
© BME-MITBudapest University of Technology and Economics
Department of  Measurement and Information Systems

Embedded and ambient systems
2023.11.08.

Practice 4
Application of serial port to implement 

communications via UART



© BME-MIT 2.slide

Needed during practice
 01_EFM32_User_guide_efm32gg-stk3700-

user_guide.pdf
 02_EFM32_Schematic_EFM32GG-BRD2200A-A03-

schematic.pdf
 03_EFM32_Reference_manual_EFM32GG-

reference_manual.pdf
 04_EFM32_Datasheet_efm32gg990_datasheet.pdf
 Terminal program
Difference between ref. manual and datasheet/user guide:
-Reference manual contains general info of the whole IC family
-Datasheet/user guide contains specific info of a certain type of IC 
(from the IC family)



© BME-MIT 3.slide

UART / USRT / USART
 UART or USRT or USART?

o UART: Universal Asynchronous Receiver/Transmitter
• Serial communication without application of CLK line

o USRT: Universal Synchronous Receiver/Transmitter
• Serial communication based on CLK signal

o USART: Universal Synchronous Asynchronous 
Receiver/Transmitter

• Since the operation is very similar (main difference is the CLK 
signal) sometimes both are discussed without distinction



© BME-MIT 4.slide

UART properties

 No CLK signal, i.e., CLK line not needed->less wire
 2 data lines: transmitter (Tx) and receiver (Rx) line
 Communication speed (=bit duration) has to be 

set -> defines the bit borders in the system
o Reference oscillators at both the Tx and Rx sides has to 

be precise otherwise frequency difference will occur 
between Tx and Rx side and bit duration will change

o If CLK existed it would define the bit borders (as done 
in USRT)



© BME-MIT 5.slide

UART Communications
 Start of communications: edge change from H->L for 

1 bit duration
o Start of frame bit (Start bit)
o Used for synchronization

 Data bits: from 4 up to 16 data bits
 Parity bit (P): optional

o Used for error detection -> error is not corrected
o Even parity: count of 1-bits is even -> P=0, otherwise P=1
o Odd parity:  count of 1-bits is odd -> P=0, otherwise P=1

 End of communications: edge change from L -> H

START Bit
(High-> Low)

Data Bit

Bit border 



© BME-MIT 6.slide

UART Communications
 End of communications: line is High for 1 or 1.5 or 

2 bit duration

 Full frame:

Refer to page 451 of 03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf 
(Full USART: pp. 449-495)

STOP Bit
(High)Data Bit

Parity Bit



© BME-MIT 7.slide

UART connection
 Checking the user-guide (for IC specific info) is a 

must -> see page 13. (of the old version)
-------------------------------------------------------------------

Refer to page 13 of 01_06_EFM32_User_guide_efm32gg-stk3700-user_guide_older.pdf



© BME-MIT 8.slide

UART connection
 Also see page 14. (of the old version)

-------------------------------------------------------------------

Refer to page 14 of 01_06_EFM32_User_guide_efm32gg-stk3700-user_guide_older.pdf



© BME-MIT 9.slide

UART connection on uC
 Checking the schematic 

-------------------------------------------------------------------
Port E (PE) connections:

Port F (PF) connections:

Enabling UART:



© BME-MIT 10.slide

UART connection – Board Controller
Board Controller:



© BME-MIT 11.slide

UART connection – Board Controller
Board Controller:



© BME-MIT 12.slide

UART connection – USB PHY
USB:

PC via USB cable



© BME-MIT 13.slide

UART connection – Block diagram



© BME-MIT 14.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:



© BME-MIT 15.slide

Strating with a new project
 File->New->Project->Silicon Labs MCU Project:



© BME-MIT 16.slide

Strating with a new project
 Give project name and location, and set 

Copy content:



© BME-MIT 17.slide

Project created – start programming
 Main.c can be also renamed to UART_COM.c
 Although an empty C project has been created a 

program skeleton is offered automaticly



© BME-MIT 18.slide

CLK for GPIO peripheral (CMU system)
 Every peripheral has and needs a CLK to operate

Refer to page 128 of 
03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf



© BME-MIT 19.slide

CLK for GPIO peripheral
 CLK for GPIO peripheral must be enabled
 Search the library where Simplicity Studio is 

installed
o Contains include (inc: *.h) and source (src: *.c) files:
i:\Simplicity_studio\developer\sdks\gecko_sdk_suite\v2.6\platform\emlib\

 Following files has to be drag-and-dropped into 
emlib library of the project (see next slide):
o em_cmu.c (clock management unit)
o em_gpio.c
o em_usart.c



© BME-MIT 20.slide

CLK for GPIO peripheral
 Furthermore they have to be included into the 

program:

 Check how the CLK for GPIO can be enabled:



© BME-MIT 21.slide

CLK for GPIO peripheral (check .h files)
 In programming window click on

em_device.h and press F3 -> em_device.h opens
 Defines for different processors from EFM32 

family are found -> search for your own type 
(EFM32GG990F1024):



© BME-MIT 22.slide

CLK for GPIO peripheral (check .h files)
 Click on EFM32GG990F1024.h and press F3
 EFM32GG990F1024.h contains (among others)

o IT number that belongs to a certain peripheral

oMemory addresses, e.g. base addresses

• No need to check reference manual for e.g. base addresses
– Refer to page 17 of 

03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf 
to see base addresses



© BME-MIT 23.slide

CLK for GPIO peripheral (check .h files)
o Defines types that are pointers for the base address

• Click on (CMU_TypeDef *) and press F3
– Type definition of CMU pops-up in efm32gg_cmu.h which is a 

structure
– Elegant solution

typedef struct {
__IOM uint32_t CTRL;
__IOM uint32_t HFCORECLKDIV;

.

.

.
} CMU_TypeDef;

Elements of structure is assigned to the memory registers via base-address pointer!



© BME-MIT 24.slide

CLK for GPIO peripheral (check .h files)
In the header file: In the RM see p.136  (03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf):



© BME-MIT 25.slide

CLK for GPIO peripheral
 Using the structure CMU

o CMU is a structure pointer: arrow is used ->
o CMU-> (Ctrl+Space will complement) 

• Needed: HFPERCLKEN0  (Bit 13 is used for GPIO CLK)

• A define is available for Bit 13 in efm32gg_cmu.h 

See ref.man. P150:



© BME-MIT 26.slide

CLK for GPIO peripheral (CMU system)
 Every peripheral has and needs a CLK to operate

 Code to be used:
o CMU->HFPERCLKEN0 |= CMU_HFPERCLKEN0_GPIO;

Refer to page 128 of 
03_EFM32_Reference_manual_EFM32GG-reference_manual.pdf



© BME-MIT 27.slide

Setting GPIO in code (enable)
 Remember: PF7=1 has to be set
 More elegant approach if a function can be found 

for a problem -> Results in more readable code
o Check functions under em_gpio.c in the project



© BME-MIT 28.slide

Setting GPIO in code (enable)
 Open (double click on) GPIO_PinModeSet

o em_gpio.c opens at the function implementation
o Remark: em_gpio.h also contains the definition of 

functions and even more, e.g. static functions available 
only in header files

o Note: these functions are independent of the type of 
processor, since the processor dependent specialities
are defined in efm32gg_xxx.h

• Helps to develop portable code that is compatible with other 
processors (from the same processor family at least) 

o Hint: copy the function and paste it into code; make it 
one-line; comment the orig. and make a work copy



© BME-MIT 29.slide

Setting GPIO in code (enable)
 Read the function description: placed above the 

function definition



© BME-MIT 30.slide

Setting GPIO in code (enable)
 Function to be used:

o GPIO_Port_TypeDef + F3

Use the names given in 
the enum type definition



© BME-MIT 31.slide

Setting GPIO in code (enable)
 Function to be used:

o pin – port number, now it is 7
• No specific name is given

o GPIO_Mode_TypeDef + F3

o out – initial value of pin, use 1
Use the names given in 

the enum type definition



© BME-MIT 32.slide

Setting the UART (CLK)
 CLK is needed again! 

o Already used approach is also possible: setting CMU 
register

o Better way is using a function for that purpose
• Check em_cmu.c in the project by unfolding it:
• Find CMU_ClockEnable among functions
• Copy the function and paste it into the code:

– enable – it should be true obviously
– CMU_Clock_TypeDef + F3

» cmuClock_UART0 should be used

o Code to be used: 
CMU_ClockEnable(cmuClock_UART0, true);

CMU_ClockEnable(CMU_Clock_TypeDef clock, bool enable);



© BME-MIT 33.slide

Setting the UART (Tx and Rx)
 Remember: port settings for communications

o PE0 = Tx -> PE0 is output
o PE1 = Rx -> PE1 is input

 Use the function GPIO_PinModeSet again
o GPIO_PinModeSet(gpioPortF,7,gpioModePushPull,1);

• Used for setting PF7 into 1 to enable the UART comm.

o GPIO_PinModeSet(gpioPortE,0,gpioModePushPull,1);
• See changes in red for setting Tx line (PE0 is now output)

o GPIO_PinModeSet(gpioPortE,1,gpioModeInput,1);
• See changes in red for setting Rx line (PE1 is now input)

Delete back until gpioMode, then push F3 This boolean is don’t care now



© BME-MIT 34.slide

Configuration of the UART
 Check em_usart.c in project explorer

o Find USART_InitAsync and double click
• em_usart.c opens at the function implement.
• Read description of the function
• Copy the function and paste it into the code

– USART_InitAsync(USART_TypeDef *usart, const USART_InitAsync_TypeDef *init)

 USART_InitAsync()
o USART_TypeDef + F3 : it is a structure again defined in 

efm32gg_usart.h
• Remember that a pointer is used here!

– check out for its define in efm32gg990F1024.h



© BME-MIT 35.slide

Configuration of the UART
– Define of USART_TypeDef in efm32gg990F1024.h

– More than only one USART is available: USART0 is our choice 
(& is not needed since it is a pointer: see later)

o USART_InitAsync_TypeDef + F3
• Important parameters for the USART
• Unfortunately this structure is not existing, therefore it has 

to be implemented 
– implementation is advised before the main function in the .c main 

file as a global variable. In this case its initial value becomes zero 
(while when implementation is done inside the main function it fills 
up the structure with memory garbage)

– USART_InitAsync_TypeDef UART0_init;

• Not UART0_init is used but a memory address: &UART0_init

It can be any name



© BME-MIT 36.slide

Configuration of the UART
• Function to be used in the code: 

USART_InitAsync(UART0, &UART0_init);
• UART0_init structure has to be uploaded with values

– USART_InitAsync_TypeDef + F3 again -> em_usart.h
» Stay above the writing and options pop-up

– Code to be used: UART0_init.enable = usartEnable;



© BME-MIT 37.slide

Configuration of the UART
• Same way all the other properties has to be filled up
• Initialization has to be done before using it

• Note: every name has to checked! 
-> e.g. usartDatabits8 is not equal value 8 but value 5



© BME-MIT 38.slide

Configuration of the UART
o Oversampling: see ref.man. page 458:



© BME-MIT 39.slide

Configuration of the UART
 The faster way

o Look for the USART_InitAsync_TypeDef structure (F3) 
and scroll down in em_usart.h to find it

• It is a predefined default structure 
• Before the main function it can be used for initialization:

USART_InitAsync_TypeDef UART0_init = USART_INITASYNC_DEFAULT;



© BME-MIT 40.slide

Configuration of the UART
 Interesting difficulty with PE0 and PE1 pins

o Check datasheet on page 65.

o U0_RX and U0_TX default locations are PF7 and PF6, 
respectively, that has to be changed since the circuit  
(i.e. the board) has been designed for UART 
communication at Location 1

• Datasheet is valid for the IC not for the board but a freedom 
is given this way for the board designer

o Location 1 has to be set for correct operation



© BME-MIT 41.slide

Configuration of the UART
 Check reference manual at page 492



© BME-MIT 42.slide

Configuration of the UART
 Check reference manual at page 492



© BME-MIT 43.slide

Configuration of the UART
 Setting the I/O Routing register (i) for LOC1 (PE0 

and PE1 pins for UART communication) and 
enabling these lines for transmission and 
reception of serial data
o UART0->ROUTE |= (1) << 8;

• Although correct but not too informative

o A definition can be used for this purpose in 
efm32gg_usart.h (search for ‘LOC1’)

• #define USART_ROUTE_LOCATION_LOC1
(_USART_ROUTE_LOCATION_LOC1 << 8)

o UART0->ROUTE |= USART_ROUTE_LOCATION_LOC1;



© BME-MIT 44.slide

Configuration of the UART
 Enabling RX and TX via RXPEN and TXPEN bits 

respectively
o A definition can be used for this purpose in 

efm32gg_usart.h (search for ‘RXPEN’ and ‘TXPEN’)
• UART0->ROUTE |=(USART_ROUTE_RXPEN | USART_ROUTE_TXPEN);

 Everything is ready for sending data via UART



© BME-MIT 45.slide

Sending data via UART
 In Project Explorer window under 

emlib -> em_usart.c you can find
o USART_Tx(USART_TypeDef *usart, uint8_t data)

 Code to be inserted:
o USART_Tx(UART0, '+');

oWe send ‘+’ signal via UART0
o Good idea to check the compilation

 Where is the UART (COMx)?
o Check in Windows Device Manager



© BME-MIT 46.slide

Sending data via UART
 Check UART (COM port number and its settings) in 

Device Manager in Windows (now it is COM4)



© BME-MIT 47.slide

Sending data via UART
 A PC-based terminal program is needed to get 

access to COM4 port: an option is putty.exe

1

2 3

4

5

6



© BME-MIT 48.slide

Sending data via UART
 The terminal is now open
 Compile and download the code to check 

operation
o Has the ‘+’ sign appeared in the terminal window?



© BME-MIT 49.slide

Sending data via UART
 This status is the starting point to develop an 

UART communication-based application
o E.g. write in the terminal window the character sent 

via the keyboard (= read a character from UART0 and 
send this character to UART0)

• This function has to be added into the program (in the while 
loop)

• USART_Tx(UART0, USART_Rx(UART0));
o Problem: character is received in a blocking way:

• We are always in the loop waiting for data and no other 
operation can be done

• Better if the arrival of new data can be indicated not to stack 
in the while loop forever (non-blocking solution)



© BME-MIT 50.slide

Appendix:program code(a working version) 


	Embedded and ambient systems�2023.11.08.
	Needed during practice
	UART / USRT / USART
	UART properties
	UART Communications
	UART Communications
	UART connection
	UART connection
	UART connection on uC
	UART connection – Board Controller
	UART connection – Board Controller
	UART connection – USB PHY
	UART connection – Block diagram
	Strating with a new project
	Strating with a new project
	Strating with a new project
	Project created – start programming
	CLK for GPIO peripheral (CMU system)
	CLK for GPIO peripheral
	CLK for GPIO peripheral
	CLK for GPIO peripheral (check .h files)
	CLK for GPIO peripheral (check .h files)
	CLK for GPIO peripheral (check .h files)
	CLK for GPIO peripheral (check .h files)
	CLK for GPIO peripheral
	CLK for GPIO peripheral (CMU system)
	Setting GPIO in code (enable)
	Setting GPIO in code (enable)
	Setting GPIO in code (enable)
	Setting GPIO in code (enable)
	Setting GPIO in code (enable)
	Setting the UART (CLK)
	Setting the UART (Tx and Rx)
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Configuration of the UART
	Sending data via UART
	Sending data via UART
	Sending data via UART
	Sending data via UART
	Sending data via UART
	Appendix:program code(a working version) 

