
Software Monitoring and Debugging Using Compressed Signature Sequences

István Majzik
Technical University of Budapest

Department of Measurement and Instrument Engineering
H-1521 Budapest, M˝uegyetem rkp. 9., Hungary

majzik@mmt.bme.hu

Abstract

Signature based error detection techniques (e.g. the ap-
plication of watchdog processors) can be easily extended to
support software debugging. The run-time sequence of sig-
natures is stored in an extension of the traditional checker.
As the signatures identify the states of the program, a trace
of the statements executed by the checked processor is avail-
able. The signature buffer can be efficiently utilized if the
signature sequence is compressed. In the paper, two real-
time compression methods are presented and compared.
The general method uses predefined dictionaries, while the
other one utilizes the structural information encoded in the
signatures.

1. Introduction

Debugging or post-mortem diagnosis of complex, em-
bedded (real-time) application programs is difficult, since it
is supported typically only by static information like a mem-
ory dump. The system designer is interested in the trace of
the erroneous program, i.e. in the sequence of statements
the program executed before the error.

The complex monitoring systems intended to collect the
trace data may even modify the original operating environ-
ment and timing of the monitored programs. The major-
ity of monitoring and debugging tools (e.g. the RED [4] or
DCT [1] methods) require dedicated hardware. By software
approaches, the source of the monitored program is modi-
fied, inserting extra instructions which collect trace data [6]
or extra processes [12]. Hybrid techniques like [2] or [3]
combine software modification and hardware-based infor-
mation collection.

Some error detection techniques widely used in highly
dependable systems often provide mechanisms to derive the
trace of the program with minor cost and additional effort.
Our goal is to show, that one of the commonly used run-
time error detection methods, the application of watchdog-

processors, can be extended easily to support trace based
diagnosis and debugging of programs.

Dependable applications require continuous, concurrent
run-time error detection mechanisms to highlight transient
errors causing disturbances in data and control flow. Errors
in data can be efficiently detected (and even corrected) by
redundant encoding, while the most efficient method for the
detection of control-flow errors is the application of watch-
dog processors (WPs, [7]). WPs are relatively simple copro-
cessors monitoring the state of the system using signatures,
compact abstractions of the system state. In the assigned
signatures methods [5], the checked program is modified
at compilation time in such a way, that during the run the
signatures are transferred to the WP. (A preprocessor ana-
lyzes the high-level program text, labels the statements of
the program by signatures and inserts the signature trans-
fer instructions.) The WP evaluates the run-time sequence
of signatures on the basis of a reference control flow graph
(CFG) extracted by the preprocessor. If the WP finds a sig-
nature which is not a valid successor of the previous one
then a control-flow error is detected.

The signatures assigned by the preprocessor uniquely
identify the states of the program. In the default case, each
individual statement of the program is associated with an
unique signature, but additional reduction phases can merge
branch-free statement sequences into a block labeled by a
single, joint signature. In this way, the run-time sequence
of signatures contains the information necessary to recon-
struct the execution of the program, the trace of statements.
However, the original error detection mechanism does not
store this sequence of run-time signatures in the WP.

If the run-time signature sequence is stored in thediag-
nostic extensionof a traditional WP, then a complete log
of the program execution is available, the trace of executed
statements can be restored. The difficulty is that this se-
quence is too long to be stored in full extent. A trade-
off between the efficiency and moderate cost is to imple-
ment a logic analyzer-like circular buffer storing a limited
log of signatures. The utilization of the buffer can be fur-



ther improved by some kind of information compression of
the signature sequence before storing the log. Since the
majority of signatures originates from repetitive signature
sub-sequences (corresponding to iteration loops, frequently
called procedures), the efficient compression is possible.

The basic idea is summarized as follows: Signatures are
assigned to the states of the application programs by a pre-
processor. The diagnostic WP receives and compresses the
run-time sequence of signatures, the compressed sequence
is stored in a circular buffer. If a trigger condition (e.g. an
error) is detected then the registration is stopped and the
buffer can be read by the diagnosis program or an external
supervisory computer. The content of the buffer is decom-
pressed, the original signature sequence and the statements
identified by the signatures are derived. In this way the trace
of the statements executed before the detection is available
for diagnosis and debugging purposes. The advantage of
our solution is, that even complex (multi-tasking) applica-
tions, time and data dependent control flow (scheduling, in-
terrupt handling) can be analyzed, using the very same hard-
ware as for on-line error detection.

Our paper concentrates on the signature compression
techniques. We propose two schemes allowing an extremely
simple real-time hardware compressor unit, utilizing the a
priori knowledge of the structure of the program to be ana-
lyzed. The first scheme uses a predefined dictionary, which
is constructed on the basis of the control flow graph of
the program to be monitored (Section 2). The second one
utilizes the redundant structure of the signatures assigned
by the SEIS (Signature Encoded Instruction Stream, [11])
method. In this case no dictionary is required, the run-time
signature sequence can be compressed without download-
ing any program-specific dictionary. This interesting (sub-
optimal) compression is discussed in Section 3. At the end,
measurement results (Section 4) and support of diagnosis
(Section 5) are presented.

2. Compression of the signature sequence using
a predefined dictionary

The theoretical problem of the compression of the signa-
ture sequence is that of universal encoding. In our case, the
message is the run-time sequence of signatures, the message
alphabet consists of the valid signatures while the encoding
alphabet contains a fixed number ofcharacters. The sig-
nature sequence is divided intowords(slices of the signa-
ture sequence) of varying length and each word is encoded
by a single character of the encoding alphabet. The words
and the corresponding characters form adictionary. In the
common universal encoding schemes (Adaptive Huffman,
Lempel-Ziv algorithms) the dictionary is built concurrently
with the transfer of the message. The run-time construc-
tion of the dictionary is time-consuming and needs a fast,

difficult and sophisticated hardware.
In our case, the dictionary is constructed during prepro-

cessing, when the control flow graph is extracted and the
signatures are assigned to the states of the program. Before
the start of the program, the dictionary is downloaded into
the diagnostic WP. The compression mechanism uses the
predefined dictionary: if a word is found in the signature
sequence then the corresponding character is stored in the
buffer (in the case of repeating characters only a counter is
increased). The special structure of the dictionary ensures
the simplicity of the compression hardware and the real-
time processing of signatures. The efficiency of the com-
pression depends on the definition of the dictionary, i.e. on
the optimal selection of the words.

The actual signature sequence is unpredictable in the
preprocessing phase due to the data dependency of the pro-
gram run. But, since the control flow graph of the program
is already known, program paths assumed to be executed
frequently can be identified by the preprocessor. In this way,
signature sequences originating from the execution of these
program paths define the words of the dictionary. The fol-
lowing structures can be taken into account:

� bodies of iterations (loops);

� long (branch-free) sequences of instructions;

� normal branches of selections (exception should
rarely occur);

� frequently called small procedures.

The preprocessor which analyzes the program text can iden-
tify these structures, derive the signature sequences associ-
ated with them and in such a way define the dictionary.

The diagnostic extension of the WP consists of the sig-
nature compressor, the dictionary buffer and the signature
buffer. In the following, first the structure of the dictionary
is described, then the compression algorithm and its prop-
erties are presented.

2.1. Structure of the dictionary

The words of the dictionary are associated with fre-
quently executed program paths, but do not cover all of
the possible paths of the program execution. There are sig-
natures which do not belong to paths mapped directly to
words. To store them in the buffer,

� each valid (single) signature is encoded by a unique
character;

� subpaths of encoded paths, i.e. prefixes of signa-
ture sequences mapped to words are also encoded by
unique characters.



The dictionary consists of characters which encode
words (signature sequences) corresponding to selected pro-
gram execution paths. Words starting with a given signature
(i.e. some subpaths of the program execution starting in a
given state) are represented by asignature tree. The given
initial signature is the root of the tree, followed by its imme-
diate successors in the CFG involved in (one of) the words.
A node of the signature tree identifies a signature sequence
starting with the root signature and ending at the given node.
Words defined by the preprocessor are represented by a set
of signature trees with unique root signatures. Each valid
signature is a root of an individual tree (if a signature is not
an initial one in any word then it forms a tree consisting of
this signature (as a root) only).

The nodes of the signature trees are associated with
unique characters of the encoding alphabet. The charac-
ter associated with a node encodes the signature sequence
along the path from the root of the tree to the given node
(Figure 1). The above mentioned requirements are satis-
fied: each signature, as root of a tree, is encoded by a unique
character, and prefixes of words are also encoded by char-
acters.

Postfix of a given word is represented by a path in the
tree starting with the first signature of the postfix only if
it is awaited to occur separately in the signature sequence,
not following its prefix in the original word. (E.g. if the
sequence of signaturess3�s4�s5�s7 is a path in the tree
starting withs3 ands4 always followss3, then the postfix
s4� s5� s7 is not represented by a path in the tree starting
with s4.) Accordingly, most of the trees consist of only
the root signature. The signatures, which are included in
several words, are represented by nodes in several signature
trees. In Figure 1 an example CFG and the corresponding
signature trees are presented. Subpaths in the iteration are
encoded separately since they are expected to be executed
frequently. Two complete paths are also covered by words.

For the sake of effectiveness and high speed of the com-
pressor hardware, the signature trees of the dictionary are
implemented aslinked listsin the dictionary buffer. A list
element representing a node of a tree consists of the follow-
ing fields:

� the signature associated with the node;

� the number of successors stored in the signature tree
(limited to 3; note that the structural properties of the
CFGs of programs enable this limitation as most of
the signatures have only 1 or 2 valid immediate suc-
cessors);

� a pointer addressing the successor nodes (address of
the list element representing the first successor node,
the other successor nodes are stored successively, af-
ter the first one); if there is no successor then a null
pointer is assigned.

The character which is associated with the node is thead-
dressof the list element in the buffer, in this way it has not
to be stored.

The dictionary as a linked list is constructed by the pre-
processor taking into account the efficient utilization of the
buffer. The characters encoding the root nodes of the trees
are identical to the signatures associated with these nodes.
This way a signature tree is easily accessed since the ad-
dress of the list element corresponding to the root node is
exactly the first (root) signature of the tree. These nodes are
placed at the bottom of the buffer, at successive addresses
(in our case the signatures are increasing numbers, in the
order of syntactic occurrence in the program text [10]). The
other nodes (which are not root ones) are associated with
arbitrary but unique characters, in such a way, that the suc-
cessors of a given node are found at successive addresses
(this way a single pointer defines the set of successors).

2.2. The compression algorithm

The task of the compression algorithm is to find the
longest word which is encoded by a single character. (As a
default worst case, each signature is encoded by a separate
character.) If the longest word is found then the encoding
character is stored in the compression buffer. The compres-
sion buffer is a linear array of elements consisting of two
fields: one storing the character and a second one storing
the subsequent occurrences of the character.

The compression algorithm begins in theStart phase
then continues in theEncoding phase(signatures are re-
ceived and processed looking for the most feasible charac-
ter which encodes the sequence). The characters encoding
words are stored in theStoring phase.

1. Start phase: If the first signature of a word has been
received then the tree associated with this signature is
accessed. The actual node is the root node, the next
signature is processed in theEncoding phase.

2. Encoding phase: As the next signature is received,
the successors of the actual node (i.e. the previous
signature) are addressed and compared with the ac-
tual signature.

If one of them equals to the actual signature then
the node corresponding to it becomes the new actual
node. The encoding of the word continues in theEn-
coding phase.

If none of them equals to the actual signature (or there
are no successors in the tree) then the actual word is
completed. The character associated with the actual
node is stored into the compression buffer (Storing
phase), the actual signature is processed in theStart
phase.



Figure 1. An example program, its CFG and the corresponding signature trees

3. Storing phase: If a word is completed then the char-
acter encoding this word, i.e. the character associated
with the actual node is stored.

If the actual character is the same as the previous
character stored in the buffer then only its counter
is increased by one, otherwise the actual character is
stored in the next element of the compression buffer
(with 1 as initial counter value).

The actual signature is processed as first signature of
the next word (Start phase).

The compression algorithm can be enhanced. There
are (longer) paths in the CFG which share common sub-
paths. Accordingly, the signature sequences corresponding
to these subpaths are embedded in various longer words. In
order to reduce the size of the dictionary, the enhanced com-
pression algorithm enables the use ofembedded characters.
If a signature sequence is encoded by a character then in-
stead of the sequence thecharactercan be placed into the
dictionary. To keep the compression algorithm as simple as
possible, only those characters should be used as embed-
ded characters which represent a path (signature sequence)
from the root to the end of a signature tree. For example,
let consider the signature treeT1 in Figure 1. The subpaths
s3� s4� s5� s7 ands3� s6� s7 of T1 can be replaced
by c22 andc23, respectively, since they are encoded inT3.

(Note that in iterative programs it is often required to encode
long paths which contain sub-paths of embedded cycles.)

Using the enhanced compression algorithm, the struc-
ture of the dictionary is modified: a mask is introduced
which distinguishes the signature or character successors of
a given node (root nodes always represent signatures). The
algorithm also maintains an additionalcharacter stackstor-
ing the predecessors of embedded characters. The number
of levels of the character embedding is limited when the
dictionary is constructed.

The compression algorithm is real-time in the sense that
the time needed to process a signature is bounded, indepen-
dently whether the signature is included in a word or it is
encoded separately. The fast and efficient hardware imple-
mentation is ensured by the following design aspects:

� No run-time construction or modification of the dic-
tionary is needed. It is stored in a form fully utilizing
the dictionary buffer.

� The search and compare operations in the dictionary
can be processed fast, since the signature trees are
accessed directly by the root signatures and the suc-
cessors of a given signature are addressed by a stored
pointer. The examination of the possible successors
requires a bounded number of comparisons.



3. Compression of the SEIS signature sequence

The previous section presented a compression scheme
using a predefined dictionary which can be derived ana-
lyzing the (high level) source text of the program to be
executed. The dictionary should be downloaded into the
compressor before the program run. In this way, starting
new programs requires the downloading of new dictionaries
which results in time and hardware overhead, especially in
multitasking environments. The second compression algo-
rithm retains the simplicity of the previous scheme and ad-
ditionally eliminates the use of a predefined dictionary. The
scheme is based on the SEIS assignment of signatures [8],
thus it can be combined with signature checking by SEIS
watchdog processors. In the following, first the SEIS sig-
nature assignment is described then the compression algo-
rithm, its requirements and limitations are discussed.

3.1. The SEIS signature assignment

To keep the evaluation of the run-time signatures simple,
the SEIS signatures represent not only the statements of the
program but also contain information about their valid im-
mediate successors. Statements of a branch-free program
path are encoded by a series of successive incremental num-
bers, in branches the alternative paths require starting of ad-
ditional, separated series. A signature assigned to a state-
ment involved in more than one path consists of more indi-
vidual parts calledsublabels. The successor signatures are
connected by successor sublabels similarly like the tiles in
the game of domino. The SEIS encoding algorithm ensures
that each signature consists of a limited number of subla-
bels. The sublabels are unique in the encoding, in this way
a given sublabel identifies the signature and thus the state-
ment of a program. If a slice of the run-time sequence of
signatures represents a program path encoded by a series of
successive numbers, it can be compressed by storing only
the first and last sublabels of the series, in a similar way as
an interval is defined by its endpoints.

3.2. The compression algorithm

A valid path in the CFG is represented by a sequence of
signatures where each signature is a valid successor of the
previous one. In this sequence, the successive signatures
are connected by successor sublabels. Consider a signature
in the run-time sequence. If the same sublabel connects the
predecessor signature to the actual one and the actual signa-
ture to the successor one then the actual signature is called
acompressiblesignature in the sequence.

Each unique sublabel identifies the complete signature
and thus the corresponding state (statement) of the program.
Based on this fact, a run-time sequence of signatures can

be easily compressed if all signatures in the sequence are
compressible ones. In this case, the sequence of signatures
can be reduced to the sequence of the sublabels which con-
nect the successive signatures. This sequence of sublabels
is identified by the first and the last sublabel in the sequence
(due to the deterministic successor function), in this way it
can be encoded by these two values, independently of the
number of sublabels in the sequence (Figure 2).

The compression algorithm examines whether the actual
signature is a compressible one. If it is compressible then
the sequence may continue, otherwise the actual sequence
is encoded by its first and last sublabels which are stored in
the compression buffer.

1. Start phase: The first signature of a sequence is
stored in a temporary buffer. The next signature is
received immediately. The sublabel of the first sig-
nature which connects it to this next one is stored as
start sublabel, its successor in the next signature is
marked as theactual sublabel. The following signa-
ture is processed in theEncoding phase.

If there is no sublabel that connects the first signature
to the next one (e.g. this later one is an initial signa-
ture of a procedure) then the first signature is stored
(Storing phase, selecting one of its sublabels) and the
next one is processed in theStart phase.

2. Encoding phase: As the actual signature is received,
it is examined whether the previous signature is a
compressible one.

If the previous signature is connected to the actual
signature by the actual sublabel then it is a compress-
ible one. The successor of the actual sublabel be-
comes the new actual sublabel, the following signa-
ture is received and processed in theEncoding phase.

If the sublabel of the previous signature, which con-
nects it to the actual signature, is not the actual sub-
label then the sublabel sequence is terminated. The
compressed sequence is stored into the compression
buffer (Storing phase). The actual signature is pro-
cessed in theStart phaseas first signature of a new
sequence.

3. Storing phase: The compressed signature sequence is
stored as the pair of the start sublabel and the actual
sublabel.

If this pair is the same as the previous one stored in
the buffer then only its counter is increased by one,
otherwise the actual pair is stored in the next element
of the compression buffer.



Figure 2. SEIS encoding of a CFG and compression of a signature sequence

3.3. Limitations of the SEIS compression

The construction of the original SEIS CFG does not take
into account the requirements of the compression as the
edge sequences are defined mainly in the order of the syn-
tactic occurrence. The efficiency of the compression can be
improved ifpath optimizationis performed: nodes belong-
ing to frequently executed paths are encoded by successive
compressible signatures. A run-time sequence of compress-
ible signatures is broken at a branch statement if not the
preferred path is selected, thus the efficiency of the com-
pression depends on the prediction of the branch selection
in the signature assignment phase.

Path optimization is performed by executing transforma-
tions on the CFG before the assignment of the sublabel val-
ues, still preserving the structural properties (i.e. not intro-
ducing additional paths). The following transformations are
defined:

� Shuffling the input or output edges of a node, i.e. re-
versing the endpoint or start-point sublabels of the
edges in the corresponding signature.

� Introducing duplicated edges between nodes of the
CFG.

The first transformations produce compressible signa-
tures in a given path, the second one (which can be followed
by the first ones) enables a signature to be embedded in sev-
eral different signature sequences.

The actual implementation of the SEIS encoding limits
the number of sublabels in a signature to 3. Consequently,
a signature can be included in maximum 3 different com-
pressible run-time sequences. Additionally, the order of in-
put/output edges in nodes belonging to special statements
(exceptional cases in the structural languages, likegoto ,
break etc.) is further constrained (discussed in details in
[8]), resulting in the fact that these nodes usually terminate
the compressible signature sequences.

Due to the limitations of the path optimization in the
SEIS CFG, the optimal path selection and encoding can not
be performed in all cases. The drawback is especially sig-
nificant if there are more than 3 execution paths (of about
the same probability) in the body of a frequently executed
iteration. In these cases the general compression algorithm
provides better results. However, the lack of dictionary
makes the SEIS compression still attractive.



4. Measurement results

The real-time signature compressor was built using an
FPGA circuit (Xilinx XC3064 series, 224 configurable
logic block each with 2 flip-flops) which needs only an in-
terface to receive signatures and a memory array to store
the compression buffer (and the dictionary, in the general
case). The compression algorithms are implemented by
state machines (a few dozen of states). Since the FPGA
is programmable in run-time, both structures can be down-
loaded and evaluated. The fast compression algorithm and
the low hardware overhead enable the circuit to be built into
a conventional watchdog-processor unit [9].

4.1. Size of the compressed trace

The efficiency of the two algorithms was demonstrated
first by simulation, compressing the entire run-time signa-
ture sequence of different benchmark programs (to com-
pute the size of the buffer necessary to store the entire se-
quence). In the first scheme, the storage required to keep
the sequence could be reduced to 10-30% by compression,
depending on the size of the dictionary. The second algo-
rithm provides similar results, but the improvement of the
compression rate is difficult (branch prediction in the pre-
processing phase).

The effectiveness of the compression based on dictionar-
ies depends heavily on the optimal selection of the words,
i.e. on the construction of the dictionary. To highlight this
effect, the compression rate was measured constructing dic-
tionaries of different size. The benchmark program was
a multigrid based solver of differential equations, with re-
duced number of signatures (in average, every 5th statement
was associated with a signature). The results are presented
in Table 1. The encoded paths inside the iteration loops of
the solver are relatively small, thus the compression rate is
sensitive to small changes in the dictionary. The data depen-
dency is demonstrated by starting the solver with different
parameters (number of levels).

Benchmark Without Dictionary size
compression 85 95 116

multigrid 3 1,715 1,181 692 607
100% 69% 40% 35%

multigrid 5 32,391 15,914 4,118 3,981
100% 49% 13% 12%

Table 1. Size of the compressed trace using
dictionaries

The effectiveness of the SEIS compression depends on
the structure of the CFG. The measurements were made us-
ing various benchmark programs without additional path

optimization. The results are satisfactory even in this
case (Table 2). Signature sequences of benchmarks with
relatively small iteration loops are compressed efficiently,
nested loops and complex control structures make the com-
pression difficult.

4.2. Utilization of the compression buffer

The utilization of the circular compression buffer of the
diagnostic WP was measured (in each storage cycle, the
number of signatures in the buffer was derived and then
averaged). The buffer was able to store 256 elements, the
counter part of each buffer element was stored in 16 bits. In
this prototype, the utilization of the buffer was above 300%
in both cases. The results of the SEIS compression of the
previous benchmarks are in the last two columns of Table 2.
Additionally, the time function of the number of signatures
in the buffer is presented for the multigrid benchmark. It
reflects the structure of the program, iteration cycles result
in peaks in the buffer utilization.

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000 12000 14000

nu
m

be
r 

of
 s

ig
na

tu
re

s

storage cycles

multigrid 5

Figure 3. Number of signatures in the com-
pression buffer (SEIS method).

5. Support of debugging

The compression buffer stores a limited number of signa-
tures in a compacted form. If a trigger condition is detected
(e.g. an error by the WP) then the execution of the program
is stopped and the compression buffer can be accessed by
the checked computer itself or by external devices as part
of the diagnostic/debugging procedure. Using the decom-
pressed signature sequence, the trace of statements executed
before the trigger event can be derived and analyzed.

The debugging of programs can be further supported.
First, if the trigger event is reproducible then the dictio-
nary can be reconstructed or a path optimization can be



Benchmark Number of Size of the Compression Average buffer Max. buffer
run-time signatures compressed trace rate utilization utilization

multigrid 3 3,993 1,008 0.25 320% 485%
multigrid 5 79,005 13,386 0.17 554% 2118%
multigrid 7 1,254,821 160,073 0.13 742% 26,441%
whetstone 118,793 38,895 0.33 302% 4,698%
dhrystone 100 12,288 3,705 0.30 319% 351%
linpack 11,825,895 603,300 0.05 1,960% 10,142%

Table 2. Compression results using the SEIS method

performed on the basis of the contents of the compres-
sion buffer, in this way a longer signature sequence can be
stored. Additionally, if a selected set of the input events
of the checked program (e.g. interrupts, communication
with other processes, input from peripherals, time events)
is associated with signatures then input-specific or real-time
constraints can be monitored as well.

The statements executed before the error are presented in
a graphical environment similar to the one of the common
debuggers: the statements or statement sets of the program
execution are highlighted in the source text simulating an
automatic trace or a single step execution.

Our environment can help the input-domain based test of
programs. Since the signatures identify the possible paths
of the program execution, it can be investigated whether a
given test set covers all of the possible branches of the pro-
gram. The signaturesnot transferredto the WP during the
test identify the branches/paths which were not executed.

6. Conclusion and future work

In our paper a new approach of signature-based monitor-
ing and debugging of programs is proposed. It is shown that
the trace based monitoring can be performed using the very
same software (program preprocessor) and hardware (sig-
nature monitor) as for one of the concurrent error detection
techniques, the application of watchdog processors. Signa-
tures which identify the states of the program can be stored
efficiently in a trace buffer, in a compressed form. Two ap-
proaches for the real-time compression of the run-time sig-
nature sequence are presented and evaluated. Both schemes
support the implementation of very simple hardware com-
pressor modules which are comparable in complexity with
the signature evaluation module of the WP.

Our future work is concentrated on the refinement of the
diagnostic environment and on the improvement of the user-
controlled dictionary construction and path optimization (in
the case of SEIS signatures).

References

[1] D. Bhatt, A. Ghonami, and R. Ramanujan. An instrumented
testbed for real-time distributed systems development. In
Proc. IEEE Symposium on Real-Time Systems, pages 241–
250, 1987.

[2] J. P. Calvez and O. Pasquier. Real-time behavior monitoring
for multi-processor systems.Microprocessing and Micro-
programming, 38:213–220, 1993.

[3] D. Haban and D. Wybranietz. A hybrid monitor for be-
havior and performance analysis of distributed systems.
IEEE Transactions on Software Engineering, 16(2):197–
211, 1990.

[4] C. R. Hill. A real-time microprocessor debugging technique.
In ACM SIGSOFT/SIGPLAN Software Engineering Sympo-
sium on High Level Debugging, pages 145–148, 1983.

[5] D. J. Lu. Watchdog processors and structural integrity
checking. IEEE Transactions on Computers, 31:681–685,
1982.

[6] E. Maehle and W. Obeloer. Delta-T: A user-transparent soft-
ware monitoring tool for multi-transputer systems.Micro-
processing and Microprogramming, 35:245–252, 1992.

[7] A. Mahmood and E. J. McCluskey. Concurrent error detec-
tion using watchdog processors: A survey.IEEE Transac-
tions on Computers, 37:160–174, 1988.

[8] I. Majzik. SEIS: A program control flow graph encoding
algorithm for control flow checking. Technical Report TUB-
TR-94-EE14, Technical University of Budapest, 1994.

[9] I. Majzik, A. Pataricza, M. D. Cin, W. Hohl, J. Hoenig,
and V. Sieh. Hierarchical checking of multiprocessors us-
ing watchdog processors. In K. Echtle, D. Hammer, and
D. Powell, editors,Dependable Computing - EDCC-1, vol-
ume 852 ofLNCS, pages 386–403. Springer Verlag, 1994.

[10] E. Michel and W. Hohl. Concurrent error detection using
watchdog processors in the multiprocessor system MEMSY.
In Fault Tolerant Computing Systems, number 283 in Infor-
matik Fachberichte, pages 54–64. Springer Verlag Berlin,
1991.

[11] A. Pataricza, I. Majzik, W. Hohl, and J. Hoenig. Watchdog
processors in parallel systems.Microprocessing and Micro-
programming, 39:69–74, 1993.

[12] H. Tokuda, M. Kotera, and C. W. Mercer. A real-time mon-
itor for a distributed real-time operating system. InProc.
ACM/ONR Workshop on Parallel and Distributed Debug-
ging, pages 68–71, 1988.


