
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 25(10), 1141–1153 (OCTOBER 1995)

Process Scheduling and UNIX Semaphores

NEIL DUNSTAN AND IVAN FRIS

Department of Mathematics, Statistics and Computing Science University of New England, Armidale, NSW,
2351, Australia

(email: neil@neumann.une.edu.au ivan@neumann.une.edu.au)

SUMMARY

Semaphores have been used extensively in programming concurrent tasks. Various extensions have been
proposed for problems in which traditional semaphores turned out to be difficult to use. The extended
semaphore primitives investigated here are based on the version of semaphores implemented in UNIX
System V. Implementation issues are discussed and practical illustrations of their use are provided. In
particular, algorithms for a variety of common process scheduling schemes are shown. These solutions
are evaluated and the strengths and weaknesses of UNIX semaphores are discussed.

KEY WORDS: UNIX; semaphores; synchronization; concurrent programming

1. INTRODUCTION

The semaphore is a synchronization primitive which can be used directly to solve many tasks
in process synchronization and coordination, and in concurrent programming in general. It
is also used to implement various higher level constructs used in parallel programming.
Following the original description,1 the semaphore can be described as a programming
structure whose data component is a non-negative integer variablesemval. Two operations
only are defined on semaphores, namely the operationsP andV . The operationV increases
the value ofsemval by 1. The operationP decreases the value ofsemval by 1 at some
time when the resulting value would be non-negative. Thecompletionof the P-operation
– i.e. the decision that this is an appropriate moment to put the decrease into effect and
the subsequent decrease itself is an indivisible operation. In fact, both these operations,V
and the completion ofP , must beatomic in the sense that when several processes operate
on the same semaphore, each operation is completed before another starts – instructions
comprising these operations are never interleaved. More than one process may have initiated
aP operation on the same semaphore whose value is 0. The above definition of semaphores
deliberately left unspecified the decision which process will be allowed to complete its
initiated P operation when another process doesV on this semaphore. That is, the result
is non-deterministic.

Many other synchronization primitives have been proposed,2,3,4 nevertheless semaphores
continue to be a popular choice and have been included in a number of operating systems,
including5,6 and UNIX System V.7 Extensions to the basic semaphore model have been
suggested in order to provide more convenient primitives for solving some specific prob-
lems in the coordination of concurrent processes.8,9,10,11 UNIX semaphores have significant

CCC 0038–0644/95/101141–13 Received 1 December 1994
1995 by John Wiley & Sons, Ltd. Revised 21 March 1995



1142 N. DUNSTAN AND I. FRIS

additional properties which make them a quite different and more powerful synchroniza-
tion mechanism than the original semaphores. While some of these additional properties
are based on earlier theoretical work on semaphore extensions, and have already received
attention in the literature, a full appraisal of the practical capabilities of UNIX semaphores
has not appeared. The ideas behind the UNIX semaphores are interesting, fruitful and worth
consideration outside UNIX circles. They have received too little attention in the literature
unjustly, being even occasionally described as just a baroque version of semaphores.

In this paper the power of UNIX-like semaphores is illustrated by using them to imple-
ment a variety of common process scheduling schemes. A general description of UNIX
semaphores is given, concentrating mainly on properties used later in the paper. It gives, in
fact, a more precise definition of some properties than can normally be found in the UNIX
literature. As the UNIX system is not really the focus of the paper, a simplified notation for
operations on these semaphores is introduced, rather than using a general standard notation
which is restrained to conform to the UNIX system call syntax. Features which are in ad-
dition to those available in the original semaphores are identified and examples of their use
are given. In particular, two features are identified which are used extensively in further
examples. When it is necessary to distinguish between the two kinds of semaphores used,
the original Dijkstra version is referred to as D-semaphores, while the version based on
UNIX is referred to as U-semaphores.

2. UNIX SEMAPHORES

Here is a brief overview of semaphores as they are implemented in UNIX System V.
The focus is on those features of UNIX semaphores that are relevant to the discussion
which follows. For more complete descriptions see UNIX system manuals and tutorial
descriptions.7,12,13,14

UNIX System V semaphores are provided by three system calls which are summarized
in TableI.

Table I. Semaphore system calls

semget(key, nsems, flags) creates an array ofnsems semaphores
and returns its identificationsid;

semop(sid, ops, nops) performs atomically the list of operations onsid
as specified by the arrayops of lengthnops

semctl(sid, snum, cmd, arg) changes or returns information about the current
state of semaphores as contained instruct sem.

A data structure maintained for each semaphore is shown in Figure1.

struct sem{
ushort semval;
short sempid;
ushort semncnt;
ushort semzcnt;

}

Figure 1



PROCESS SCHEDULING AND UNIX SEMAPHORES 1143

Heresemval is the current value of the semaphore;sempid is the process identification
number of the process which performed the last operation;semncnt is the number of
processes waiting forsemval to reach a suitable positive value andsemzcnt is the number
of processes waiting forsemval to be zero.

The parameters insemop refer to arrayops of sizenops and of the typestruct sembuf
as shown in Figure2.

struct sembuf{
short sem_num;
short sem_op;
short sem_flg;

}

Figure 2

Here sem num indicates the index of the semaphore within the array;sem op is the
operation to be performed andsem flg can be IPCNOWAIT – so that the calling process
will not be suspended; or SEMUNDO – to automatically adjustsemval if the process
exits.

The operations that may be performed are described in TableII.

Table II. Semaphore operations

sem op < 0 Calling process waits untilsemval ≥ |sem op |
semval← semval + sem op

sem op = 0 Calling process waits untilsemval = 0
sem op > 0 semval← semval + sem op

Note that whensem op = −1 the operation is equivalent to a conventionalP . When
sem op = +1 it is equivalent to a conventionalV . Hence the capabilities of UNIX sema-
phores are a superset of those of Dijkstra’s semaphores.

Block-set semaphores

There are many definitions of semaphores in the literature and the correctness of a program
will depend on the exact definition used.15

Consider a processp attempting to executeP (s) whens has the value zero. This operation
cannot be completed. Consider two possible interpretations of what happens.

In the ‘weaker’ interpretation,P is attempted repeatedly, and is only completed when the
value of the semaphore has risen.

In the other possible interpretation the semaphore data structure consists not only of the
already mentionedsemval, but has an additional componentsemset. When theP operation
cannot complete, the processp is suspended, and this fact is remembered by storing the
process insemset. Later, whenV (s) is executed, a process is removed fromsemset and
restarted. Only whensemset is empty is thesemval increased.

The first interpretation of semaphores corresponds tobusy-wait semaphore,15 the second
to blocked–set semaphore.15 The busy-wait semaphore has been called aweak semaphore.16

It is easy to see that these two descriptions are functionally equivalent for D-semaphores
because there are no operations on semaphores that will distinguish between them. This is
because it cannot be determined whether a process actually has begun aP operation with



1144 N. DUNSTAN AND I. FRIS

semval = 0, and become suspended, or has not yet reached that operation. The situation is
fundamentally different for U-semaphores, yet the standard descriptions tend to ignore the
problem. The UNIX system callsemctl can returnsemncnt and semzcnt – the number
of processes actually suspended. There are many tasks programmed with semaphores, in
particular those concerning priorities, where this distinction between different kinds of
semaphores is relevant.

A further complication with U-semaphores concerns the fact thatsemop may increase
semval by more than one in a single call, thus several processes may be released on one
call. Here the requirement of atomicity of semaphore operations is interpreted by explicitly
requiring that all processes which are released by a single call ofsemop are released
simultaneously rather than, for example, one-by-one. What this really means is that no
intermediate values of the semaphore data structure may be detected. A final requirement is
that only processes which are already suspended partake in this release. This is the meaning
of the requirement that no further operations on the semaphore may start, until the current
one is finished. This is considered more formally in the following.

Consider a semaphores with current valuessemval = v, and semncnt = 0, i.e. in
particular, no process is blocked. And considern processespi, (1≤ i ≤ n) which initiate
an operation withsem op = vi, (vi < 0) on s. Assumev < min |vi|, so that all these
processes get blocked. After that, i.e. whensemncnt = n, a processp0 which may release
some of those processes initiates an operation wheresem op = v0 wherev0 > 0.

Now, letJ = {j1, . . . , jk} be any set, possibly empty, of (distinct) indices∈ {1, . . . , n}
such thatv′ = |vj1 + · · ·+ vjk | ≤ v + v0 but |vj0 + vj1 + · · ·+ vjk | > v + v0 for any j0 ∈
{1, . . . n} − J . Under these conditions processespj1, . . . , pjk and processp0 all complete
their initiated operations ons as a part of a single atomic operation.

The resultant values aresemncnt = n − k, andsemval = v + v0 − v′. Note, that the
description was made for a single semaphore to avoid complex notation. Also, processes
waiting for thesemval to become 0 were not considered. The idea extends straightforwardly
to more complex cases, such as those involving several semaphores. The above described
policy of process release may be calledstrictly atomicpolicy.

Also note that the convention is maintained that in general exactly which processes are
released is non-deterministic.

The definitions of the relevant UNIX system calls are consistent with but do not neces-
sarily imply these interpretations.

Notation

Rather than using UNIX system call syntax to describe semaphore operations a simple
notation adjusted to our purpose is described as in the following.

Let sid be the value returned by thesemget function. It identifies an array ofnsem
individual semaphores numbered 0 tonsem − 1. As it is of no significance what index
number any particular semaphore has, it is preferable to use identifiers. Thus, for example
in Figure5, the semaphore array contains three semaphores, referred to asa, delay,mutex
rather thans0, s1, s2. The name of the array is lost, but this, hopefully, causes no confusion.

Let s1, . . . , sk be a sequence of not necessarily distinct semaphores which are all part
of the same semaphore array. Thensemop(s1 : o1, . . . , sk : ok), whereo1, . . . , ok are all
integers, indicates the use of the system callsemop to perform the list of operations where
sem num = si andsem op = oi. Note that the flags are not mentioned in the simplified
notation – this is because they are not used in this paper (i.e. they are zero). Of course, the



PROCESS SCHEDULING AND UNIX SEMAPHORES 1145

simplified notation can be trivially extended for the use of non-zero flags.
Similarly, val(s) andncount(s) will be used to obtain (usingsemctl) the valuessemval

andsemncnt of s respectively. Finally,set(s, v) is used to setsemval of s to valuev.

Differences between Dijkstra and UNIX semaphores

The features of UNIX semaphores which are not present in Dijkstra’s original mechanism
are:

— the inclusion of flags to qualify operations
— the execution of a list of operations indivisibly
— non-unitary operations.
The IPCNOWAIT flag provides a means of decrementing the semaphore value only if

that can be immediately achieved, otherwise the operation is aborted and an error indication
is returned. This feature was also included in semaphore-based concurrency mechanisms
for the MONADS-PC.17 An obvious example of its use is when a process has alternative
work to do. The process may attempt to secure access to some resource (via a semaphore
operation including NOWAIT) but rather than being blocked waiting for that resource it
may do some other work if the resource is not immediately available.

The SEMUNDO flag is useful where a process is liable to exit or be terminated in
exceptional circumstances. If semaphores are used to guard access to resources and a process
holds some of those resources its termination may leave them forever unavailable. Use of
the SEMUNDO flag in semaphore operations establishes an adjustment value which is used
to restore a semaphore value automatically when a process is terminated. This effectively
makes associated resources available again.

The semop system call may be used to specify a list of operations on an array of sema-
phores. These operations may involve a number of different semaphores and/or a number
of operations on the same semaphore. This feature is a generalization ofsimultaneousP
operations,9 it has also been called operations onmultiple event variables,11 and which we
will refer to assimultaneous operations.

The original semaphore operationsP andV are unitary operations in that they perform
decrements or increments to the semaphore value by 1 only. UNIX semaphores permit
increments or decrements by arbitrary integral amounts – a feature that is referred to as
non-unitary operations. The non-unitary operation has been referred to as aparameterized
test–value extension.11

Both simultaneous and non-unitary operations are powerful features and are used, some-
times in combination, in examples throughout this paper.

3. COMMON SCHEDULING SCHEMES

Weak and strong fairness for D-semaphores have been defined.15 As U-semaphores offer
more comprehensive functionality, these definitions must be reformulated. The problems
with the usual definitions are that with U-semaphores processes may be blocked not only
because the value of a semaphore is not positive, but also because it is not high enough or
even because it is positive. A process may block another process without ‘competing’ for a
semaphore. A final complication is that a single operation may refer to several semaphores.
Fairness can be defined as follows.

Let us first call an operation executed by a processblockedif the process cannot complete
the operation, andunblockedotherwise. Examples of operations causing processes to be



1146 N. DUNSTAN AND I. FRIS

blocked are semop(s:-5) on a semaphores the value of which is< 5, or semop(s:0)
on a semaphore the value of which is> 0. A semaphore system isweakly fair if a process
can complete any operation which stays unblocked sufficiently long, and is calledstrongly
fair if a process can complete any operation which stays unblocked sufficiently often.
In other words, a system in which a process can be permanently delayed on an unblocked
operation is not weakly fair. If a process can be permanently delayed on an operation which
is being blocked and unblocked repeatedly, then although such a system may be weakly
fair, it is not strongly fair. This can happen, for example, in a busy-waiting implementation
of semaphores, where a process may be permanently delayed because it only checks the
semaphore when it happens to be blocked. Although not explicitly specified in UNIX, it is
assumed that U-semaphores are at leastweakly fair.∗ In this paper it is not required that
U-semaphores bestrongly fair. Strongly fair discipline on semaphores guaranteesstarvation
free operations, however many applications need some specificscheduling scheme, in other
applications strong fairness may be too constraining.

A scheduling scheme describes the order in which processes are released after being
suspended. Several schemes may be considered.

(i) First-in-first-out (FIFO) or queue scheduling.
(ii) Linear delay – scheduling in which a process is not scheduled (released) a second

time, while another process is still suspended. This is a more suitable discipline in
many instances than FIFO as FIFO assumes that time is common to different processes
even before they reach the scheduling point (e.g. a semaphore operation).

(iii) Limited delay – is a scheduling protocol giving a bound on how often a process can
be overtaken by other processes, depending, for example, on the number of processes
suspended or other possible parameters.

(iv) Finite delay – scheduling as in (iii) but not necessarily bounded.

Schemes (i) to (iv) are successively weaker.18 Under protocols (i) to (iv) no starvation
occurs, consequently theseprotocols are often called fair.

Then,

(v) Priority scheduling – in which each process is assigned a priority and released in the
order of these priorities. Again, scheduling may involve FIFO with priority and linear
delay with priority.

(vi) Ticketing systems – processes are released in the order of some associated number
series. This scheme is analogous to a ticketing system for customer service. Each new
customer receives the next numbered ticket from a monotonically increasing series.
Customers receive service in that order. Note that if the ticket is issued at the time of
entry to the ‘service counter’ then this is the same as FIFO scheduling. Eventcounts and
sequencers4 constitute a synchronization mechanism which embodies this scheduling
scheme. A sequencer is a shared object which dispenses the next number from a
monotonically increasing series. An eventcount is a non-decreasing integer variable on
which some functional primitives are defined. The operationAdvance(eventcount)
adds one to the eventcount value. The operationAwait(eventcount, ticket) causes
the calling process to be delayed at least until the eventcount value equals the value
of ticket.

(vii) Non-deterministic scheduling – implies that the order is not specified.
∗ But see the footnote in the section ‘Readers and writers’.



PROCESS SCHEDULING AND UNIX SEMAPHORES 1147

(viii) Arbitrary scheduling – enabling releasing processes (or in a simpler case, one ‘sched-
uler’ process) to identify and release any single individual process.

(ix) Readers and writers scheduling19 – where processes attempting read access to some
database may do so together but a writing process must have exclusive access.

4. SCHEDULING WITH U-SEMAPHORES

The underlying scheduling scheme for semaphores, by which processes are released after
waiting on the semaphore, is not a factor in every semaphore application. In the case of
U-semaphores, this applies to the scheduling of the release of processes which become
suspended due to invoking thesemop operation with the same negative value on the same
semaphore. Solutions presented here are based on non-deterministic scheduling of the built-
in operations and are thus independent of the underlying scheduling scheme. Simultaneous
and non-unitary operations are used to achieve specific scheduling policies. The solutions
in this paper are for the general case in which processes are anonymous (except in the case
of arbitrary scheduling) and (except in the case of linear delay scheduling) the number of
processes is not fixed and processes may be created dynamically.

Non-deterministic scheduling

It is assumed that U-semaphores are implemented in this way.

First in first out scheduling

FIFO scheduling does not seem to have a straightforward implementation unless the un-
derlying scheduling scheme is FIFO. However, an approximate solution is outlined later.

Linear delay scheduling

It has been shown that linear delay scheduling for a fixed number of processes can be
programmed using only weakly fair semaphores.20 The solution uses three D-semaphores
and three integer variables. This solution can be simplified by using U-semaphores. Only
two of them and one integer variable are needed. The algorithm is illustrated in Figure3.

/* initially */
set(a, 1); set(m, 0);
nm = 0;

/* Linear Delay Scheduling */
semop(a: -1);
nm = nm+1;
if( ncount( a ) == 0 ) semop(m: +1);

else semop(a: +1);
semop(m: -1);

Critical Region

nm = nm-1;
if( nm == 0 ) semop(a: +1 );

else semop(m: +1 );

Figure 3



1148 N. DUNSTAN AND I. FRIS

The idea behind this is quite simple. A ‘batch’ of processes which come more or less
at the same time pass throughsemop(a : −1) . . . semop(a : +1) and get blocked on
semop(m : −1). As semval for a was initially 1, processes from such a batch pass that
region one-by-one. The last one increasessemval for m rather thana which remains 0. So
any process arriving later, including those which have already passed through the critical
region, get blocked ona, until all processes from this batch get through. Thena is ‘opened’
andm is left ‘closed’ and the cycle is repeated. This works regardless of the order in which
processes are released from semaphoresa andm.

Ticketing systems

Scheduling using a ticketing system can be provided by the algorithms described in Figure4
to implement eventcounts.

Await( s, t )

{

semop(s: -t);

semop(s: +t);

}

Advance( s )

{

semop(s: +1 );

}

Figure 4

Await causes the calling process to wait untilsemval can be decremented byt and then
increments it by the same amount, so that there is no net change.

TheAwait operation can be improved using simultaneous operations. Although there is
no need forAwait to be indivisible, simultaneous operations will save one system call.
So the sole system call issemop(s : −t, s : +t). However, note that this relies on an
undocumented feature of UNIX semaphores although it has been used.14 Namely, that
simultaneous operations are performed in the order they appear in the list – i.e. in their
order in theops array. If the two operations were to be performed in the reverse order,
Await would never delay a process.

Priority scheduling

Two approaches are discussed. Both utilizesem op to represent the priority level. D-
semaphore operationsP andV are commutative in the sense that the sequence of operations
P (s), V (s), executed by different processes, has the same net effect on the semaphore value
as the sequenceV (s), P (s). ThePriorityP andPriorityV operations described here are
not commutative.PriorityV has no effect if there is no waiting process. Such a priority
scheduling scheme is sufficient for implementing monitor priority conditions.21

In the first approach, the procedure repeatedly increases the value of the semaphorea
until the process with the smallest priority level is released. In the general case, where
more than one process might release processes, this procedure must be indivisible, so an



PROCESS SCHEDULING AND UNIX SEMAPHORES 1149

associated semaphore,mutex is used for this purpose. Another associated semaphore,delay
is also required, it guarantees that not more than one process is released on one call. The
semaphore array therefore hasnsem = 3 (In fact, one array of two semaphores and one
array with a single semaphore are sufficient, and potentially simpler). Figure5 describes
the first algorithm.

/* initially */
set(a, 0); set(delay, 0); set(mutex, 1);

PriorityP(priority)
{

semop(a:-priority, delay:-1);
}

PriorityV( )
{

semop(mutex: -1);
if( ncount(a) > 0 )
{

semop(delay: +1);
while( val(delay) == 1 )

semop(a: +1);
set(a:0);

}
semop(mutex: +1);

}

Figure 5

PriorityV requires potentially many individual calls ofsemop in order to progressively
increasesemval of a until a process is released. This is not a very efficient solution where
the possible range of priorities is large. This problem could be avoided by the addition of a
new flag the qualification ofsemop of which is to increasesemval to the minimum value
required to release a process. It is not clear if the semantics of such a flag can be sensibly
extended to the case when processes are simultaneously suspended on several semaphores.
Note, that here there is a case where the strictly atomic policy is essential. Whensemval
becomes large enough for the process with highest priority to be released, the algorithm
assumes this occurs atomically, along with necessary adjustments to the values ofsemncnt
and semval. There is a problem concerning the UNIX implementation of thencount
function. ThePriorityV must check that there is a process waiting. On our reading of
UNIX system manuals, this check could be done by eitherncount(a) or ncount(delay),
but in practice, the latter always returns 0, implying thatsemncnt is only raised for the
first semaphore in an array of operations which results in a process being suspended. This
is consistent with the description of operations onmultiple event variables.11

The second approach avoids the incremental method of releasing the process with the
lowest priority level. Instead, a shared list is maintained which holds eachsem op value (i.e.
the priority) specified for processes currently suspended in order of priority. If the list is non-
empty thePriorityV operation removes the lowest value in the list and applies this value
in the operation to release a process with this priority level. This implies the programmer
must duplicate data already stored by the operating system. Again, the operations must be
indivisible, necessitating the use of an associated semaphore. The algorithms are described



1150 N. DUNSTAN AND I. FRIS

in Figure 6. Note that the reliance on strictly atomic policy can be avoided by including
semop(a : 0) after semop(a : p) in PriorityV .

/* initially */
set(a , 0 ); set(mutex, 1 );

PriorityP( priority )
{

semop(mutex:-1);
put( priority, list);
semop(mutex: 1);
semop(a: -priority);

}

PriorityV( )
{

semop(mutex: -1);
if( list is non-empty )
{

p = take( list );
semop(a: p );

}
semop(mutex: +1 );

}

Figure 6

The algorithms could be easily modified to allow pending releases and hence commutativ-
ity. To include pending releases, it would be necessary to maintain an associatedsempcnt
variable and amendPriorityP so that if sempcnt > 0 it is decremented and the call to
semop(a : −priority) is skipped.PriorityV incrementssempcnt if the count of waiting
processes is 0. Hence if there are two releases pending, then the next two processes to call
PriorityP will be immediately released regardless of their priority.

Arbitrary scheduling

Assume, for simplicity, that there is one processp0, which, using some built in criteria,
wants to schedulen processesp1, . . . , pn. This can be easily achieved using D-semaphores.
When a processpi wants to be suspended, it does so on a ‘private’ semaphoresi, possibly,
when necessary, after setting a shared variablevi ← true. By doingV (si) the processp0
can releasepi as required. Note thatvi need not be protected, as it is only set bypi and
unset byp0 whenpi is blocked (although concurrent-read rather than the simpler exclusive-
read model of shared memory is required). Also note that although there is a time window
betweenvi ← true andV (si), this does not effect the algorithm.

By using U-semaphoresncount(si) may be used instead of variablesvi. More impor-
tantly, only dlg(n + 1) rather thann semaphores are needed. This may be important as
the number of semaphores is very limited in many UNIX implementations. The idea is to
use the binary representation ofi as follows. Letk = dlg(n + 1) and (ik−1, ik−2, . . . , i0)

be the binary representation ofi, that is i =
∑k−1

j=0 2j × ij . The processpi is always
suspended usingsemop(s0 : −i0, . . . , sk−1 : −ik−1). When this process is to be re-
leasedp0 doessemop(s0 : +i0, . . . , sk−1 : +ik−1) (in this call the pairssj : ij where
ij = 0 can be omitted) possibly followed bysemop(s0 : 0, . . . , sk−1 : 0). The second call



PROCESS SCHEDULING AND UNIX SEMAPHORES 1151

semop(s0 : 0, . . . , sk−1 : 0) is not needed if it is known thatpi is actually already blocked,
and that raising a semaphore value atomically releases a process whenever possible, that is,
strict atomicity. Note that it may be possible to use the process identification numberpid,
which on many systems is 15 or 16 bits, rather than some private numbering of processes.
This algorithm also provides an interesting example of the use ofsemop with sem op = 0.

Arbitrary scheduling may be used to implement most other scheduling, including priority,
and, in a way, even FIFO. The latter is achieved by a function, not so far mentioned, which
returns the time when a semaphore was operated on. In this case, a separate semaphore
for each process is needed, rather than a lg(n + 1) array so that the time the semaphore is
operated on is the time the process was blocked. Unfortunately, this solution is not entirely
realistic as the time resolution is probably not fine enough. Using arbitrary scheduling also
means having a special process to orchestrate the scheduling scheme. This is contrary to
our preferred usage of semaphores, in which synchronizing code is executed in-process,
that is by the processes themselves, without the need (and added overhead) of a special
‘scheduling’ process.

Readers and writers

Figure7 shows a possible U-semaphore implementation for concurrent readers and writers.

initially: set(rc,0), set(wc,0), set(m,1)

Readers: Writers:
semop( rc:1, wc:0) semop( rc:0, wc:1; m:-1)

read write

semop( rc:-1) semop( wc:-1, m:1)

Figure 7

Basically,rc counts the number of readers in,wc counts the writers.wc : 0 checks that
there are no writers writing, whilerc : 0 does the same for readers. Finallym is used
conventionally to let at most one writer in.

This is a very natural solution. It is simpler than the D-semaphore solution19 in that
although it still needs three semaphores, it does not need any shared variables. Each entry
and exit protocol consists of a single call. Another advantage of this solution is that it
is easier to see that this is a non-priority solution. Readers do have priority over writers
when other readers are in – and that is probably why the original D-semaphore solution
was called ‘readers priority’, however when no process or only a writer is in, the entry of
further readers or writers is non-deterministic.

Figure 8 shows a solution which needs a single semaphore only. Initially,rw has the
value 1, which is the ‘neutral’ state meaning that neither readers nor writers are in. Value
v of rw when> 1 means that there arev − 1 readers reading, whilev = 0 indicates one
writer writing. In both entry protocols the initialrw : −1 disallow the operation unless
v ≥ 1. The readers increment it by theirrw : 2, (thus the total increment is one) the writer
decrements it by itsrw : −1, but this can be only done when the new value is equal to zero.
This is checked byrw : 0. Each process restores the original value of the semaphore on
exit. Note that the reader’s exit protocol is what can be called ‘dual’ to its entry protocol.



1152 N. DUNSTAN AND I. FRIS

initially: set(rw,1)

Readers: Writers:
semop( rw:-1, rw:2) semop( rw:-1, rw:0)

read write

semop( rw:-2, rw:1) semop( rw:1)

Figure 8.

Logically, it should be enough to usesemop(rw : −1) in the reader’s exit part, and that
is our preferred semantics, but for better or worse this does not work in at least some
real UNIX implementations.∗. It is not clear to us whether this feature is intentional. Also
note that this solution depends on the order in which the operations in a call tosemop are
attempted.

Further discussion of the concurrent readers and writers problem, including U-semaphore
solutions to reader and writer priority variations, can be found in another study.22

5. CONCLUSIONS

The features of UNIX semaphores extend the range of applications that may be conve-
niently supported by semaphores. To provide these features, UNIX maintains substantial
data structures for each semaphore as well as code to manipulate them. Non-trivial exam-
ples of using features of UNIX semaphores which extend traditional Dijkstra semaphores
have been shown. These examples include

— algorithms for priority scheduling
— efficient implementation of arbitrary scheduling
— efficient implementation of eventcounts and their operations and
— efficient implementation of concurrent readers and writers.
This is in contrast to disparagement of these features.7

UNIX semaphores were used in a manner which provided most common forms of process
scheduling. Priority scheduling is not well supported but could be with the addition of a new
flag designed for that purpose. FIFO scheduling is also not well supported, but starvation
free scheduling can be achieved by linear delay scheduling.

When these algorithms were tested on several UNIX machines, a number of ill-defined
areas concerning the behaviour of the relevant system calls were discovered which are dealt
with in another study.23

∗ Whensemop(rw: -1) is used as the exit protocol for the reader, the following happens in some implementations. When
a writer arrives while a reader is in its critical section, i.e. when the value ofrw is 2, the writer is correctly blocked.
When, however, the reader leaves, adjustingrw to 1, the writer stays blocked. What apparently happens is that when a
semaphore goesdown, but stays positive, the assumption was made that this would not release any processes, and thus the
list of blocked processes is not checked. This gives more ‘efficient’ implementation for the cost, that in some unusual cases
the semaphore is not even weakly fair! The program works as expected, i.e. the writer is released, whensemop(rw:-2,
rw:1) is used as shown in Figure8.



PROCESS SCHEDULING AND UNIX SEMAPHORES 1153

REFERENCES

1. E. W. Dijkstra, ‘Cooperating sequential processes’, in F. Genuys (ed.),Programming Languages, Academic
Press, New York, 1968, pp. 43–112.

2. R. H. Campbell and A. N. Habermann, ‘The specification of process synchronization by path expressions’,
Springer Lecture Notes in Computer Science 16, Springer-Verlag, 1974.

3. C. A. R. Hoare, ‘Monitors: An operating system structuring concept’,Communications of the ACM, 17(10),
549–557 (1974).

4. D. P. Reed and R. K. Kanodia, ‘Synchronization with eventcounts and sequencers’,Communications of
the ACM, 22(2), 115–123 (1979).

5. E. W. Dijkstra, ‘The structure of the THE multiprogramming system’,Communications of the ACM, 11
(5), 341–346 (1968).

6. R. Duncan, ‘A programmer’s introduction to OS/2’,BYTE, September, 101–108 (1987).
7. M. J. Rochkind,Advanced UNIX Programming, Prentice-Hall, Englewood Cliffs, NJ, 1985.
8. T. Agerwala, ‘Some extended semaphore primitives’,Acta Informatica8, 171–176 (1977).
9. R. Conradi, ‘Some comments on concurrent readers and writers’,Acta Informatica8, 335–340 (1977).

10. B. Freisleben and J. L. Keedy, ‘Priority semaphores’,The Australian Computer Journal, 24–28 (1989).
11. L. Presser, ‘Multiprogramming coordination’,Computing Surveys7 21–44 (1975).
12. M. J. Bach, Design of the UNIX Operating System, Prentice-Hall, Englewood Cliffs, NJ, 1986.
13. K. Haviland and B. SalamaUNIX System Programming, Addison-Wesley, UK, 1987.
14. R. StevensUNIX Network Programming, Prentice-Hall, Englewood Cliffs, NJ, 1990.
15. M. Ben-Ari Principles of Concurrent and Distributed Programming, Prentice-Hall, Englewood Cliffs, NJ,

1990.
16. E. W. Stark, ‘Semaphore primitives and starvation-free mutual exclusion’,Journal of the ACM, 29(4),

1049–1072 (1982).
17. N. Dunstan, J. Rosenberg and J. L. Keedy, ‘Support for concurrent programming on the MONADS-PC’,

The Australian Computer Journal, 25(1), 1–6 (1993).
18. M. Raynal,Algorithms for Mutual Exclusion, North Oxford Academic, 1986.
19. P. J. Courtois, F. Heymans and D. L. Parnas, ‘Concurrent control with “readers” and “writers” ’Commu-

nications of the ACM, 14 (10), 667–668 (1971).
20. J. M. Morris, ‘A starvation free solution to the mutual exclusion problem’,Information Processing Letters,

8(2) 76–80 (1979).
21. N. Dunstan, ‘Building monitors with UNIX and C’,ACM SIGCSE Bulletin, 23(3), 7–9 (1991).
22. I. Fris and N. Dunstan, ‘Concurrent readers and writers revisited’, University of New England, Dept.

Maths, Stats and Comp. Sci.,Technical Report 92-57, 1992.
23. N. Dunstan and I. Fris, ‘A tighter definition of UNIX semaphores’,Proceedings of the Australian UNIX

Users Group Conference, Melbourne, 1992.


	1. INTRODUCTION
	2. UNIX SEMAPHORES
	Block-set semaphores
	Notation
	Differences between Dijkstra and UNIX semaphores

	3. COMMON SCHEDULING
SCHEMES
	4. SCHEDULING WITH U-SEMAPHORES
	Non-deterministic scheduling
	First in first out scheduling
	Linear delay scheduling
	Ticketing systems
	Priority scheduling
	Arbitrary scheduling
	Readers and writers 

	5. CONCLUSIONS
	REFERENCES

