for this pointer the first * is used
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6) Explanation for setting reg. content
 Useful to make it more structured looking

o #define REG_A (*(volatile long unsigned int *)(0x400c8000+0x044))

 Setting a bit, e.g., set Bit13
o REG_A |=1<<13

• |= : bitwise OR used for setting a bit
• bbbbbbbb |= 00100000 results bb1bbbb

where b is either 0 or 1

 Clearing a bit, e.g., clear Bit13
o REG_A &=~(1<<13)

• &=~ : bitwise AND of inverted values used for clearing 
• bbbbbbbb &=~ 00100000 -> bbbbbbbb &= 11011111 

-> bb0bbbbb
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7) Peripheral handling - CMU
 Check p.128 Fig.11.1 of EFM32GG-RM.pdf 

o Clock distribution network is shown
o Clock has to be provided for the peripherals

• This is uC dependent but always has to be take care of 
providing CLK for the peripherals and enabling the 
peripherals

o Find HFRCO: high-frequency RC osc
• Not too much precise but readily available -> no external CLK 

source is needed

o Check the signal path toward the GPIO peripheral
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7) Peripheral handling - CMU

CMU_HFPERCLKEN.GPIO

 Note: manual pages for a certain peripheral has to 
be read carefully how to use them
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7) Peripheral handling - CMU
 Check p.136 of EFM32GG-RM.pdf 

o Registers of CMU peripheral are shown with brief 
description

o Register addresses are given relative to the base 
address

• E.g. CMU_CTRL addr: from 0x000 to the next register 
starting 0x004, which is 4bytes, i.e. 32 bits
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7) Peripheral handling - CMU
o Use copy-paste to put the register addresses into the 

code
• 0x008 CMU_HFPERCLKDIV_OFFS
• 0x044 CMU_HFPERCLKEN0_OFFS
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7) Peripheral handling - CMU
 Check p.137 of EFM32GG-RM.pdf 

o Bit-level description of CMU registers
o Check default values: values after Reset
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7) Peripheral handling - CMU
 Check p.140 of EFM32GG-RM.pdf 

o Enable CLK
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7) Peripheral handling - CMU
 Check p.150 of EFM32GG-RM.pdf 

o Enable CLK for GPIO
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7) Peripheral handling - CMU
 New #define for pointer to get access to CMU 

register -> enabling
o #define CMU_ HFPERCLKDIV (*(volatile unsigned long 

int*)(0x400c8000 + 0x008)) 
• Note: CMU_BASE_ADDR+ CMU_HFPERCLKDIV_OFFS

o #define CMU_HFPERCLKEN0 (*(volatile unsigned long 
int*)(0x400c8000 + 0x044))

• Note: CMU_BASE_ADDR+CMU_HFPERCLKEN0_OFFS

 In the main function: CMU_HFPERCLKDIV |= (1<<8);
CMU_HFPERCLKEN0 |= (1<<13);

 Comment out all #include not to cause any trouble
 Check for errors by compiling
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8) Peripheral handling - GPIO
 See pp.756-758 and Fig. 32.1 of EFM32GG-RM.pdf 
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8) Peripheral handling - GPIO
 Register map of GPIO (see p.764): offsets only!

 Use #define again
o #define GPIO_PB_MODEH_OFFS 0x02C
o #define GPIO_PB_DIN_OFFS 0x040
o #define GPIO_PE_MODEL_OFFS 0x094
o #define GPIO_PE_DOUT_OFFS 0x09C

Register for push button

Register for push button

Register for push LED

Register for LED



© BME-MIT 27.slide

8) Peripheral handling - GPIO
 Pointers to be used have to be created in the 

same way as in case of CMU
o #define GPIO_PB_MODEH (*(volatile long unsigned int

*)(GPIO_BASE_ADDR+GPIO_PB_MODEH_OFFS))
o #define GPIO_PB_DIN (*(volatile …*)(…+…_OFFS))
o #define GPIO_PE_MODEL (*(…
o #define GPIO_PE_DOUT (*(…
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8) Peripheral handling - GPIO
 Check pp. 765-766, the GPIO_Px_CTRL (port 

control) register: drive modes can be set
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8) Peripheral handling in general- GPIO
 Check pp. 766, the GPIO_Px_MODEL register

4bits->16 different modes
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8) Peripheral handling push button- GPIO
 Check pp. 767, the GPIO_Px_MODEH register

 Note: the MODEs are the same as before

Push buttons are conncted to pins 9 and 10 -> GPIO_Px_MODEH should be used
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8) Peripheral handling push button - GPIO
 Push button

o Pins has to be set as inputs
o Use MODEH register of port B

 After CLK enable, use GPIO_PB_MODEH |= ?
o Pin 9 (10) can be configured by bit group [7:4] [11:8]
o INPUT -> value is 1

o Use GPIO_PB_MODEH|=(1<<4); //PB9 conf as input
o Use GPIO_PB_MODEH|=(1<<8); //PB10 conf as input
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8) Peripheral handling LED - GPIO
 Check pp. 767, the GPIO_Px_MODEL register

 Note: the MODEs are the same as before

LEDs are conncted to pins 2 and 3 -> GPIO_Px_MODEL should be used
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8) Peripheral handling LED - GPIO
 LEDs

o Pins has to be set as outputs: pin 2 and 3 in Port E 
o Use MODEL reg of port E

 After CLK enable, use GPIO_PE_MODEL |= ?
o Pin 2 (3) can be configured by bit group [11:8] [15:12]
o Pushpull mode has to be used whose value is a 4

o Use GPIO_PE_MODEL |= (4<<8); //PE2 conf as output
o Use GPIO_PE_MODEL |= (4<<12); //PE3 conf as output
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8) Peripheral handling - GPIO
 LEDs’ default value should be set

o Check p.768
• GPIO_Px_DOUT

– Data output on port 

• GPIO_Px_DOUTSET
– Write bits to 1 to set corresponding bits in GPIO_Px_DOUT. Bits 

written to 0 will have no effect. 

• GPIO_Px_DOUTCLR
– Write bits to 1 to clear corresponding bits in GPIO_Px_DOUT. Bits 

written to 0 will have no effect. 

o GPIO_PE_DOUT|=(1<<2); //LED0 set
o GPIO_PE_DOUT|=(1<<3); //LED1 set
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9) Operation at a code level
 What should be written in the while loop?

o Read the status of the button (pushed/released) from 
the corresponding register bit and control the LED 
based on button state (on/off) Here it should be checked

based on the schematic
that what is the value of
the push button when
-pushed (->low)
-released (->high)
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10) Some extra
 Using GPIO_Px_CTRL register the drive strength 

can be set to control the luminance of the LED
o Check p. 767
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11) Reference code
//#include "em_device.h"
//#include "em_chip.h"

#define CMU_BASE_ADDR 0x400c8000
#define GPIO_BASE_ADDR 0x40006000

#define CMU_HFPERCLKDIV (*(volatile unsigned long int*)(0x400c8000 + 0x008))
#define CMU_HFPERCLKEN0 (*(volatile unsigned long int*)(0x400c8000 + 0x044))

#define GPIO_PB_MODEH (*(volatile unsigned long int*)(0x40006000 + 0x02C))
#define GPIO_PB_DIN   (*(volatile unsigned long int*)(0x40006000 + 0x040))

#define GPIO_PE_MODEL (*(volatile unsigned long int*)(0x40006000 + 0x094))
#define GPIO_PE_DOUT  (*(volatile unsigned long int*)(0x40006000 + 0x09C))

int main(void)
{

/* Chip errata */
//CHIP_Init();

CMU_HFPERCLKDIV |= 1 << 8; // periferal clk enable
CMU_HFPERCLKEN0 |= 1 << 13; // GPIO clk enable
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11) Reference code (cont’d)
//

GPIO_PE_MODEL |= 4 << 8; // port E pin 2: pushpull output: page 766
GPIO_PE_MODEL |= 4 << 12;// port E pin 3: pushpull output

GPIO_PE_DOUT |= 1 << 2; // port E pin 2: high
GPIO_PE_DOUT |= 1 << 3; // port E pin 3: high

GPIO_PB_MODEH |= 1 << 4; // port B pin 9: input: page 67
GPIO_PB_MODEH |= 1 << 8;// port B pin 10: input

/* Infinite loop */
while (1) {

if (GPIO_PB_DIN & (1<<9)){
GPIO_PE_DOUT &= ~(1 << 3);

} else {
GPIO_PE_DOUT |= 1 << 3;

}

if (GPIO_PB_DIN & (1<<10)){
GPIO_PE_DOUT &= ~(1 << 2);

} else {
GPIO_PE_DOUT |= 1 << 2;

}

}
}
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