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Abstract Chaotic signals are ultra-wideband signals that can be generated with

simple circuits in any frequency bands at arbitrary power level. The ultra-wideband

property of chaotic carriers is beneficial in indoor and mobile applications where

multipath propagation limits the attainable bit error rate. Another possible applica-

tion is the ultra-wideband (UWB) radio, where the spectrum of transmitted signal

covers an ultra-wide frequency band (a few GHz) and the power spectral density of

transmitted UWB signal is so low that it does not cause any noticeable interference

in the already existing conventional telecommunications systems sharing the same

RF band. The UWB technology makes the reuse of the already assigned frequency

bands possible. This chapter provides a unified framework for modeling, perfor-

mance evaluation and optimization of UWB radios using either impulses or chaotic

waveforms as carrier. The Fourier analyzer concept introduced provides a mathe-

matical framework for studying the UWB detection problem. The autocorrelation

receiver, the most frequently used UWB detector, is discussed in detail and an ex-

act closed-form expression is provided for the prediction of its noise performance.

Conditions assuring the best bit error rate with chaotic UWB radio are also given.
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Introduction

Since 1990, much research effort has been devoted to the study of communi-

cations using chaotic carriers. The earliest works, which were inspired by the

synchronization results of Pecora and Carroll [Pecora and Carroll(1990)], exploited

synchronization and proposed analog modulation schemes with coherent receivers

[Cuomo et al(1993), Cuomo and Oppenheim(1993), Kocarev and Parlitz(1995),

Papadopoulos et al(1995)]. Digital modulation using chaotic carriers and a coherent

receiver was first introduced in 1992 [Parlitz et al(1992)] and called chaos shift

keying (CSK) [Dedieu et al(1993)]. Several other chaotic digital modulation

schemes were proposed in the following years, a survey of the state of the art in

1995 can be found in [Hasler(1995)].

The intensive study of synchronization-based coherent communications sys-

tems have shown that they are very sensitive to channel noise and dis-

tortion. A robust noncoherent technique called differential chaos shift key-

ing (DCSK) [Kolumbán et al(1996)] was introduced in 1996, and later op-

timized as FM-DCSK [Kolumbán et al(1997b)] where FM means that the

power of chaotic basis functions is kept constant by frequency modulation.

Since then, the methods of communications theory [Kolumbán et al(1997a),

Kolumbán et al(1998), Kolumbán and Kennedy(2000)] and statistical analysis

[Abel et al(2000), Sushchik et al(2000)] have been applied to chaotic digital mod-

ulation schemes, culminating in the development of chaotic counterparts for con-

ventional modulation schemes [Kolumbán(2000)], and in a theoretical classification

and modeling of all chaotic modulation schemes [Kolumbán et al(2005)]. The state

of the art has been summarized in three recent publications [Kennedy et al(2000),

Hasler et al(2002a), Lau and Tse(2003)].

Chaotic signals are ultra-wideband signals that can be generated with simple cir-

cuits in any frequency bands at arbitrary power level. The ultra-wideband property

of chaotic carriers is beneficial in indoor and mobile applications where multipath

propagation limits the attainable bit error rate. Recovery of chaotic basis functions

independently of the modulation and in a noisy channel is difficult to achieve; failure

to solve this problem to date has impeded the development of coherent demodulators

for chaotic communications. Consequently, the noncoherent modulation schemes

are preferred in chaotic communications.

To day everything goes wireless, consequently, there is a huge demand for cheap

low-data rate wireless networking devices that can operate for years using the same

AAA battery. These requirements can only be satisfied by CMOS technology. Un-

fortunately, the radio frequency (RF) bands where CMOS can be used is already

occupied by conventional narrowband radio communications systems. To overcome

this problem frequency re-use must be used.

A recently elaborated tool for frequency reuse is the ultra-wideband (UWB) ra-

dio [Siwiak and McKeown(2004)] where the spectrum of transmitted signal cov-

ers an ultra-wide frequency band. The power spectral density (psd) of transmitted

UWB signal is extremely low and does not cause any noticeable interference in the

conventional telecommunications systems sharing the same RF band. The UWB
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technology has nothing in common with the spread spectrum (SS) systems since in

UWB technology

• RF badwidth may be as wide as a few GHz;

• it is not allowed to disrupt the already existing radio channels sharing the same

RF band, consequently, contrary to slow frequency hopping the psd of UWB

signal must be always kept below the specified limit;

• there is no spreading sequence, instead, the modulation is applied directly to an

ultra-wideband carrier.

The chaos-based communications systems are inherently ultra-wideband systems

and satisfy the UWB requirements listed above. The noncoherent receiver configu-

rations are preferred in the built UWB systems [Arsalan et al(2006)] since the recov-

ery of UWB carriers with cheap CMOS circuitry is a very difficult task, especially

if the ultra-low power consumption is a must. If so then coherent receivers cannot

be used and chaos-based communications schemes offer a competitive alternative

to UWB radio implementation.

This chapter provides a unified framework for modeling, performance evalua-

tion, optimization and comparison of UWB radios using either impulses or chaotic

waveforms as carrier.

Section 1 generalizes the idea of basis functions to varying waveform communi-

cations, provides a model for waveform communications and discusses the estima-

tion problem, a special problem arising in chaos-based communications.

Starting from the general receiver model, Sec.2 develops a signal model in order

to provide a mathematical tool for the waveform detection problem. By means of

the Fourier analyzer concept, a signal space, referred to as received signal space, is

defined in which each received signal, either deterministic or random, can be repre-

sented. Finally, the hierarchy of waveform communications systems is established.

Section 3 surveys the UWB radio regulations and discusses the UWB modulation

schemes.

In transmitted reference (TR) systems the reference signal used by the correla-

tion receiver is not recovered at the receiver by a carrier recovery circuit but it is

transmitted via the radio channel. This approach makes the TR systems very robust

against the channel distortion. Furthermore, a very simple circuit, the autocorrela-

tion receiver can be used for reception of a TR signal. Section 4 determines the

special properties of TR basis functions and discusses the operation principle of

TR autocorrelation receiver. An exact closed-form expression is provided for the

calculation of noise performance of TR autocorrelation receivers and the condition

assuring the best bit error rate is determined.

1 Basis Functions: Model for Waveform Communications

Since only analog waveforms may be transmitted over a radio channel and the data

rate R is given by the specification, the modulator of a digital telecommunications
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system maps the symbols to be transmitted into analog waveforms of finite duration

T = 1/R. These analog waveforms of duration T constitute the signal set. This

technique is referred to as waveform communications where T denotes the signalling

time interval. To get the simplest mathematical model, the elements of signal set are

represented by a minimum number of basis functions in the basis function approach

[Haykin(1994)].

Each type of digital demodulators has more or less a priori information on the

basis functions. This knowledge is exploited to recover the digital information trans-

mitted and to suppress channel noise and interference. The more the amount of a

priori knowledge exploited, the better the system performance.

The type of basis functions gives an upper bound on the a priori information that

may be exploited by the demodulator. Based on the basis functions, three classes of

waveform communications are distinguished [Kolumbán et al(2005)], namely, com-

munications with

• Fixed waveforms [Haykin(1994), Proakis(1995), Simon et al(1995)];

• Chaotic waveforms [Hasler et al(2002b)];

• Random waveforms [Basore(1952)].

In fixed waveform communications, the basis functions are fixed. Consequently,

every time when the same symbol is sent then the same waveform is transmitted. The

basis functions and the elements of signal set are exactly known. In the built coherent

receivers the fixed basis functions are recovered from the received signal (see the

correlator receiver including a carrier recovery circuit) or stored at the receiver (see

the matched filter approach) [Proakis(1995)].

Note, the type of generator used to produce the fixed basis functions is irrelevant.

Even a windowed part of chaotic or random signal may be used in fixed waveform

communications as basis function provided that it is stored at both the transmitter

and receiver.

In chaotic communications, each basis function is the actual output of a chaotic

signal generator. The chaotic signals are predictable only in short run, because the

chaotic systems have an extremely high sensitivity to the initial conditions and the

parameters of chaotic attractor [Parker and Chua(1989)]. Since the shape of chaotic

basis functions is not fixed, the radiated waveform varies even if the same symbol is

transmitted repeatedly. A unique feature of chaotic communications systems is that

the transmitted signal is never periodic.

Communications techniques where chaotic and random waveforms are used as

carrier are referred to as varying waveform communications systems.

1.1 Basis Functions in Fixed Waveform Communications

Consider a fixed waveform communications system using M symbols for the data

communications. First the symbol m is mapped into a signal vector sm = [smn]. From

each signal vector an analog waveform sm(t) is generated, these waveforms consti-
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tutes the signal set. In order to get the simplest mathematical model for the mod-

ulator, the elements of signal set are expressed as a linear combination of N basis

functions [Haykin(1994)]

sm(t) =
N

∑
n=1

smngn(t),







0 ≤ t < T

m = 1,2, . . . ,M
n = 1,2, . . . ,N

(1)

where N ≤ M. Note, each symbol is characterized by a distinct signal vector sm =
[smn], m = 1,2, . . . ,M and, according to (1), by a distinct waveform. To avoid inter-

symbol interference (ISI), the real-valued fixed basis functions gn(t), n = 1,2, . . . ,N
must be zero outside the signalling time interval T .

By definition, basis functions are orthonormal

∫ T

0
gi(t)gn(t)dt =

{

1, if i = n

0, otherwise

which means that each basis function carries unit energy and each pair of distinct

basis functions are orthogonal to each other over the signalling time period [0,T ].

1.2 Basis Functions in Varying Waveform Communications

Let the continuously varying property of chaotic basis functions be reflected by an

upper index q in (1)

gq
n(t), q = 1,2, . . .

where q identifies the basis function used to transmit the qth element in a sequence

of symbols.

This chapter focuses on chaotic UWB waveform communications. To get com-

pact equations, q will be suppressed in the remaining part of the chapter except when

we want to emphasize the time-varying property of basis functions.

The main difference between fixed and chaotic waveform communications is that

in the latter the basis functions are orthonormal over the signalling time interval only

in the mean

E

[

∫ T

0
g

q
i (t)g

q
n(t)dt

]

=

{

1, if i = n

0, otherwise
(2)

where E[·] denotes the expectation operator.

The duration of basis functions is determined by the required data rate R = 1/T .

Let the chaotic signals with finite duration be referred to as chaotic sample func-

tions. The energy of chaotic sample functions varies from sample function to sam-

ple function, and due to their finite duration, two chaotic sample functions are never

orthogonal. These properties are reflected by the expectation operator in (2).

As a result, the energy used to transmit a given symbol may vary even if the same

symbol is transmitted repeatedly and the actual basis functions are not orthogonal
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in chaotic communications. The former and the latter are referred to as auto- and

cross-correlation estimation problems.

The estimation problems must be solved, otherwise, they seriously corrupt the

bit error rate. To see the consequence of estimation problem consider chaotic on-

off keying (COOK) modulation [Kis et al(1998)] where only one basis function is

used, consequently, only the autocorrelation estimation problem appears. Figure 1

shows that the autocorrelation estimation problem manifests itself if
∫ T

0 g2
1(t)dt is

not constant (see dashed curve) but the problem disappears when
∫ T

0 g2
1(t)dt is kept

constant (see solid curve). For more details on the estimation problems and solutions

to them refer to [Kolumbán et al(2002)].
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Fig. 1 Noise performance of noncoherent COOK with constant (solid curve) and varying (dashed

curve) energy per symbol. BER of coherent COOK is also shown (dotted curve) for comparison.

2 Signal Model for Detection

In digital communications, the elements of signal set carrying the symbols pass

through a telecommunications channel. The received signal is corrupted by noise

and may suffer from distortion, interference and multipath effect. Observing the

corrupted and distorted received analog waveform for the signalling time interval,

the detector must decide which message has been most likely transmitted.

According to (1), the elements of signal set are represented by the basis functions

that are known, or at least some of their characteristics are known at the receiver.

This a priori knowledge is exploited to perform the detection and suppress chan-

nel noise and interference. The noise and interference suppression capabilities of a
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waveform communications system depend on the amount of a priori information

exploited by the demodulator. As a rule of thumb, a detector algorithm exploiting

less amount of a priori information provides a simpler detection technique.

2.1 General Block Diagram of a Receiver

Figure 2 shows the general block diagram of a waveform communications receiver.

Observation

Channel (sele
tion)�lter Dete
tor
on the elements of signal set2B

variablezmA priori information

r̃m(t) = s̃m(t) + ñ(t)signal

Noisy received

rm(t) = sm(t) + n(t)

Noisy filtered signal

τ

Fig. 2 General block diagram of a digital waveform communications receiver.

The transmitted signal sm(t), the mth element of signal set, is corrupted by a

signal n(t) which represents the sample function of white Gaussian channel noise

or interference. The received signal is obtained as

rm(t) = sm(t)+ n(t).

To select the signal to be received, rm(t) is fed into a bandpass channel (selection)

filter of RF bandwidth 2B. The detector observes the filtered received signal r̃m =
s̃m(t)+ ñ(t) over τ and generates the observation variable zm which may be either a

random scalar number or a random vector.

The decision time instants, the signalling time interval T and the RF bandwidth

2B of transmitted signal sm(t) are always known at the receiver. The receiver pa-

rameters are matched to (i.e., identical) these data. Fortunately, these parameters are

enough to apply the Fourier analyzer concept that provides a unified theory for the

detection problem.

2.2 Fourier Analyzer Concept

To get a mathematical model for the detection problem first a received signal space

has to be constructed in which each signal, either deterministic or random, appearing

at the detector input and observed over the observation time interval τ can be fully

represented. Although the Fourier transform is widely used in electrical engineering

to represent arbitrary waveforms in the frequency domain, it cannot be used here
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since (i) it does not provide a discrete space, (ii) its dimension goes to infinity,

and (iii) it is not restricted to the observation time interval. The Fourier analyzer

concept [Kolumbán et al(2005)] derives a finite dimensional and discrete received

signal space in the frequency domain.

In the Fourier analyzer concept the received signal space is defined as a Hilbert

space [Kreyszig(1999)] spanned by the harmonically related cos(·) and sin(·) func-

tions. To distinguish the basis of this Hilbert space from the basis functions intro-

duced by (1) let the former be referred to as a Fourier base.

Consider two arbitrary real-valued waveforms denoted by x1(t) and x2(t). To get

a Hilbert space an inner product

〈x1(t),x2(t)〉 =

τ
∫

0

x1(t)x2(t)dt

and a norm

‖ x1(t) ‖=

√

√

√

√

√

τ
∫

0

x2
1(t)dt

have to be defined.

Now let these ideas be applied to the detection problem depicted in Fig. 2. In

a well-designed receiver the channel filter passes the transmitted signal without

distortion, i.e., s̃m(t) = sm(t). For the sake of simplicity, consider the noise- and

interference-free case where n(t) = 0, therefore r̃m(t) = sm(t) and assume that the

observation and signalling time intervals are identical, τ = T .

Our goal is to derive a discrete received signal space in the frequency domain.

Because the detector observes the received signal only on the time interval [0,τ),
the input signal can be substituted by a periodic signal

sT,m(t) =

{

sm(t), for 0 ≤ t < τ
sm(t −Cτ), otherwise

(3)

where C is an arbitrary nonzero integer. Due to the periodicity introduced in (3),

the received signal space becomes discrete. The introduction of the periodic signal

in (3) does not cause any distortion since the two signals coincide each other over

the observation time period.

In the Fourier analyzer concept [Kolumbán et al(2005)], the received signal space

is a Hilbert space spanned by the harmonically related sinusoidal functions

cos

(

k
2π

τ
t

)

and sin

(

k
2π

τ
t

)

where τ denotes the observation time interval. Note, the fundamental period of

Fourier base is determined by the observation time period and has nothing to do

with the center frequency of sm(t).
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During reception, the detector projects the received waveform sm(t) into this

Hilbert space and returns its Fourier coefficients by calculating the inner products

amk =
2

T
〈sT,m(t),cos(k

2π

T
t)〉 =

2

T

∫ T

0
sm(t)cos

(

k
2π

T
t

)

dt

bmk =
2

T
〈sT,m(t),sin(k

2π

T
t)〉 =

2

T

∫ T

0
sm(t)sin

(

k
2π

T
t

)

dt

(4)

where we exploited the assumption of τ = T .

Over the observation time period the received bandpass signal may be recon-

structed from its Fourier coefficients

sm(t)
∣

∣

∣

0≤t<T
=sT,m(t) =

K2

∑
k=K1

[

amk cos

(

k
2π

T
t

)

+ bmk sin

(

k
2π

T
t

)]

(5)

where K1 and K2 are determined by the center frequency and bandwidth of channel

filter.

Chaotic and random signals may also appear at the detector input. The Fourier

series representation introduced in (5) remains valid for these signals, but the Fourier

coefficients defined by (4) becomes random variables.

2.3 Dimension of Received Signal Space

Consider an ideal bandpass channel filter with bandwidth 2B and center frequency

f0. Assume that the ideal bandpass channel filter is perfectly matched to the trans-

mitted signal and τ = T .

Let Sm(ω), m = 1,2, . . . ,M, denote the Fourier transform of the elements of sig-

nal set. Since s̃m(t) = sm(t), substituting (3) into (4) and applying the definition of

Fourier transform we get

ak =
2

T
ℜ

[

Sm(k
2π

T
)

]

and bk = − 2

T
ℑ

[

Sm(k
2π

T
)

]

.

Figure 3 marks the location of Fourier coefficients ak, bk of detector input by

arrows in the frequency domain. Due to the periodicity introduced in (3), a discrete

spectrum is obtained and the distance between two adjacent spectral components is

equal to the data rate R = 1/T . The bandwidth of detector input is limited by the

channel filter, this ideal bandpass filter suppresses each spectral component lying

outside the frequency range (2K1 − 1)/2T ≤ f ≤ (2K2 + 1)/2T . Note, since the

channel filter limits the bandwidth of received signal, only a finite number of Fourier

coefficients differs from zero.

By definition, the signal dimension gives the number of harmonically related

sin(·) and cos(·) functions along which the receiver collects information on the re-

ceived signal. In other words, the signal dimension gives the dimension of Hilbert
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Fourier coefficients
Location of � � �K1T K2TK1+1T0 f2B1T

Fig. 3 Determination of the dimension of received signal space: Location of Fourier coefficients

of detector input in the frequency domain.

space spanned by the Fourier base which is required to represent any signal appear-

ing at the detector input over the observation time interval in the received signal

space. From Fig. 3 and (5), the signal dimension is obtained as

SD = 2(K2 −K1 + 1) = 4BT (6)

where

K1 =
2( f0 −B)T + 1

2
=

4 f0T −SD + 2

4
(7)

and

K2 =
2( f0 + B)T −1

2
=

4 f0T + SD −2

4
. (8)

The signal dimension SD is independent of the center frequency of telecommu-

nications channel, it is proportional to the product of channel bandwidth 2B and

observation time interval τ = T . Note, only two receiver parameters, bandwidth of

channel filter and observation time interval, are required to construct the received

signal space. These parameters are always known.

2.4 Measure of a priori Information

As shown in Fig. 2, after channel filtering the detector projects the received wave-

form into the received signal space and returns either the Fourier coefficients of the

noisy received signal (see coherent systems in Sec. 2.4.1) or some other parame-

ter(s) derived from the Fourier coefficients (see noncoherent receiver in Sec. 2.4.4).

These Fourier coefficients or derived parameters are compared against the a priori

information available at the receiver to get the observation variable.

To compare the different modulation schemes and to determine their theoretical

performance bounds, an exact measure for the amount of a priori information ex-

ploited by the demodulator must be found. Let the basis functions g
q
n(t) be projected

into the received signal space
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α
q

nk =
2

T
〈g

q
T,n(t),cos(k

2π

T
t)〉 =

2

T

∫ T

0
gq

n(t)cos

(

k
2π

T
t

)

dt

β
q
nk =

2

T
〈g

q
T,n(t),sin(k

2π

T
t)〉 =

2

T

∫ T

0
gq

n(t)sin

(

k
2π

T
t

)

dt.

(9)

Recall, in fixed waveform communications the basis functions are fixed and the

upper index q has to be dropped.

The Fourier coefficients given by (9) can be used to quantify the amount of a

priori information. In the Fourier analyzer concept it relates to how precisely the

Fourier coefficients α
q
nk and β

q
nk are known at the receiver.

Fixed basis functions, mostly sinusoidal signals, are used in conventional digital

communications systems. From the detection point of view coherent and nonco-

herent receivers are distinguished [Haykin(1994)]. In the Fourier analyzer concept,

which includes both fixed and varying waveform communications, four cases have

to be considered.

2.4.1 Coherent Modulation Technique

If the exact values of Fourier coefficients are available at the receiver then the basis

functions may be reconstructed over the observation time period without any error

or approximation

gq
n(t)

∣

∣

∣

0≤t<T
= g

q
T,n(t) =

K2

∑
k=K1

[

α
q

nk cos(k
2π

T
t)+ β

q

nk sin(k
2π

T
t)

]

(10)

where the Fourier coefficients α
q

nk and β
q

nk are obtained from (9) and the constants

K1 and K2 are given by (7) and (8), respectively.

In fixed waveform communications, the complex Fourier coefficients are con-

stant [consequently, q does not appear in (9) and (10)] and they are recovered by a

carrier recovery circuit (see coherent correlation receiver) or stored as the impulse

response of a matched filter [Haykin(1994)].

In chaotic waveform communications, the Fourier coefficients vary from symbol

to symbol, consequently, the matched filter approach cannot be used. Since a robust

solution to the recovery of chaotic basis functions from the received noisy and dis-

torted signal has not yet been published, the coherent modulation technique is not

feasible in the built chaotic communications systems.

2.4.2 Optimum Noncoherent Modulation Technique

The optimum noncoherent modulation technique can be used only in fixed wave-

form communications. Let the basis functions be represented in harmonic form
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gn(t)
∣

∣

∣

0≤t<T
= gT,n(t) =

K2

∑
k=K1

γnk cos

(

k
2π

T
t −θk

)

where each harmonic component is defined by its harmonic amplitude γk and phase

angle θk. The harmonic amplitudes are derived from the Fourier coefficients (9) as

γnk =
√

α2
nk + β 2

nk . (11)

In the optimum noncoherent modulation, the phase information θk is neglected

and only the harmonic amplitudes γk are used to derive the detection algorithm. A

typical example for this approach is the conventional noncoherent frequency-shift

keying (FSK) modulation scheme [Haykin(1994)].

The neglected phase information means that the optimum noncoherent receiver

exploits less amount of a priori information during detection as its coherent counter-

parts. The loss in exploited a priori information results in a worse noise suppression

capability, consequently, in a worse bit error rate.

2.4.3 Averaged Optimum Noncoherent Modulation Technique

In the Fourier analyzer concept, basis functions and signals are represented in the re-

ceived signal space. Since the value of chaotic signals can be predicted only in short

run, the random signal model has to be used to both the chaotic and random basis

functions [Kis and Kolumbán(1998)]. Recall, random signals have no Fourier trans-

form, they can be characterized only with their psd in the frequency domain which is

the Fourier transform of their autocorrelation function [Bendat and Piersol(1966)].

The averaged optimum noncoherent modulation technique is used in chaotic

communications. It follows from the definition of psd that the
(

k 2π
T

)

-frequency

components of chaotic and random signals has no phase information in the received

signal space and the square root of their psd can be estimated from (9)

γnk = E
[

γ
q
nk

]

= E

[

√

(αq
nk)

2 +(β q
nk)

2

]

(12)

where E[·] denotes averaging.

Both the lost phase information and averaging reduce the amount of exploited

a priori information, consequently, the noise performance of averaged optimum

noncoherent detector is worse than that of the optimum noncoherent one. An ex-

ample for the chaos-based averaged optimum noncoherent detector is shown in

[Kolumbán et al(2004)].
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2.4.4 Noncoherent Modulation Technique

The least a priori information is exploited in the noncoherent modulation technique.

This approach can be used only if the basis functions are completely separated in

the received signal space. The basis functions of transmitted reference system intro-

duced in Sec. 4.1 satisfy this condition, the operation principle of the TR autocorre-

lation receiver is discussed in Sec. 4.2.

In the Fourier analyzer concept the detector collects the components of received

signal in the received signal space to generate the observation variable. The power of

channel noise is uniformly distributed over the Fourier base, while the distribution

of transmitted waveform is a priori known. During the generation of observation

variable the parameters (9), (11) and (12) are used as weights in signal summation in

coherent, optimum noncoherent and averaged optimum noncoherent, respectively,

modulation techniques. As a result, the signal-to-noise ratio (SNR) measured at each
(

k 2π
T

)

frequency of Fourier base is accounted; the higher the SNR, the larger the

weight.

In noncoherent modulation the basis functions are completely separated and only

the presence of signal components is checked. Consequently, the weights have only

two distinct values, their value is 1 and 0 if signal component is and is not, respec-

tively, transmitted

Wnk =







1, if E
[

(α
q

nk)
2 +(β

q

nk)
2
]

> 0

0, if E
[

(αq
nk)

2 +(β q
nk)

2
]

= 0 .

Since the same weights are used for each component of observation variable, the

noise contribution of a component is not controlled by its SNR. This causes a further

loss in a priori information and results in the worst noise performance.

Although the noncoherent modulation technique offers the worst noise perfor-

mance in an AWGN channel, it is very robust against the channel distortion. Ex-

amples in fixed waveform communications are the autocorrelation reception of dif-

ferential phase shift keying (DPSK) signals [Okunev(1997)] and the autocorrelation

reception of UWB TR impulses [Hoctor and Tomlinson(2002)].

In chaotic communications two kinds of noncoherent receivers have been devel-

oped, the autocorrelation receiver [Kolumbán et al(1996)] and the energy detector

[Kolumbán and Kis(2003)].

3 UWB Waveform Communications

3.1 UWB Radio Regulations

The conventional and UWB radio communications systems share the same RF band

and operate simultaneously. To avoid the interference caused in the already existing
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conventional systems, the transmitted spectrum of UWB radio is spread over an

ultra-wide frequency band as shown in Fig. 4. In UWB radio the psd of equivalent

isotropically radiated power (EIRP), measured with a resolution of 1 MHz, must be

less than -41.3 dBm [Siwiak and McKeown(2004)] where EIRP is the product of

the power supplied to the antenna and the antenna gain in a given direction referred

to an isotropic antenna.-40-45-50-55-60-65-70-75 ETSI handheld1.61UWBEIRP
emissionlev
el(dBm)

Frequen
y (GHz)0.96
3.1 10.61.99

-41.3 dBm
-61.3 dBm

20 GHz-75 dBm1.66 GHz-75 dBm

FCC handheld
band

1 102

ETSI indoor
GPS

Fig. 4 Emission limits for handheld and indoor UWB radio systems allowed by the Federal Com-

munications Commission (FCC, USA), solid curve, and the European Technical Standards Institute

(ETSI), dashed curve [Siwiak and McKeown(2004)].

The frequency band allocated to the UWB devices goes from 3.1 GHz to

10.6 GHz. By definition, the UWB transmitter is an intentional radiator that, at

any time instant, has a fractional bandwidth greater than 20% or a UWB bandwidth

greater than 500 MHz. The UWB regulations specify only the maximum emission

limit and minimum bandwidth and say nothing about the type of carrier and the

technique used to generate the modulated UWB waveform. The UWB regulations

give only the rule under which the assigned frequency band may be accessed, the

UWB carrier may be either (i) a fixed waveform, typically an impulse, or (ii) a

chaotic waveform.

3.2 Structure of Modulated UWB Waveforms

The digital information to be transmitted is mapped to wideband wavelets of very

short duration in UWB radio. The wavelets have a fixed waveform in UWB impulse

radio and they are chaotic signals in chaotic UWB radio. In the latter, the shape

of transmitted wavelets is continuously varying even if the same information bit is

transmitted repeatedly.
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For the sake of simplicity, only binary systems are considered in the re-

maining part of this chapter. Two classes of modulations exist in UWB ra-

dio, namely, one information bit may be mapped to (i) one or (ii) two wavelets

[Kolumbán and Krébesz(2006)].

3.2.1 UWB Modulation Schemes Using One Wavelet

The structure of UWB modulations using one wavelet is shown in Fig. 5, where c(t)
denotes the wavelet having an arbitrary waveform, Tch is the wavelet duration, tpos

denotes the pulse positioning and Tf is the frame repetition time from which the data

rate is obtained as R = 1/Tf . As shown in Fig. 5, a guard time, Tf > tpos +Tch, may

be inserted after wavelet c(t) in UWB radio to prevent the intersymbol interference

in multipath channels.

Note, the signalling time interval is called frame repetition time in UWB radio,

that is, Tf = T . In conventional communications guard time is not used. To empha-

size the special structure of UWB signal that allows the insertion of a guard time we

will refer the signalling time interval to as frame repetition time Tf in the remaining

part of this chapter.

To carry the digital information pulse positioning, amplitude and polarity of a

wavelet may be varied in accordance with the modulation.

ttpos T
h

(t)

Tf
Fig. 5 Structure of UWB modulation using one wavelet where c(t) denotes the carrier wavelet.

3.2.2 UWB Modulation Scheme Using Two Wavelets

The recovery of basis function(s) with CMOS circuitry featuring extremely low

power consumption is a hard task to solve because of the extremely short wavelet

duration in UWB impulse and the continuously varying carrier in chaotic UWB

radios. However, each correlator-based receiver requires a reference signal to per-

form demodulation. If the reference signal cannot be recovered from the received

noisy signal, than it must be transmitted. In transmitted reference UWB systems the

same radio channel is used to transmit both the reference and information bearing

wavelets.
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To provide the reference waveform required by the correlation receiver, each bit

to be transmitted is mapped into two wavelets, called chips, in the TR modulator.

The first chip serves as a reference, while the second one carries the information.

The structure of a modulated TR signal is shown in Fig. 6, where c(t) denotes

an arbitrary wavelet, Tch is the chip duration and ∆T ≥ Tch gives the delay be-

tween the reference and the information bearing chips. Note, a guard time may

be inserted after both the reference and information bearing chips. The best noise

performance is achieved by antipodal modulation scheme, where the information

bearing wavelet is equal to the delayed reference one for bit “1,” and to the inverted

and delayed reference wavelet for bit “0.” As wavelet c(t), frequency-shifted bell-

shaped Gaussian pulse, monocycle and doublet pulse are used in UWB impulse

radio [Siwiak and McKeown(2004), Ghavani et al(2006)] while chaotic waveforms

are applied in chaotic UWB radio.

�T tT
h

(t��T ) for bit "1"
�
(t��T ) for bit "0"Tf

Fig. 6 Structure of modulation using two wavelets. This modulation scheme is also referred to as

transmitted reference (TR) system.

The unique feature of a TR system, namely that both the reference and informa-

tion bearing chips are transmitted via the same telecommunications channel, makes

the TR radio system very robust against the channel distortions.

In case of channel distortion, the modulated signal has to be correlated with a

reference signal distorted in the same manner as the modulated one to get the best

system performance. A correlation with the original distortion-free reference results

in a performance degradation. The reference chip transmitted in TR systems serves

as a test signal used to measure the actual channel characteristics. Consequently, the

TR modulation scheme may be used even in a time-varying channel.

TR system suffers from two drawbacks:

• since two chips are required to transmit one bit information, half of the energy per

bit Eb is “lost” in that sense that the reference chip is not used directly to transmit

information, it is used “only” to measure the actual channel characteristics, and

serves as a reference for the correlation receiver

• both the reference and information bearing chips are corrupted by channel noise.

As shown in Sec. 4.3, the noisy reference chip results in a noise performance

degradation.
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To select the best solution to a given data communications problem the actual

channel conditions have to be evaluated. In case of AWGN channel and a very sim-

ple sinusoidal carrier which is easy to recover by a phase-locked loop, the correlation

receiver with carrier recovery circuit offers the best system performance. When the

channel suffers from distortion, the TR system offers a better system performance

[Kolumbán and Krébesz(2006)] provided that the loss caused by the noisy reference

chip is less than the gain arising due to the perfect correlation between the reference

and information bearing chips. In chaos-based UWB systems, or if the duration of

UWB impulse is extremely short then the carrier recovery is not feasible and the TR

approach is the only solution.

4 UWB TR Modulation with Autocorrelation Receiver

The TR modulation scheme offers a very robust solution to the UWB radio commu-

nications and does not require a carrier recovery circuit for demodulation. A further

advantage follows from the special structure of modulated TR waveform, as shown

in Fig. 6 the binary information transmitted may be recovered from the sign of

correlation measured between the reference and information-bearing chips. Auto-

correlation receiver exploits this property of TR modulation to generate observation

signal.

4.1 TR Basis Functions

According to Fig. 6, the signal set of binary TR modulation includes two waveforms

sm(t) = sm1g1(t)+ sm2g2(t), m = 1,2 (13)

where the two basis functions are defined as

g1(t) =

{

+ 1√
Eb

c(t), 0 ≤ t < Tch

+ 1√
Eb

c(t −∆T ), ∆T ≤ t < ∆T + Tch,

g2(t) =

{

+ 1√
Eb

c(t), 0 ≤ t < Tch

− 1√
Eb

c(t −∆T ), ∆T ≤ t < ∆T + Tch

(14)

and the two signal vectors are

s1 = [s1n] =

(

s11

s12

)

=

(√
Eb

0

)

and s2 = [s2n] =

(

s21

s22

)

=

(

0√
Eb

)

(15)

for bit “1” and “0,” respectively. In (15), Eb denotes the energy per bit that is used to

transmit one bit information. Wavelets c(t) in (14) may be either a fixed waveform
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as in UWB impulse radio or may denote sample functions of a chaotic signal as in

chaotic UWB radio.

Recall, by definition basis functions are orthonormal over the bit duration at least

in mean. To avoid estimation problem that corrupts the noise performance seriously,

the othonormality must be assured.

Observe the special structure of basis functions given by (14) orthogonality of

basis functions is assured by the first two Walsh functions [Tzafestas(1985)]

W1 = [1 1] and W2 = [1 −1].

independently of the actual shape of c(t).
The energy of fixed basis functions is constant. However, in chaotic communica-

tions some extra signal processing is necessary to fix the varying energy of chaotic

basis functions. For example, since the power of FM signals is constant, in FM-

DCSK a chaotic signal is applied to the baseband input of an FM modulator and

the modulator output is used as c(t). This approach is referred to as FM-DCSK

modulation [Kolumbán et al(1997b)].

In FM-DCSK
T

2
= ∆T = Tch

while in chaotic TR UWB systems

∆T > Tch and ∆T + Tch < Tf .

Note, the maximum data rate is achieved by FM-DCSK, while chaotic TR UWB

modulation provides guard time for multipath.

By the definition introduced in Sec. 2.4.4, the noncoherent modulation technique

can be used only if the spectra of basis functions are completely separated in the

received signal space. To illustrate this property of TR modulation defined by (13)

and (14), the spectra of TR basis functions with the parameters Tch = 1 µs, ∆T =
1 µs and Tf = 2 µs were determined by computer simulation. The center frequency

of the modulated TR signal was 2.4 GHz.

Figures 7 and 8 show the spectra of basis functions g1(t) and g2(t), respectively.

Observe, the fundamental harmonic frequency is 1/Tf = 500 kHz and only the even

k=0,2, . . . and odd k=1,3, . . . harmonics appear in the spectra of g1(t) and g2(t),
respectively. For a detailed analytical proof refer to [Kolumbán(2003)].

Note that the spectra of two basis functions are completely separated, although

they overlap each other. The two spectra may be interpreted as the teeth of two

combs fitted into each other.

4.2 Autocorrelation Receiver

The special structure of TR basis functions — each consists of a reference chip fol-

lowed by a non-inverted or inverted copy of itself — can be exploited to perform the
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Fig. 7 Spectrum of TR basis function g1(t). As shown by (15) and (13), except a constant this

spectrum is identical with the transmitted signal when a pure bit “1” sequence is transmitted.
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Fig. 8 Spectrum of TR basis function g2(t). Observe, the fundamental harmonic frequency is

1/Tf = 500 kHz, but only the odd harmonics are present in the spectrum.

demodulation. The TR autocorrelation receiver makes its decision by evaluating the

sign of correlation measured between the reference and information-bearing chips

as shown in Fig. 9, where τ = Tch denotes the observation time period, b̂m is the

estimated (i.e. received) bit and h(t) is the impulse response of bandpass channel

filter.

From Fig. 9, the observation variable is obtained as

zm =

∫ ∆T+Tch

∆T
[s̃q

m(t)+ ñ(t)][s̃q
m(t −∆T )+ ñ(t −∆T )]dt. (16)

Recall, the upper index q reflects the continuously varying property of basis func-

tions in varying waveform communications.
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�lterChannelh(t) zm~rm(t) Delay 
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ision b̂mrm(t)
�T R� � dt

Fig. 9 Block diagram of TR autocorrelation receiver.

Assume that the bandwidth of channel filter is matched to the elements of signal

set, that is, c̃q(t) = cq(t). Substituting (15) and (14) into (13), and substituting the

result into (16) the observation variable is obtained as a sum of four terms

zm =(−1)m+1
∫ ∆T+Tch

∆T
[cq(t −∆T )]2 dt +

∫ ∆T+Tch

∆T
ñ(t)cq(t −∆T )dt

+(−1)m+1
∫ ∆T+Tch

∆T
cq(t −∆T )ñ(t −∆T )dt +

∫ ∆T+Tch

∆T
ñ(t)ñ(t −∆T )dt

(17)

where ñ(t) and ñ(t −∆T ) denote the sample functions of filtered noise that corrupt

the reference and information-bearing parts of the received signal, respectively.

In noise-free case ñ(t) = 0 and the binary modulation can be recovered by a

comparator from the sign of observation signal, see the first term on the RHS of (17).

Observe, TR autocorrelation receiver may be used even in a time-varying channel

provided that the channel parameters vary slowly compared to the symbol rate.

4.3 Noise Performance of UWB TR Modulation Demodulated by

an Autocorrelation Receiver

The observation variable of TR autocorrelation receiver is given by (17). To get the

bit error rate (BER), its probability distribution has to be determined.

The observation variable contains four terms, the characteristics of these terms

are evaluated independently of one another in [Kolumbán(2000)]. The closed-form

expression given for the BER here is valid for both fixed and varying waveform

communications. Only the BER expression and the conclusions are given here, for

a detailed discussion refer to [Kolumbán(2000)].

The noise performance of a modulation scheme depends on the variance of ob-

servation variable zm; the higher the variance, the worse the BER [Haykin(1994)].

In the general case the source of variance is twofold, the channel noise n(t) and

wavelet cq(t).
The first term on the RHS of (17) gives the half of energy per bit. In fixed wave-

form communications this term is a constant, while in varying waveform commu-

nications it may become a random variable. To minimize the contribution of this

term to the variance of observation variable, the transmitted energy per bit Eb must
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be kept constant. However, the application of fixed basis functions is not a neces-

sary requirement, the shape of wavelet c(t) is irrelevant. Any bandpass signal with

constant Eb can be used; the shape of basis functions may even vary from bit to bit.

In Section 1.2 the effects of cross- and autocorrelation estimation problems have

been discussed. Recall, the source of estimation problems are (i) the non-orthogonal

property of chaotic basis functions (cross-correlation estimation) and (ii) the varying

energy per bit (autocorrelation estimation). In FM-DCSK [Kolumbán et al(1997b)]

the orthogonality of TR basis functions (14) is assured by the Walsh functions, and

Eb is kept constant for every transmitted bit by means of FM modulation. Conse-

quently, the estimation problems do not appear in FM-DCSK.

The second and third terms on the RHS of (17) give the cross-products of filtered

channel noise ñ(t) and wavelet c(t). Let the channel noise be modeled as a stationary

zero-mean Gaussian process. Recognize, these terms can be interpreted as linear

time-invariant (LTI) integral transformations of filtered channel noise, consequently,

the outputs of these integral transformations are stationary random variables with

Gaussian distributions.

Closed-form expressions are provided in [Bendat and Piersol(1966)] to deter-

mine the first and second moments of an LTI integral transformation. Since n(t)
has zero-mean, the output of LTI transformation is also a zero-mean process.

[Kolumbán(2000)] has shown that the variance of qth integral transformation is

obtained as

σ2
q =

N0

2

∫ ∆T+Tch

∆T
[cq(t −∆T )]2 dt. (18)

Note, except a constant, (18) is identical with the first term of (17). During the

investigation of the first term we concluded that this term must be kept constant. If

so then the variance of second and third terms becomes independent of the type of

basis functions

σ2
q =

N0

2

Eb

2
.

A unique feature of TR modulation scheme implemented with an autocorrelation

receiver is that it can operate with either fixed or varying basis functions. In AWGN

channel the noise performance of a varying waveform communications system may

reach, at the best, that of its fixed waveform counterpart, provided that the basis

functions are othonormal [Kolumbán(2000)].

When the effect of basis functions is studied then the fourth term is irrelevant

since it is independent of the basis functions. Results of detailed analysis have shown

that the fourth term has the most significant contribution to the variance of obser-

vation variable and it is responsible for the relatively poor noise performance of

autocorrelation receiver in AWGN channel compared to that of a coherent correla-

tion receiver.

Starting from the results of [Gut(1972, in Russian)], the bit error rate of a TR

autocorrelation receiver was derived in [Kolumbán(2000)]
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BER =
1

22Bτ
exp

(

− Eb

2N0

)

2Bτ−1

∑
i=0

(

Eb
2N0

)i

i!

2Bτ−1

∑
j=i

1

2 j

(

j + 2Bτ −1

j− i

)

(19)

where τ denotes the observation time period of autocorrelation receiver. Recall, in

a well designed receiver τ = Tch. This expression is valid in an AWGN channel for

both the fixed and varying waveform communications systems, provided that the

energy per bit Eb is kept constant when varying basis functions are used.

Equation (19) shows that the noise performance of TR systems depends on the

product of 2Bτ , that is, on the dimension of received signal space. Figure 9 shows

that the TR autocorrelation receiver observes the received signal only over τ = Tch,

consequently, the guard time has no influence on the noise performance. The signal

dimension is obtained from (6) by substituting T = 2τ .

Figure 10 shows the noise performance of TR autocorrelation receiver, where

(from left to right) the signal dimensions SD = 4BT = 8Bτ are 8.5, 17, 34 and 68.

The solid curves show the analytical predictions from (19), while the results of sim-

ulations are denoted by ‘+’ marks.
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Fig. 10 Effect of signal dimension on the noise performance of TR autocorrelation receiver. From

left to right the signal dimensions are 8.5, 17, 34 and 68.

Conclusions

Chaotic signals are ultra-wideband signals that can be generated with simple cir-

cuits in any frequency bands at arbitrary power level. The ultra-wideband property
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of chaotic carriers is beneficial in indoor and mobile applications where multipath

propagation limits the attainable BER. Another possible application is the UWB ra-

dio, where the spectrum of transmitted signal covers an ultra-wide frequency band

and the psd of transmitted UWB signal is so low that it does not cause any notice-

able interference in the already existing conventional telecommunications systems

sharing the same RF band. The UWB technology makes the frequency reuse possi-

ble.

The correlation receivers offer the best noise performance in AWGN channel.

However, in case of channel distortion, the modulated signal has to be correlated

with a reference signal distorted in the same manner as the modulated one to get

the best BER. The TR modulation scheme solves this problem by transmitting the

reference and information bearing wavelets via the same radio channel. The auto-

correlation receiver determines the correlation of the two wavelets and uses the sign

of correlation for making the decision.

This chapter provided a unified framework for modeling, performance evalua-

tion, optimization and comparison of UWB radios using either impulses or chaotic

waveforms as carrier. The Fourier analyzer concept introduced provides a mathe-

matical framework for studying the UWB detection problem. The autocorrelation

receiver was discussed in detail and an exact closed-form expression was provided

for the prediction of its noise performance. Condition assuring the best bit error rate

with chaotic UWB radio was also given.
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