
1

Completeness and Consistency Analysis of UML
Statechart Specifications

Zs. Pap, I. Majzik1, A. Pataricza and A. Szegi

Dept. of Measurement and Information Systems
Budapest University of Technology and Economics

H-1521 Budapest, Mûegyetem rkp. 9.
Fax: +36-1-4634112

[papzs,majzik,pataric,szegi]@mit.bme.hu

Abstract. This paper describes methods and tools for automatic safety analysis
of UML statechart specifications. Two types of analysis are presented. The first
one checks completeness and consistency based on the static structure of the
specification, thus it does not requires the generation of the reachability graph.
Accordingly, this method scales up well to large systems. The second one per-
forms dynamic analysis by checking safety related reachability properties with
the help of a model checker. It is restricted to core critical parts of the system.
Two approaches of the implementation of the static checking are discussed. The
use of the tools is presented by a case study.

1 Introduction

Our life relies more and more on the dependability (especially safety) of embedded
computer control systems. As the complexity of these systems increases, the task of
the engineers in specifying, designing and validating the system becomes increasingly
difficult. The need for efficient design has triggered the development of well-
specified and standardized design methods and languages. Such languages should
satisfy multiple requirements. First, designers ask for a general-purpose language
which is easy to understand, close to their way of thinking, and has clearly arranged
(self-documenting) visual models covering various aspects of the system. Second,
validation and formal verification of the design require precise syntax and well-
defined semantics in mathematical terms. Third, the development of integrated, com-
puter-assisted design environments demands languages which are easy to process,
navigate and manage. The recently created Unified Modeling Language (UML) [1] is
a language designed to satisfy most of these requirements. It is a general-purpose
object-oriented modeling language used to specify, visualize, construct and document
different aspects of systems. UML is expected to become a de-facto standard for the
design of systems from small embedded controllers to large and complex distributed
systems.

UML can be used to construct software specification of embedded (real-time) sys-
tems [2], often implementing safety-critical functions. The specification is usually

1 Supported by the Hungarian Scientific Research Fund under contract OTKA-F030553.

2

elaborated by the cooperation of users, domain experts and system engineers. Unfor-
tunately, it is often incomplete, inconsistent and ambiguous. The errors in the specifi-
cation are not only difficult and expensive to correct in the further phases of the life
cycle, but also often lead to safety related failures. Accordingly, the early checking of
the UML specification is crucial.

Our work aims at the elaboration of methods and tools for the checking of some
aspects of completeness and consistency in UML models. We concentrate especially
on the behavioral part of UML, namely the statechart diagrams. Statecharts are the
most complex formalism used in UML (therefore errors occur most likely here) and
have some specific features, like hierarchy and concurrency, which require non-trivial
checking methods.

Our examination is focused on embedded control systems. In these systems, the
controller continuously interacts with operators and with the plant by receiving sensor
signals as events and activating actuators by actions. UML statechart formalism al-
lows to construct a state-based model of the controller, describing both its internal
behavior and the reaction to external events. Here we assume that the behavior of the
controller is specified by a single statechart (unfortunately, standard UML does not
specify the semantics of interacting objects precisely).

The paper is structured as follows. Section 2 is a short overview of the safety crite-
ria and checking methods proposed in the literature. Section 3 outlines the main con-
cepts of UML statecharts. Section 4 and 5 describe our work in static checking and
reachability analysis, respectively. Our automatic tool is introduced in Section 6. The
paper is closed by a short Conclusion.

2 Checking Completeness and Consistency Criteria

A safe system is free from accidents or unacceptable losses. Safety analysis should
identify hazards based on the (formal) model of the system. Accidents related to com-
puters are usually resulted from flaws in the specification (model). In [3] and [4] 47
formal criteria were defined that should be satisfied to avoid incorrect specifications.
These criteria cover general aspects of the specification of a control system, including
also peculiar ones like environmental capacity and data age.

The most important desirable properties of a specification are completeness and
consistency. Completeness with respect to an embedded control system means that a
response is specified for every possible input sequence, including also timing varia-
tions (early, lately, delayed etc. signals). Consistency of the specification implies that
there are no conflicting requirements and no (unintentional) non-determinism.

Tool support for checking completeness and consistency is required, since manual
checking is error-prone and time-consuming. From the point of view of the automated
methods and techniques, different approaches can be distinguished:
- Pure reachability analysis of the state space of the system can detect ambiguous

situations resulting e.g. from unreachable states, undesired global states (in con-
current models) or unwanted sequence of actions. The examination of the global
state space requires the generation of the reachability graph, which often results
in state space explosion.

3

- Model checking examines properties expressed in temporal logics. Modern model
checkers try to handle the state space explosion by applying sophisticated meth-
ods in representing and analyzing the global state space (e.g. symbolic tech-
niques, partial ordering).

- Theorem proving systems require to describe both the specification and the crite-
ria in a formal logic, and prove that the criteria and the specification are suitably
related.

- Static analysis is performed directly on the model and checks those criteria that
are not related with the global state space.

The automatic tools proposed in the literature are in strict relationship with the
formalism (language) intended to be checked, i.e. the complexity of the checking is
heavily influenced by the formalism. In [5] a black-box system specification language
RSML (Requirements State Machine Language) was proposed which enabled the
automated checking of some criteria [6]. The latest development of the same authors
is the experimental toolset SpecTRM [7] and the corresponding formal specification
language SpecTRM-RL [8]. This language is designed especially to enforce the satis-
faction of the safety criteria and enhance the ability to build tools that check them.

UML was developed without considering strict rules to force the designer to pre-
pare a complete and consistent specification. The flexibility and extensibility of the
language, and some of the applied constructs (like internal broadcast of events, which
was identified as one of the typical sources of specification errors [8]) and semantic
constructs (non-determinism) could make the hazard analysis of the specification of
safety-critical systems difficult. However, it has to be pointed out that UML incorpo-
rates a technique to include static constraints on the usage of its model elements.
OCL, the Object Constraint Language [9] is designed to specify well-formedness
rules of the UML model (OCL expressions are used also in the language definition
itself). By defining appropriate rules, well-formedness in the sense of completeness
and consistency can be prescribed and then checked.

UML statecharts, as state-based specifications, can be subject of both static analy-
sis and model checking (reachability analysis). Static analysis aims at the checking of
general, application-independent criteria, while model checking is suitable to examine
also application-specific requirements. The former checks mainly the proper static
structure of the model, while the latter requires the formalization of the dynamic se-
mantics of the language.

3 UML Statecharts

UML statecharts is an (object-oriented) variant of classical Harel statecharts [10]. The
statecharts formalism itself is an extension of traditional state transition diagrams
including the following additional concepts (explained with the help of the statechart
presented in Figure 1):
- State hierarchy and concurrency. A state is called a composite state if it contains

one or more substates (e.g. Work contains Phase1, Task1, etc.). A composite
state can be decomposed into mutually exclusive disjoint substates or into or-
thogonal substates. In the latter case, the composite state is concurrent and its di-
rect substates are called regions (e.g. Group1 and Group2). Regions must be

4

further refined into substates (Group1 is refined by Phase1 and Phase2).
States without further refinement, at the lowest level of the hierarchy, are called
basic states (e.g. Passed).

- Compound transitions. A simple transition indicates that the system may change
its state and perform a sequence of actions when a specified event occurs and a
specified guard condition is satisfied (e.g. the transition from Work to Fail-
ure). Compound transitions have multiple segments. Join segments (e.g. to the
state Passed) originate from concurrent regions (representing synchronization),
while fork segments (e.g. from the state Prepare) are connected to concurrent
regions (representing splitting of control). Branch segments labeled with guards
compose different possible paths depending on conditions (e.g. the transition
triggered by the error event).

- History states. A transition drawn to a history state is equivalent to a transition
drawn to the last active direct substate of the composite state in which the history
state resides (the circle with H in Figure 1). Firing of a transition drawn to a deep
history state causes the last active substates of the composite state be entered re-
cursively.

- Enriched set of events and actions. Events may have parameters. Actions are
distinguished as call, return, send, terminate, create and destroy actions, accord-
ing to the (object-oriented) software context.

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
tm(50)

Failure

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

Resum
e H

[non_fatal]

Fig. 1. An example statechart

The peculiarities of UML semantics can be summarized as follows:
- Single event processing. The hypothetical state machine which implements the

statechart diagram processes event instances that are selected by a dispatcher
from an event queue. Events are processed one by one, each after the other. Ac-
cordingly, transitions are triggered by at most one event.

5

- Run-to-completion processing. An event stimulates a run-to-completion step.
Transitions that fire have to be fully executed and the state machine has to reach
a stable state configuration before it can respond to the next event.

- Priority concept. Transitions are in conflict when the intersection of the sets of
states they exit is non-empty. Some conflicts can be resolved by using priorities.
A transition has higher priority than an other one if its source state is a substate of
the source of the other one. If the conflicting transitions are not related hierarchi-
cally then there is no priority defined between them, and the conflict is resolved
by selecting one of the transitions non-deterministically.

- Execution step. The set of transitions that will fire is a maximal set in which all
transitions are enabled (i.e. they are triggered by the actual event, their guards are
satisfied and their source states are active), there is no conflict within the set, and
there is no enabled transition outside the set that has higher priority than a transi-
tion in the set. The firing order of transitions in the set is not defined.

4 Static Analysis

Completeness and consistency can be given as criteria to be satisfied by the
hypothetical state machine (automaton) implementing the statechart specification. The
global states of this automaton are called statuses, its transitions are called step tran-
sitions. Statuses are composed of active states of the statechart by considering that if a
composite state (concurrent composite state) is active then one of its substates has to
be active (in each of its regions, respectively). Step transitions are composed of (con-
current) transitions of the statechart. Completeness means that in all possible statuses
of the automaton, for all possible events, there must be a step transition (in a special
case an internal transition) defined which is triggered by the event. Consistency
means that in each status, each event should trigger only a single step transition.

Static checking requires to re-formulate these criteria in syntactic terms of the sta-
techart, taking into account the UML semantics covering hierarchy, concurrency, and
priority scheme. In the following we examine states, transitions, guards and com-
pound transitions of the statechart and formulate the criteria in these terms.

4.1 States and Transitions

The hierarchical structure of statecharts could be unfolded to a flat state diagram, but
this representation would not make the checking easier (due to the increased size of
the flat state diagram). Accordingly, we decided to check the hierarchical model di-
rectly. In this model, the basic states fully determine the status of the automaton.

Transitions of composite states are taken into account by considering that substates
virtually inherit the transitions of their parent states. Implicit transitions and transi-
tions from/to composite states are resolved as follows. A transition drawn to a bound-
ary of a composite state means a transition to its initial substate or to the initial sub-
states of its regions. A transition drawn from a boundary of a composite state means
that all of its substates are exited when the transition is taken (fires). If a transition
enters a region of a concurrent state, then the other regions are also entered (explicitly

6

by fork segments or by default entering their initial states). Similarly, if a transition
exits a region of a concurrent state then all of the other regions are also exited.

When completeness is being checked, the basic states are examined and all inher-
ited transitions are considered. Consistency requires the checking of individual states,
since conflicts among transitions on different hierarchy levels are resolved by the
priority scheme of UML. In this subsection, we consider transitions without guards
(guards are discussed in the next subsection).

Completeness requires that in each basic state, for all possible events, there must
be a transition defined. If an event should not have any effect in a given state, then the
designer should define it as an event triggering an internal transition (that does not
change the state) with no action. Note that self-loop transitions in UML are not suit-
able for this purpose, since firing of this kind of transitions induces the execution of
the entry and exit actions of the state.

In a concurrent composite state, it is possible that a transition is defined only in one
of the regions (remember that the status of the automaton is a composition of the basic
states of the regions). The exploration of the possible combinations of basic states in
the regions would need the generation of the reachability graph. To avoid this prob-
lem and allow the static checking, it is required that basic states in concurrent regions
are defined by the designer in the same way as non-orthogonal states (i.e. the above
criterion should be satisfied).

Completeness requires that each state is targeted by (at least one) transition. Note
that initial states have an incoming transition from the initial pseudo-state.

Consistency of the specification requires that in each state, only a single transition
is triggered by a given event. It means that there are no conflicts that are not resolved
by the priority scheme of UML. Namely, conflicts among different hierarchy levels
are always resolved as the transition with source state at the lowest level fires. Con-
flicts not resolved by the priority scheme, thus requiring non-deterministic choice,
occur only at the same hierarchy level.

Another source of possible inconsistency is that the firing order of transitions en-
abled in concurrent regions is undefined. From the point of view of the environment,
it may result in non-deterministic execution order of actions belonging to these tran-
sitions. The consistency criteria says in this case that there are no pairs of transitions
in concurrent regions that may fire at the same time, and both have actions defined.
Reachability analysis is required to check this criteria, since these aspects of
concurrency (i.e. the possible statuses of the automaton) can not be checked by the
static analysis.

4.2 Guards

Completeness requires that in each basic state, considering also inherited transitions,
guards of transitions triggered by the same event form a tautology.

Consistency is checked by the following criterion: If there are two or more transi-
tions that are originating from the same state and triggered by the same event, then
their guards could not be true at the same time.

The specification is ambiguous if the designer utilizes the priority scheme of UML
in a strange way: guards of transitions originating from a given state and triggered by
the same event form a tautology, and at the same time there is a transition which is

7

triggered by the same event and originates from a parent state. This latter transition
will never fire.

Checking of these rules is difficult, since in UML guard conditions can refer to
variables, functions, parameters of events, and orthogonal states (by in_state() predi-
cates prescribing that some orthogonal states are active). Accordingly, the checking
would require in worst case both reachability analysis and the interpretation of the
program code assigned to actions. Static checking of guard conditions is possible only
if the guard expressions are restricted and expressed in a special canonical form (as
proposed in RSML and SpecTRM). Simple guards referring to constants can be
checked more easily, this type of checking is built into our checker.

Completion transitions have no trigger events and are executed as soon as the
source state is reached and the guard is true. They can be checked according to the
above rules, i.e. (i) completeness requires that guard expressions of completion tran-
sitions originating from a basic state (considering also inherited transitions) form a
tautology, and (ii) consistency requires that only one of them is true at the same time.
If there is a state in which the guards of a normal and a completion transition can be
true at the same time then the specification is ambiguous, since in this case the nor-
mal transition will never fire.

4.3 Compound Transitions

Compound transitions are transitions consisting of multiple segments like conditional
branches, fork and join transitions. For the sake of the analysis the compound transi-
tions are transformed to simple ones, that can be checked using the above rules.

Conditional branches are converted into separate simple transitions originating
from the common source state and reaching the target state of each possible path of
segments. The guard conditions are formed by the AND relation of the individual
guards along the segments on the path from the source state to the target one.

Fork transitions consist of multiple segments originating from a state and reaching
concurrent regions. They are converted into simple transitions in the same way as
conditional branches, but the redundant transitions are marked at the source state.

Join transitions originate from concurrent regions and reach a single state. They are
converted into a set of simple transitions that originate from each source state, reach
the original target state, and inherit the original guard. A join transition can be taken
only if all source states are active. This condition is expressed on the set of the newly
generated transitions by additional in_state() guards referring to the other source
states and being in AND relation with the above mentioned guard expression. Ac-
cordingly, the consistency checking of join transitions requires reachability analysis.

4.4 Classification of States

In embedded control systems the controller manages an internal model of the con-
trolled system. Similarly, the operator has a mental model of the controller interface.
The differences between these models, i.e. the semantic distance, should be mini-
mized.

8

Immediately after controller startup or in exceptional situations the internal model
is not synchronized with the state of the controlled system. Until the synchronization
is performed (e.g. by reading sensor signals), the actions of the controller should be
restricted. The designer should convince the checker that he/she considered this re-
quirement by marking some (sequence of) states as Unknown. UML stereotypes, that
allow a high-level classification of model elements, can be used for this purpose.
Initial states should always be stereotyped as Unknown.

Accordingly, completeness requires the existence of the Unknown stereotype in the
initial state(s) of the controller's statechart.

4.5 Time-out

If the controller stays in a specific state too long, then it could induce that the consis-
tency between the controller and the controlled system has been lost (due to missing
or unexpected events). The designer should handle this kind of exception by specify-
ing a time-out transition, i.e. a transition triggered by a time event, from each status of
the automaton. In UML, a time event can specify a trigger, which denotes the time
elapsed since the state was entered. The time-out transition should lead to Unknown
states, where the lost synchronization is restored.

Accordingly, completeness requires that in each basic state of the statechart of the
classes used as Models (considering the inherited transitions) there is a time-out
transition leading to a state stereotyped as Unknown.

Consistency requires that at most one time-out transition is found in each basic
state (it is ambiguous if both a substate and its parent state have time-out transitions).

5 Reachability Analysis

Reachability analysis can check both general properties requiring the generation of
the reachability tree (e.g. completeness criteria referring to join transitions mentioned
in the previous section) and application-specific safety requirements (e.g. avoidance
of unsafe statuses in concurrent specifications). We consider here model checking as a
technique which covers the traditional reachability analysis.

A mandatory prerequisite for model checking is to map statechart diagrams to a
formal semantics model. In a previous work a subset of UML statecharts was mapped
to Kripke structures [11], and it was proved that the mapping satisfies the properties
of UML semantics given informally in [12]. The subset does not consider dynamic
object-oriented features like inheritance, creation and destruction of objects, but in-
cludes all aspects related to concurrency like sequentialization, non-determinism and
parallelism. Accordingly, it is suitable to be used in our environment.

Based on the Kripke structure a translation to Promela, input language of the model
checker SPIN [13] was also defined. SPIN was selected since it is one of the most
efficient tools available, and Promela allows the specification of state variables,
communication actions, and a variety of requirements. There are built-in capabilities
to check deadlocks, invalid endstates, non-progress and acceptance cycles. Applica-
tion-specific requirements can be given in the form of assertions (invariants inserted

9

into the Promela code), a never claim (an automaton that defines a behavior that
should not be matched) or linear temporal logic formula (among others invariance,
response, and precedence properties).

SPIN helps in checking completeness as follows:
- Unreachable states (unreachable code) are reported automatically by SPIN.
- Missing transitions are detected by analyzing invalid endstates.
- Enabledness of join transitions can be checked by assertions.
- Tautology of guards can be checked by using assertions formed by the OR rela-

tion of the guards. In Promela, in_state() guards and Boolean logic formula refer-
ring to integers can be easily evaluated.

Theoretically, it is also possible to check consistency by inserting assertions that
evaluate to false if two or more transitions are enabled at the same time. (SPIN has no
built-in capability to report non-determinism.)

6 The Checker Tools

We have considered three approaches to implement the static checking of the com-
pleteness and consistency criteria in UML statecharts:
− Theoretically, the majority of the criteria can be expressed in the form of OCL

expressions interpreted on the UML metamodel of statechart diagrams. The
metamodel defines (in a form of class diagrams) the UML model elements like
State, Transition, Event etc. and gives their possible relationships and the syntac-
tic constraints. By enriching these constraints (called here well-formedness
rules), a "safety-critical UML" sub-language can be defined. Since completeness
and consistency criteria can be given as additional well-formedness rules, the ap-
proach fits very well to the semantics of UML. The implementation of the
checking requires either deep integration with the CASE tool used by the de-
signer or an external interpreter, which can examine the design with respect to the
restricted metamodel. This approach was considered as a subject of our future
work.

− It is a natural idea to formulate the criteria in a general logic language. We se-
lected Prolog for this purpose. The Prolog expressions are interpreted on the
standard database of the UML model elements given in the design. Accordingly,
a well-scalable, flexible and general solution is provided.

− The (hard-coded) direct implementation of the checking is the less flexible, but
has the best performance characteristics. Fortunately, most of the UML based
CASE tools support a standard interchange format (eXtensible Markup Language
Metadata Interchange, XMI). The checking can be based on this output.

In the following, we will report our experiences with these variants of the tools and
compare their advantages and disadvantages. It can be mentioned that these variants
can also be considered as N-version programming [14] of the same problem, thus
allowing a fault-tolerant implementation of the completeness and consistency checks.
Accordingly, the trustworthiness of the analysis can be increased, which is an impor-
tant factor e.g. from the point of view of an audit.

10

6.1 The Prolog Approach

The Prolog-based tool was implemented utilizing the environment developed in the
framework of the HIDE project (High-Level Integrated Design Environment for De-
pendability, ESPRIT Open LTR No. 27439) [15]. In this environment, a commercial
UML-based CASE tool (MID Innovator [16]) was included for user-end modeling.

To interface Innovator with other analysis and evaluation tools, a database repre-
sentation of the UML model was elaborated. The structure of this database corre-
sponds to that of the UML metamodel. From our point of view this representation is
especially useful, since it assures an easy navigation and searching in the UML
model, which is the crucial point of completeness checking. A commercial database
manager was used to handle the database. The static completeness and consistency
criteria were formulated as Prolog predicates. Logic programming is suitable for the
compact definition and easy analysis of these criteria. The advantages of Prolog
backtracking can be utilized to handle all possible matches of a database query.

Prolog was extended with an interface toward SQL. Accordingly, Prolog questions
are converted internally into SQL commands, which are then executed by the data-
base manager. Results of the database search are back-annotated by the interface
again as Prolog predicates. Final result of checking is the detected set of errors and
the generated warnings of the Prolog program.

The concepts are demonstrated by the following example:
compare(STATEID,EVENTNAME,STATENAME):-
 (\+ trans(STATEID, TRANSITIONID, EVENTNAME, LEVEL, ISLEAF,

GUARDBODY, GUARDEVAULATED, LEAFSTATEID)),!,
 format("~n-Error: Transition not specified in state:",[]),
 write(STATENAME), format(" Event:",[]), write(EVENTNAME).

This code segment is one of the definitions of the expression compare, which
will find unspecified transitions. In the first row transitions fitting to STATEID and
EVENTNAME are found. Here trans is an SQL view of the Transition and Mod-
elElement tables of the database. It is processed by the SQL interface, which provides
a dynamic knowledge base for Prolog. The second row is activated only if the first
fitting was empty. If there is no transition with the specified state and event then an
error message is produced.

The expression compare is used as follows:
check(STATE, NAME):-
 eventnames(EVENTNAME),
 compare(STATE, EVENTNAME, NAME),
 fail.
check(STATE, NAME).

Here eventnames is a set of dynamic predicates containing the names of all
events. This function enumerates the events and compares it with the parameter
STATE. It is used as follows:

check_model:-
 leafs(STATE, NAME),
 format("~nChecking State:",[]), write(NAME),
 check(STATE, NAME),
 fail.
check_model.

where leafs is again an SQL view referring to the set of basic states.

11

The time requirements of the checking are high, since (i) Prolog is an interpreted
language, (ii) communication with the database manager is time-consuming by using
relatively slow network connections, (iii) the Prolog-SQL interface is not optimized,
and (iv) the model database is very fragmented (over 120 tables). The tool was opti-
mized by implementing table joins in SQL. After this optimization the speed of the
program has increased up to 200%.

Since the database server can handle extremely large tables, it does not limit the
size of the model to be checked in a single step. On the other hand, the Prolog pro-
gram must access and transfer this amount of information via local area network.
Thus, if the model is large, this process can be very slow. Moreover, the Prolog pro-
gram uses dynamic predicates from several tables, which requires a great amount of
memory (in addition to the Prolog interpreter which is itself a memory-consuming
program).

Main advantages of the Prolog approach are as follows:
- It is easy to formalize and implement the criteria (including also possible domain-

specific additional rules).
- It is easy to read, understand and verify the Prolog program.
- The checker tool is portable (machine and operation system independent).

Unfortunately, in the case of large models the Prolog implementation is extremely
slow. For instance the verification of the example model (see Section 7) needs more
than 10 seconds. Of course, this time depends also on the speed of the local area net-
work.

6.2 The Direct Approach

The model representation used by the second variant of the checker tool is the XMI
compliant output of the UML CASE tool. XMI (eXtensible Markup Language Meta-
data Interchange) was standardized by the OMG in order to provide an easy inter-
change of metadata among tools using UML as their modeling language [17]. It inte-
grates the metamodel architecture, UML and XML (Extensible Markup Language).
Accordingly, the XMI compliant output consists of the standard Document Type
Definition (DTD) file corresponding to the UML metamodel and the XMI document
in XML format.

When processing the XMI output, our parser is based on the UML DTD definition.
After processing, the UML model itself is loaded into the memory and the checker
procedures (written in Visual C++) are executed.

The loader processes the behavioral part of the UML metamodel, builds the corre-
sponding data structure in the memory and fills it with data from the XMI document.
All elements of the XMI file are represented by objects. These objects are linked
together into a hierarchical tree structure by using linked lists. The basic objects like
ModelElement, Action, Signal, etc. and the classes of the BehavioralElements are
implemented by special child classes, the others are loaded as general XMI elements.
The special classes implement the metamodel of the Statechart, the derived objects
can load the attributes of the metamodel. The other XMI elements read only the stan-
dard XMI attributes like ID, UUID, idref, etc. The cross-links are realized by textual
references (idrefs). It would be possible to use pointers for this purpose, but in this
case the loader could not process the XMI file in one step.

12

Essentially, the XMI loader builds the internal representation on which the checker
procedures are executed. Typically, these procedures are recursive ones. If a state-
chart is embedded in another one (e.g. in a composite state), the checker procedure
can automatically examine this as a part of the "parent" statechart. Naturally, two
independent statecharts must be verified independently.

The checker procedures run noticeably faster than the Prolog-based implementa-
tion. The verification on the same example model (described in the next section)
needed only 2 seconds, including also the time required to process the XMI file. Note
that in the Prolog approach, the time required to generate the common database,
which is again a few tens of seconds, was not included. If we converted all textual
references into direct pointers, the verification process could be even faster.

In a typical UML model there are less than 1000 states [6]. An XMI object repre-
sentation needs about 60-100 bytes in the memory. Accordingly, the full model could
be about 10 MB large. This means that a standard model can fit into the memory of a
common PC.

This variant of the tool is fast and efficient, but it has a few disadvantages as fol-
lows:
- The model representation is less scalable and robust than that of a general pur-

pose database manager.
- The implementation of the checker procedures is more complex than in the case

of the Prolog version.
- The portability of the tool is problematic.

Theoretically, the database approach could support teamwork (when designers
work on different parts of the same model concurrently) very well. This is not possi-
ble in the current implementation of the direct approach.

We can also combine some advantages of the direct and the Prolog/SQL-based
approaches. The tool-dependent database export is replaced by a loader that fills the
database structures by processing the XMI model output. This method behaves simi-
larly to the Prolog approach.

7 Case Study

Our work on the completeness and consistency checking was motivated partially by
our experiences gathered during the design of a safety-critical, embedded real-time
system, a fire-alarm backup controller (referred to as VE in the following) which is
part of a complex fire/gas/security alarm system.

The VE is a complex unit, its software model has more than 50 classes and 60
modules, and the program implementation itself is longer than 30,000 rows in C. The
operating platform is an embedded microcontroller, which made the testing and de-
bugging difficult.

The original version of the VE software was created by conventional programming
techniques based on a natural language specification. After the implementation the
testers tried to examine the most important scenarios, but of course not all possible
cases could be tested (as asynchronous input signals are processed by the unit).

The unit was put into operation and, unfortunately, hard-to-check intermittent fail-
ures were detected. On average once in every week (after a few millions of correct

13

polling cycles) the module of the system responsible for the communication came to
an erroneous state for 3-4 seconds. During this time the communication was broken,
the control station generated an error alarm and for a few minutes the fire protection
was disabled, which resulted in a hazardous situation. Since this software problem
occurred randomly, the thorough testing and debugging of the problem seemed to be
hopeless.

The decision was to re-implement the module from the beginning. The natural lan-
guage specification was formalized in UML and the model was checked also for the
sake of completeness and consistency.

On Figure 2 part of the UML statechart specification of the serial communication
controller module of the VE is presented. (The shaded rounded rectangles represent
stable states, while the others are temporary states.). This module controls two inde-
pendent serial ports: one for the data-collector units (CVKE) and one for the central
station. When the central station polls the CVKEs, the VE forwards the polling com-
mands and the responses (this is called “Transparent Mode”). If the central station
does not send polling commands for a predefined period of time (here 3 seconds), the
VE starts an autonomous operation (called here “Master Mode”) and starts sending
the polling commands itself. If the central station resumes the polling then the VE
must switch back to Transparent Mode.

Fig. 2. Statechart of the serial communication module

The statechart model of the VE was checked by our completeness and consistency
checkers. Several deficiencies were detected. For example, considering the statechart
depicted in Figure 2, the following problems were identified (shown on the figure by
thick lines):
- There was no transition specified for the Timeout condition “MasterLost” in state

“MasterMode:WaitForCVKEAnswer”.
- There was no transition specified for the Timeout condition “MasterLost” in state

“MasterMode:WaitForEndOfRound”.

14

- There was no transition specified for the Timeout condition “MasterLost” in state
“TransparentMode:WaitForCVKEAnswer”.

- There was no transition specified for the Timeout condition “SlaveLost” in state
“TransparentMode:WaitForMasterCommand”.

- There was no transition specified for the event “CommandArrived” in state
“WaitForEndOfRound”.

- In State “TransparentMode:WaitForCVKEAnswer”, event “SlaveLost” triggered
two transitions (one of them is shown by dashed line) resulting in a potentially
non-deterministic operation.

We have performed also some additional completeness and consistency checks,
which are specific for this control system. For instance we had to check whether for
all scenario, the Timeout Timer is re-started in every stable state. The reachability
analysis was performed completely in the HIDE environment since the mapping of
UML statecharts to Promela code was implemented there.

The full verification and the correction of the specification of the communication
module required approx. 4 hours. Then the skeleton of the program code was gener-
ated automatically, based on the checked UML model. The finalization of the code
was made manually.

The new code was tested, integrated and the system was put into operation. The
intermittent failures disappeared from the system. The problems were presumably
caused by the incompleteness of the specification in the case of Timeout events.

7 Conclusion

The paper presented methods and tools for the checking of some aspects of complete-
ness and consistency in UML statechart specifications of embedded controllers. Crite-
ria were formulated and their checking was proposed both by applying static methods
and reachability analysis (model checking). The main contribution of our work are (i)
the adaptation of existing criteria to the UML statechart formalism and (ii) the ex-
perimental implementation of the checker methods. This work can be considered as a
first step towards the automatic analysis of the majority of criteria given in [4].

Our further research concentrates on two main topics. The first goal is the exten-
sion of the set of criteria to be checked. The next area of research is the investigation
of the use of OCL to express and check safety criteria. Finally the research could lead
to the definition of a sub-language of UML suitable for specifying safety-critical sys-
tems.

References

1 J. Rumbaugh, I. Jacobson and G. Booch: The Unified Modeling Language Reference
Manual. Addison-Wesley (1999)

2 B. P. Douglass: Real-Time UML - Developing Efficient Objects for Embedded Systems.
Addison-Wesley (1998)

15

3 M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart: Software Requirements
Analysis for Real-Time Process-Control Systems. IEEE Trans. on Software Engineering,
Vol. 17, No. 3, pp 241-258 (1991)

4 N. G. Leveson: Safeware: System Safety and Computers. Addison-Wesley (1995)
5 N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese: Requirements Specifica-

tion for Process-Control Systems. IEEE Trans. on Software Engineering, pp. 684-706
(1994)

6 M. P. E. Heimdahl and N. G. Leveson: Completeness and Consistency Checking of Soft-
ware Requirements. IEEE Trans, on Software Engineering, Vol. 22. No. 6 (1996)

7 N. G. Leveson, J. D. Reese and M. Heimdahl: SpecTRM: A CAD System for Digital
Automation. Digital Avionics System Conference, Seattle (1998)

8 N. G. Leveson, M. P. E. Heimdahl, and J. D. Reese: Designing Specification Languages
for Process Control Systems. Lessons Learned and Steps to the Future.
http://www.safeware-eng.com/pubs/

9 Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI System-
house, Unisys, ICON Computing, IntelliCorp, i-Logix, IBM, ObjecTime, Platinum Tech-
nology, Ptech, Taskon, Reich Technologies, and Softeam: Object Constraint Language
Specification, version 1.1, (1997)

10 D. Harel: Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, Vol. 3, No. 3, pp 231-274, (1987)

11 D. Latella, I. Majzik, and M. Massink: Towards a Formal Operational Semantics of UML
Statechart Diagrams. In P. Ciancarini and R. Gorrieri, editors, IFIP TC6/WG6.1 Third
International Conference on Formal Methods for Open Object-Oriented Distributed Sys-
tems, Kluwer Academic Publishers (1999)

12 Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software, MCI System-
house, Unisys, ICON Computing, IntelliCorp, i-Logix, IBM, ObjecTime, Platinum Tech-
nology, Ptech, Taskon, Reich Technologies, and Softeam: UML Semantics, version 1.1,
(1997)

13 G. Holzmann: The Model Checker SPIN. IEEE Transactions on Software Engineering,
Vol. 23, pp 279-295 (1997)

14 A. Avizienis and L. Chen: On the Implementation of N-Version Programming for Soft-
ware Fault-Tolerance during Program Execution. In Proc. COMPSAC-77, pp. 149-155,
1977

15 A. Bondavalli, M. Dal Cin, D. Latella and A. Pataricza: High-Level Integrated Design
Environment for Dependability (HIDE). Proc. Fifth International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS-99), November 18-20, 1999, Mon-
terey, California, IEEE CS, pp. 87-92 (1999)

16 Innovator version 6.1. MID GmbH, Nuremberg, Germany, http://www.mid.de/en/
17 Object Management Group: XML Metadata Interchange. October, 1998.

http://www.omg.org

