
109

5
File Systems

File systems are typically observed as a layer between an application and the I/O
services providing the underlying storage. When you look at file system perfor-
mance, you should focus on the latencies observed at the application level. Histori-
cally, however, we have focused on techniques that look at the latency and
throughput characteristics of the underlying storage and have been flying in the
dark about the real latencies seen at the application level.

With the advent of DTrace, we now have end-to-end observability, from the
application all the way through to the underlying storage. This makes it possible
to do the following:

� Observe the latency and performance impact of file-level requests at the
application level.

� Attribute physical I/O by applications and/or files.

� Identify performance characteristics contributed by the file system layer, in
between the application and the I/O services.

5.1 Layers of File System and I/O

We can observe file system activity at three key layers:

� I/O layer. At the bottom of a file system is the I/O subsystem providing the
backend storage for the file system. For a disk-based file system, this is typically

solarispod.book Page 109 Thursday, June 22, 2006 11:58 AM

110 Chapter 5 � File Systems

the block I/O layer. Other file systems (for example, NFS) might use net-
works or other services to provide backend storage.

� POSIX libraries and system calls. Applications typically perform I/O
through POSIX library interfaces. For example, an application needing to
open and read a file would call open(2) followed by read(2).

Most POSIX interfaces map directly to system calls, the exceptions being
the asynchronous I/O interfaces. These are emulated by user-level thread
libraries on top of POSIX pread/pwrite.

You can trace at this layer with a variety of tools—truss and DTrace can
trace the system calls on behalf of the application. truss has significant
overhead when used at this level since it starts and stops the application at
every system call. In contrast, DTrace typically only adds a few microseconds
to each call.

� VOP layer. Solaris provides a layer of common entry points between the
upper-level system calls and the file system—the file system vnode opera-
tions (VOP) interface layer. We can instrument these layers easily with
DTrace. We’ve historically made special one-off tools to monitor at this layer
by using kernel VOP-level interposer modules, a practice that adds signifi-
cant instability risk and performance overhead.

Figure 5.1 shows the end-to-end layers for an application performing I/O
through a file system.

Figure 5.1 Layers for Observing File System I/O

System Call Interface

VFS: File-System-Independent Layer (VFS and VNODE INTERFACES)

UFS PCFS HSFS VxFS NFS PROCFS

w
r
i
t
e
(
)

o
p
e
n
(
)

c
l
o
s
e
(
)

m
k
d
i
r
(
)

r
m
d
i
r
(
)

r
e
n
a
m
e
(
)

l
i
n
k
(
)

u
n
l
i
n
k
(
)

s
e
e
k
(
)

f
s
y
n
c
(
)

i
o
c
t
l
(
)

c
r
e
a
t
(
)

m
o
u
n
t
(
)

u
m
o
u
n
t
(
)

s
t
a
t
f
s
(
)

s
y
n
c
(
)

VNODE OPERATIONS VFS OPERATIONS

QFS

r
e
a
d
(
)

Backend Storage – I/O-Level Operations

Application-Level File System I/O

Syscalls: DTrace
or truss

VOP Layer: DTrace

I/O Layer: iostat
or DTrace

POSIX Library Calls:
DTrace or truss

solarispod.book Page 110 Thursday, June 22, 2006 11:58 AM

5.2 OBSERVING PHYSICAL I/O 111

5.2 Observing Physical I/O

The traditional method of observing file system activity is to induce information
from the bottom end of the file system, for example, physical I/O. This can be done
easily with iostat or DTrace, as shown in the following iostat example and fur-
ther in Chapter 4.

Using iostat, we can observe I/O counts, bandwidth, and latency at the device
level, and optionally per-mount, by using the -m option (note that this only works
for file systems like UFS that mount only one device). In the above example, we
can see that /export/home is mounted on c4t16d1s7. It is generating 14.7 reads
per second and 4.8 writes per second, with a response time of 13.9 milliseconds.
But that’s all we know—far too often we deduce too much by simply looking at the
physical I/O characteristics. For example, in this case we could easily assume that
the upper-level application is experiencing good response times, when in fact sub-
stantial latency is being added in the file system layer, which is masked by these
statistics. We talk more about common scenarios in which latency is added in the
file system layer in Section 5.4.

By using the DTrace I/O provider, we can easily connect physical I/O events
with some file-system-level information; for example, file names. The script from
Section 5.4.3 shows a simple example of how DTrace can display per-operation
information with combined file-system-level and physical I/O information.

$ iostat -xnczpm 3
 cpu
 us sy wt id
 7 2 8 83
 extended device statistics
 r/s w/s kr/s kw/s wait actv wsvc_t asvc_t %w %b device
 0.6 3.8 8.0 30.3 0.1 0.2 20.4 37.7 0 3 c0t0d0
 0.6 3.8 8.0 30.3 0.1 0.2 20.4 37.7 0 3 c0t0d0s0 (/)
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.7 0 0 c0t0d0s1
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c0t0d0s2
 0.0 0.0 0.0 0.0 0.0 0.0 405.2 1328.5 0 0 c0t1d0
 0.0 0.0 0.0 0.0 0.0 0.0 405.9 1330.8 0 0 c0t1d0s1
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 c0t1d0s2
 14.7 4.8 330.8 6.8 0.0 0.3 0.0 13.9 0 8 c4t16d1
 14.7 4.8 330.8 6.8 0.0 0.3 0.0 13.9 0 8 c4t16d1s7 (/export/home)
 1.4 0.4 70.4 4.3 0.0 0.0 0.0 21.8 0 2 c4t16d2
 1.4 0.4 70.4 4.3 0.0 0.0 0.0 21.8 0 2 c4t16d2s7 (/export/home2)
 12.8 12.4 73.5 7.4 0.0 0.1 0.0 2.5 0 3 c4t17d0
 10.8 10.8 0.4 0.4 0.0 0.0 0.0 0.0 0 0 c4t17d0s2
 2.0 1.6 73.1 7.0 0.0 0.1 0.0 17.8 0 3 c4t17d0s7 (/www)
 0.0 2.9 0.0 370.4 0.0 0.1 0.0 19.1 0 6 rmt/1

solarispod.book Page 111 Thursday, June 22, 2006 11:58 AM

112 Chapter 5 � File Systems

5.3 File System Latency

When analyzing performance, consider the file system as a black box. Look at the
latency as it impacts the application and then identify the causes of the latency.
For example, if an application is making read() calls at the POSIX layer, your
first interest should be in how long each read() takes as a percentage of the over-
all application thread-response time. Only when you want to dig deeper should you
consider the I/O latency behind the read(), such as disk service times—which
ironically is where the performance investigation has historically begun. Figure 5.2
shows an example of how you can estimate performance. You can evaluate the per-
centage of time in the file system (Tfilesys) against the total elapsed time (Ttotal).

Using truss, you can examine the POSIX-level I/O calls. You can observe the
file descriptor and the size and duration for each logical I/O. In the following exam-
ple, you can see read() and write() calls during a dd between two files.

./iotrace.d

 DEVICE FILE RW SIZE
 cmdk0 /export/home/rmc/.sh_history W 4096
 cmdk0 /opt/Acrobat4/bin/acroread R 8192
 cmdk0 /opt/Acrobat4/bin/acroread R 1024
 cmdk0 /var/tmp/wscon-:0.0-gLaW9a W 3072
 cmdk0 /opt/Acrobat4/Reader/AcroVersion R 1024
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R 8192
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R 8192
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R 4096
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R 8192
 cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R 8192

Figure 5.2 Estimating File System Performance Impact

 Thread wall clock time

read() read()

Ttotal

Tfilesys

solarispod.book Page 112 Thursday, June 22, 2006 11:58 AM

5.3 FILE SYSTEM LATENCY 113

The truss example shows that read() occurs on file descriptor 3 with an aver-
age response time of 30 ms and write() occurs on file descriptor 4 with an aver-
age response time of 25 ms. This gives some insight into the high-level activity but
no other process statistics with which to formulate any baselines.

By using DTrace, you could gather a little more information about the propor-
tion of the time taken to perform I/O in relation to the total execution time. The
following excerpt from the pfilestat DTrace command shows how to sample the
time within each system call. By tracing the entry and return from a file system
system call, you can observe the total latency as experienced by the application.
You could then use probes within the file system to discover where the latency is
being incurred.

dd if=filea of=fileb bs=1024k&

truss -D -p 13092
13092: 0.0326 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0186 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0293 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0259 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0305 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0267 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0242 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0184 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0368 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0333 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0297 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0175 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0315 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0231 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0338 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0181 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0381 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0177 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0323 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0199 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0364 read(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
13092: 0.0189 write(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1048576) = 1048576
...

/* sample reads */
 syscall::read:entry,
 syscall::pread*:entry
 /pid == PID && OPT_read/
 {
 runstate = READ;
 @logical["running", (uint64_t)0, ""] = sum(timestamp - last);
 totaltime += timestamp - last;
 last = timestamp;

 self->fd = arg0 + 1;
 self->bytes = arg2;
 totalbytes += arg2;
 }

continues

solarispod.book Page 113 Thursday, June 22, 2006 11:58 AM

114 Chapter 5 � File Systems

Using an example target process (tar) with pfilestat, you can observe that
tar spends 10% of the time during read() calls of /var/crash/rmcferrari/
vmcore.0 and 14% during write() calls to test.tar out of the total elapsed
sample time, and a total of 75% of its time waiting for file system read-level I/O.

5.4 Causes of Read/Write File System Latency

There are several causes of latency in the file system read/write data path. The
simplest is that of latency incurred by waiting for physical I/O at the backend of
the file system. File systems, however, rarely simply pass logical requests straight
through to the backend, so latency can be incurred in several other ways. For
example, one logical I/O event can be fractured into two physical I/O events, result-
ing in the latency penalty of two disk operations. Figure 5.3 shows the layers that
could contribute latency.

 fbt::fop_read:entry,
 fbt::fop_write:entry
 /self->fd/
 {
 self->vp = (vnode_t *)arg0;
 self->path = self->vp->v_path == 0 ? "<none>" :
 cleanpath(self->vp->v_path);
 }

 syscall::read:return,
 syscall::pread*:return
 /pid == PID && OPT_read/
 {
 runstate = OTHER;
 @logical["read", self->fd - 1, self->path] = sum(timestamp - last);
 @bytes["read", self->fd - 1, self->path] = sum(self->bytes);
 totaltime += timestamp - last;
 last = timestamp;
 }

./pfilestat 13092

 STATE FDNUM Time Filename
 waitcpu 0 4%
 running 0 9%
 read 11 10% /var/crash/rmcferrari/vmcore.0
 write 3 14% /export/home/rmc/book/examples/test.tar
 sleep-r 0 75%

 STATE FDNUM KB/s Filename
 read 11 53776 /var/crash/rmcferrari/vmcore.0
 write 3 53781 /export/home/rmc/book/examples/test.tar

Total event time (ms): 1840 Total Mbytes/sec: 89

solarispod.book Page 114 Thursday, June 22, 2006 11:58 AM

5.4 CAUSES OF READ/WRITE FILE SYSTEM LATENCY 115

Common sources of latency in the file system stack include:

� Disk I/O wait (or network/filer latency for NFS)

� Block or metadata cache misses

� I/O breakup (logical I/Os being fractured into multiple physical I/Os)

� Locking in the file system

� Metadata updates

5.4.1 Disk I/O Wait

Disk I/O wait is the most commonly assumed type of latency problem. If the under-
lying storage is in the synchronous path of a file system operation, then it affects
file-system-level latency. For each logical operation, there could be zero (a hit in a
the block cache), one, or even multiple physical operations.

This iowait.d script uses the file name and device arguments in the I/O pro-
vider to show us the total latency accumulation for physical I/O operations and the
breakdown for each file that initiated the I/O. See Chapter 4 for further informa-
tion on the I/O provider and Section 10.6.1 for information on its arguments.

Figure 5.3 Layers for Observing File System I/O

./iowait.d 639
^C
Time breakdown (milliseconds):
 <on cpu> 2478
 <I/O wait> 6326

I/O wait breakdown (milliseconds):
 file1 236
 file2 241
 file4 244
 file3 264
 file5 277
 file7 330
 ...

Visible at the POSIX level—e.g., read()

Inside the File System level—e.g., ufs_read()

Individual I/Os—e.g., strategy->biodone

solarispod.book Page 115 Thursday, June 22, 2006 11:58 AM

116 Chapter 5 � File Systems

5.4.2 Block or Metadata Cache Misses

Have you ever heard the saying “the best I/O is the one you avoid”? Basically, the
file system tries to cache as much as possible in RAM, to avoid going to disk for
repetitive accesses. As discussed in Section 5.6, there are multiple caches in the
file system—the most obvious is the data block cache, and others include meta-
data, inode, and file name caches.

5.4.3 I/O Breakup

I/O breakup occurs when logical I/Os are fractured into multiple physical I/Os. A
common file-system-level issue arises when multiple physical I/Os result from a
single logical I/O, thereby compounding latency.

Output from running the following DTrace script shows VOP level and physical
I/Os for a file system. In this example, we show the output from a single read().
Note the many page-sized 8-Kbyte I/Os for the single 1-Mbyte POSIX-level
read(). In this example, we can see that a single 1-MByte read is broken into sev-
eral 4-Kbyte, 8-Kbyte, and 56-Kbyte physical I/Os. This is likely due to the file sys-
tem maximum cluster size (maxcontig).

./fsrw.d
Event Device RW Size Offset Path
sc-read . R 1048576 0 /var/sadm/install/contents
 fop_read . R 1048576 0 /var/sadm/install/contents
 disk_ra cmdk0 R 4096 72 /var/sadm/install/contents
 disk_ra cmdk0 R 8192 96 <none>
 disk_ra cmdk0 R 57344 96 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 152 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 208 /var/sadm/install/contents
 disk_ra cmdk0 R 49152 264 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 312 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 368 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 424 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 480 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 536 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 592 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 648 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 704 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 760 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 816 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 872 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 928 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 984 /var/sadm/install/contents
 disk_ra cmdk0 R 57344 1040 /var/sadm/install/contents

solarispod.book Page 116 Thursday, June 22, 2006 11:58 AM

5.4 CAUSES OF READ/WRITE FILE SYSTEM LATENCY 117

5.4.4 Locking in the File System

File systems use locks to serialize access within a file (we call these explicit locks)
or within critical internal file system structures (implicit locks).

Explicit locks are often used to implement POSIX-level read/write ordering
within a file. POSIX requires that writes must be committed to a file in the order
in which they are written and that reads must be consistent with the data within
the order of any writes. As a simple and cheap solution, many files systems simply
implement a per-file reader-writer lock to provide this level of synchronization.
Unfortunately, this solution has the unwanted side effect of serializing all accesses
within a file, even if they are to non-overlapping regions. The reader-writer lock
typically becomes a significant performance overhead when the writes are synchro-
nous (issued with O_DSYNC or O_SYNC) since the writer-lock is held for the entire
duration of the physical I/O (typically, in the order of 10 or more milliseconds),
blocking all other reads and writes to the same file.

The POSIX lock is the most significant file system performance issue for data-
bases because they typically use a few large files with hundreds of threads access-
ing them. If the POSIX lock is in effect, then I/O is serialized, effectively limiting
the I/O throughput to that of a single disk. For example, if we assume a file sys-
tem with 10 disks backing it and a database attempting to write, each I/O will lock
a file for 10 ms; the maximum I/O rate is around 100 I/Os per second, even though
there are 10 disks capable of 1000 I/Os per second (each disk is capable of 100 I/Os
per second).

Most file systems using the standard file system page cache (see Section 14.7 in
Solaris™ Internals) have this limitation. UFS when used with Direct I/O (see
Section 5.6.2) relaxes the per-file reader-writer lock and can be used as a high-
performance, uncached file system, suitable for applications such as databases
that do their own caching.

5.4.5 Metadata Updates

File system metadata updates are a significant source of latency because many
implementations synchronously update the on-disk structures to maintain integ-
rity of the on-disk structures. There are logical metadata updates (file creates,
deletes, etc.) and physical metadata updates (updating a block map, for example).

Many file systems perform several synchronous I/Os per metadata update,
which limits metadata performance. Operations such as creating, renaming, and
deleting files often exhibit higher latency than reads or writes as a result. Another
area affected by metadata updates is file-extends, which can require a physical
metadata update.

solarispod.book Page 117 Thursday, June 22, 2006 11:58 AM

118 Chapter 5 � File Systems

5.5 Observing File System “Top End” Activity

Applications typically access their data from a file system through the POSIX I/O
library and system calls. These accesses are passed into the kernel and into the
underlying file system through the VOP layer (see Section 5.1).

Using DTrace function boundary probes, we can trace the VOP layer and moni-
tor file system activity. Probes fired at the entry and exit of each VOP method can
record event counts, latency, and physical I/O counts. We can obtain information
about the methods by casting the arguments of the VOP methods to the appropri-
ate structures; for example, we can harvest the file name, file system name, I/O
size, and the like from these entry points.

The DTrace vopstat command instruments and reports on the VOP layer
activity. By default, it summarizes each VOP in the system and reports a physical
I/O count, a VOP method count, and the total latency incurred for each VOP dur-
ing the sample period. This utility provides a useful first-pass method of under-
standing where and to what degree latency is occurring in the file system layer.

The following example shows vopstat output for a system running ZFS. In this
example, the majority of the latency is being incurred in the VOP_FSYNC method
(see Table 14.3 in Solaris™ Internals).

./vopstat

VOP Physical IO Count
fop_fsync 236

VOP Count Count
fop_create 1
fop_fid 1
fop_lookup 2
fop_access 3
fop_read 3
fop_poll 11
fop_fsync 31
fop_putpage 32
fop_ioctl 115
fop_write 517
fop_rwlock 520
fop_rwunlock 520
fop_inactive 529
fop_getattr 1057

VOP Wall Time mSeconds
fop_fid 0
fop_access 0
fop_read 0
fop_poll 0
fop_lookup 0
fop_create 0
fop_ioctl 0
fop_putpage 1
fop_rwunlock 1

continues

solarispod.book Page 118 Thursday, June 22, 2006 11:58 AM

5.6 FILE SYSTEM CACHES 119

5.6 File System Caches

File systems make extensive use of caches to eliminate physical I/Os where possi-
ble. A file system typically uses several different types of cache, including logical
metadata caches, physical metadata caches, and block caches. Each file system
implementation has its unique set of caches, which are, however, often logically
arranged, as shown in Figure 5.4.

fop_rwlock 1
fop_inactive 1
fop_getattr 2
fop_write 22
fop_fsync 504

Figure 5.4 File System Caches

Logical Metadata Operations Read/Write

Application-Level File System I/O

$$

$
$

Block CacheBuffer Cache

Name Cache
(DNLC)

Inode Cache

Blocks

Read/Write Data

Physical Metadata

Cached Blocks

Inodes

Path Names

I/O Layer

File System Layer

POSIX Layer

solarispod.book Page 119 Thursday, June 22, 2006 11:58 AM

120 Chapter 5 � File Systems

The arrangement of caches for various file systems is shown below:

� UFS. The file data is cached in a block cache, implemented with the VM sys-
tem page cache (see Section 14.7 in Solaris™ Internals). The physical meta-
data (information about block placement in the file system structure) is
cached in the buffer cache in 512-byte blocks. Logical metadata is cached in
the UFS inode cache, which is private to UFS. Vnode-to-path translations are
cached in the central directory name lookup cache (DNLC).

� NFS. The file data is cached in a block cache, implemented with the VM sys-
tem page cache (see Section 14.7 in Solaris™ Internals). The physical meta-
data (information about block placement in the file system structure) is
cached in the buffer cache in 512-byte blocks. Logical metadata is cached in
the NFS attribute cache, and NFS nodes are cached in the NFS rnode cache,
which are private to NFS. File name-to-path translations are cached in the
central DNLC.

� ZFS. The file data is cached in ZFS’s adaptive replacement cache (ARC),
rather than in the page cache as is the case for almost all other file systems.

5.6.1 Page Cache

File and directory data for traditional Solaris file systems, including UFS, NFS,
and others, are cached in the page cache. The virtual memory system implements
a page cache, and the file system uses this facility to cache files. This means that
to understand file system caching behavior, we need to look at how the virtual
memory system implements the page cache.

The virtual memory system divides physical memory into chunks known as
pages; on UltraSPARC systems, a page is 8 kilobytes. To read data from a file into
memory, the virtual memory system reads in one page at a time, or “pages in” a
file. The page-in operation is initiated in the virtual memory system, which
requests the file’s file system to page in a page from storage to memory. Every time
we read in data from disk to memory, we cause paging to occur. We see the tally
when we look at the virtual memory statistics. For example, reading a file will be
reflected in vmstat as page-ins.

In our example, we can see that by starting a program that does random reads
of a file, we cause a number of page-ins to occur, as indicated by the numbers in
the pi column of vmstat.

There is no parameter equivalent to bufhwm to limit or control the size of the
page cache. The page cache simply grows to consume available free memory. See
Section 14.8 in Solaris™ Internals for a complete description of how the page cache
is managed in Solaris.

solarispod.book Page 120 Thursday, June 22, 2006 11:58 AM

5.6 FILE SYSTEM CACHES 121

You can use an MDB command to view the size of the page cache. The macro is
included with Solaris 9 and later.

The page-cache-related categories are described as follows:

� Exec and libs. The amount of memory used for mapped files interpreted as
binaries or libraries. This is typically the sum of memory used for user bina-
ries and shared libraries. Technically, this memory is part of the page cache,
but it is page-cache-tagged as “executable” when a file is mapped with PROT_
EXEC and file permissions include execute permission.

� Page cache. The amount of unmapped page cache, that is, page cache not on
the cache list. This category includes the segmap portion of the page cache
and any memory mapped files. If the applications on the system are solely
using a read/write path, then we would expect the size of this bucket not to
exceed segmap_percent (defaults to 12% of physical memory size). Files in
/tmp are also included in this category.

� Free (cache list). The amount of page cache on the free list. The free list
contains unmapped file pages and is typically where the majority of the file
system cache resides. Expect to see a large cache list on a system that has

./rreadtest testfile&

vmstat
 procs memory page disk faults cpu
 r b w swap free re mf pi po fr de sr s0 -- -- -- in sy cs us sy id
 0 0 0 50436 2064 5 0 81 0 0 0 0 15 0 0 0 168 361 69 1 25 74
 0 0 0 50508 1336 14 0 222 0 0 0 0 35 0 0 0 210 902 130 2 51 47
 0 0 0 50508 648 10 0 177 0 0 0 0 27 0 0 0 168 850 121 1 60 39
 0 0 0 50508 584 29 57 88 109 0 0 6 14 0 0 0 108 5284 120 7 72 20
 0 0 0 50508 484 0 50 249 96 0 0 18 33 0 0 0 199 542 124 0 50 50
 0 0 0 50508 492 0 41 260 70 0 0 56 34 0 0 0 209 649 128 1 49 50
 0 0 0 50508 472 0 58 253 116 0 0 45 33 0 0 0 198 566 122 1 46 53

sol9# mdb -k
Loading modules: [unix krtld genunix ip ufs_log logindmux ptm cpc sppp ipc random nfs]
> ::memstat

Page Summary Pages MB %Tot
------------ ---------------- ---------------- ----
Kernel 53444 208 10%
Anon 119088 465 23%
Exec and libs 2299 8 0%
Page cache 29185 114 6%
Free (cachelist) 347 1 0%
Free (freelist) 317909 1241 61%

Total 522272 2040
Physical 512136 2000

solarispod.book Page 121 Thursday, June 22, 2006 11:58 AM

122 Chapter 5 � File Systems

large file sets and sufficient memory for file caching. Beginning with Solaris 8,
the file system cycles its pages through the cache list, preventing it from steal-
ing memory from other applications unless a true memory shortage occurs.

The complete list of categories is described in Section 6.4.3 and further in
Section 14.8 in Solaris™ Internals.

With DTrace, we now have a method of collecting one of the most significant
performance statistics for a file system in Solaris—the cache hit ratio in the file
system page cache. By using DTrace with probes at the entry and exit to the file
system, we can collect the logical I/O events into the file system and physical I/O
events from the file system into the device I/O subsystem.

#!/usr/sbin/dtrace -s

#pragma D option quiet

::fop_read:entry
/self->trace == 0 && (((vnode_t *)arg0)->v_vfsp)->vfs_vnodecovered/
{
 vp = (vnode_t*)arg0;
 vfs = (vfs_t *)vp->v_vfsp;
 mountvp = vfs->vfs_vnodecovered;
 uio = (uio_t*)arg1;
 self->path=stringof(mountvp->v_path);
 @rio[stringof(mountvp->v_path), "logical"] = count();
 @rbytes[stringof(mountvp->v_path), "logical"] = sum(uio->uio_resid);
 self->trace = 1;
}

::fop_read:entry
/self->trace == 0 && (((vnode_t *)arg0)->v_vfsp == `rootvfs)/
{
 vp = (vnode_t*)arg0;
 vfs = (vfs_t *)vp->v_vfsp;
 mountvp = vfs->vfs_vnodecovered;
 uio = (uio_t*)arg1;
 self->path="/";
 @rio[stringof("/"), "logical"] = count();
 @rbytes[stringof("/"), "logical"] = sum(uio->uio_resid);
 self->trace = 1;
}

::fop_read:return
/self->trace == 1/
{
 self->trace = 0;
}

io::bdev_strategy:start
/self->trace/
{
 @rio[self->path, "physical"] = count();
 @rbytes[self->path, "physical"] = sum(args[0]->b_bcount);
}

continues

solarispod.book Page 122 Thursday, June 22, 2006 11:58 AM

5.6 FILE SYSTEM CACHES 123

These two statistics give us insight into how effective the file system cache is,
and whether adding physical memory could increase the amount of file-system-
level caching.

Using this script, we can probe for the number of logical bytes in the file system
through the new Solaris 10 file system fop layer. We count the physical bytes by
using the io provider. Running the script, we can see the number of logical and physi-
cal bytes for a file system, and we can use these numbers to calculate the hit ratio.

The /data1 file system on this server is doing 2401 logical IOPS and 287 physi-
cal—that is, a hit ratio of 2401 ÷ (2401 + 287) = 89%. It is also doing 5.1 Mbytes/sec
logical and 2.3 Mbytes/sec physical.

We can also do this at the file level.

tick-5s
{
 trunc (@rio, 20);
 trunc (@rbytes, 20);
 printf("\033[H\033[2J");
 printf ("\nRead IOPS\n");
 printa ("%-60s %10s %10@d\n", @rio);
 printf ("\nRead Bandwidth\n");
 printa ("%-60s %10s %10@d\n", @rbytes);
 trunc (@rbytes);
 trunc (@rio);
}

Read IOPS
/data1 physical 287
/data1 logical 2401

Read Bandwidth
/data1 physical 2351104
/data1 logical 5101240

#!/usr/sbin/dtrace -s

#pragma D option quiet

::fop_read:entry
/self->trace == 0 && (((vnode_t *)arg0)->v_path)/
{
 vp = (vnode_t*)arg0;
 uio = (uio_t*)arg1;
 self->path=stringof(vp->v_path);
 self->trace = 1;
 @rio[stringof(vp->v_path), "logical"] = count();
 @rbytes[stringof(vp->v_path), "logical"] = sum(uio->uio_resid);
}

continues

solarispod.book Page 123 Thursday, June 22, 2006 11:58 AM

124 Chapter 5 � File Systems

5.6.2 Bypassing the Page Cache with Direct I/O

In some cases we may want to do completely unbuffered I/O to a file. A direct I/O
facility in most file systems allows a direct file read or write to completely bypass
the file system page cache. Direct I/O is supported on the following file systems:

� UFS. Support for direct I/O was added to UFS starting with Solaris 2.6.
Direct I/O allows reads and writes to files in a regular file system to bypass
the page cache and access the file at near raw disk performance. Direct I/O
can be advantageous when you are accessing a file in a manner where cach-
ing is of no benefit. For example, if you are copying a very large file from one
disk to another, then it is likely that the file will not fit in memory and you
will just cause the system to page heavily. By using direct I/O, you can copy
the file through the file system without reading through the page cache and
thereby eliminate both the memory pressure caused by the file system and
the additional CPU cost of the layers of cache.

Direct I/O also eliminates the double copy that is performed when the
read and write system calls are used. When we read a file through normal
buffered I/O, the file system takes two steps: (1) It uses a DMA transfer from
the disk controller into the kernel’s address space and (2) it copies the data
into the buffer supplied by the user in the read system call. Direct I/O elimi-
nates the second step by arranging for the DMA transfer to occur directly into
the user’s address space.

::fop_read:return
/self->trace == 1/
{
 self->trace = 0;
}

io::bdev_strategy:start
/self->trace/
{
 @rio[self->path, "physical"] = count();
 @rbytes[self->path, "physical"] = sum(args[0]->b_bcount);
}

tick-5s
{
 trunc (@rio, 20);
 trunc (@rbytes, 20);
 printf("\033[H\033[2J");
 printf ("\nRead IOPS\n");
 printa ("%-60s %10s %10@d\n", @rio);
 printf ("\nRead Bandwidth\n");
 printa ("%-60s %10s %10@d\n", @rbytes);
 trunc (@rbytes);
 trunc (@rio);
}

solarispod.book Page 124 Thursday, June 22, 2006 11:58 AM

5.6 FILE SYSTEM CACHES 125

Direct I/O bypasses the buffer cache only if all the following are true:

– The file is not memory mapped.

– The file does not have holes.

– The read/write is sector aligned (512 byte).

� QFS. Support for direct I/O is the same as with UFS.

� NFS. NFS also supports direct I/O. With direct I/O enabled, NFS bypasses
client-side caching and passes all requests directly to the NFS server. Both
reads and writes are uncached and become synchronous (they need to wait for
the server to complete). Unlike disk-based direct I/O support, NFS’s support
imposes no restrictions on I/O size or alignment; all requests are made
directly to the server.

You enable direct I/O by mounting an entire file system with the force-
directio mount option, as shown below.

You can also enable direct I/O for any file with the directio system call. Note
that the change is file based, and every reader and writer of the file will be forced
to use directio once it’s enabled.

Direct I/O can provide extremely fast transfers when moving data with big block
sizes (>64 kilobytes), but it can be a significant performance limitation for smaller
sizes. If an application reads and writes in small sizes, then its performance may
suffer since there is no read-ahead or write clustering and no caching.

Databases are a good candidate for direct I/O since they cache their own blocks
in a shared global buffer and can cluster their own reads and writes into larger
operations.

A set of direct I/O statistics is provided with the ufs implementation by means
of the kstat interface. The structure exported by ufs_directio_kstats is
shown below. Note that this structure may change, and performance tools should
not rely on the format of the direct I/O statistics.

mount -o forcedirectio /dev/dsk/c0t0d0s6 /u1

int directio(int fildes, DIRECTIO_ON | DIRECTIO_OFF);
See sys/fcntl.h

solarispod.book Page 125 Thursday, June 22, 2006 11:58 AM

126 Chapter 5 � File Systems

You can inspect the direct I/O statistics with a utility from our Web site at
http://www.solarisinternals.com.

5.6.3 The Directory Name Lookup Cache

The directory name cache caches path names for vnodes, so when we open a file
that has been opened recently, we don’t need to rescan the directory to find the file
name. Each time we find the path name for a vnode, we store it in the directory
name cache. (See Section 14.10 in Solaris™ Internals for further information on
the DNLC operation.) The number of entries in the DNLC is set by the system-
tuneable parameter, ncsize, which is set at boot time by the calculations shown in
Table 5.1. The ncsize parameter is calculated in proportion to the maxusers
parameter, which is equal to the number of megabytes of memory installed in the
system, capped by a maximum of 1024. The maxusers parameter can also be over-
ridden in /etc/system to a maximum of 2048.

The size of the DNLC rarely needs to be adjusted, because the size scales with
the amount of memory installed in the system. Earlier Solaris versions had a

struct ufs_directio_kstats {
 uint_t logical_reads; /* Number of fs read operations */
 uint_t phys_reads; /* Number of physical reads */
 uint_t hole_reads; /* Number of reads from holes */
 uint_t nread; /* Physical bytes read */
 uint_t logical_writes; /* Number of fs write operations */
 uint_t phys_writes; /* Number of physical writes */
 uint_t nwritten; /* Physical bytes written */
 uint_t nflushes; /* Number of times cache was cleared */
} ufs_directio_kstats;

directiostat 3
 lreads lwrites preads pwrites Krd Kwr holdrds nflush
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0

Table 5.1 DNLC Default Sizes

Solaris Version Default ncsize Calculation

Solaris 2.4, 2.5, 2.5.1 ncsize = (17 * maxusers) + 90
Solaris 2.6 onwards ncsize = (68 * maxusers) + 360

solarispod.book Page 126 Thursday, June 22, 2006 11:58 AM

5.6 FILE SYSTEM CACHES 127

default maximum of 17498 (34906 with maxusers set to 2048), and later Solaris
versions have a maximum of 69992 (139624 with maxusers set to 2048).

Use MDB to determine the size of the DNLC.

The DNLC maintains housekeeping threads through a task queue. The dnlc_
reduce_cache() activates the task queue when name cache entries reach
ncsize, and it reduces the size to dnlc_nentries_low_water, which by default
is one hundredth less than (or 99% of) ncsize. If dnlc_nentries reaches dnlc_
max_nentries (twice ncsize), then we know that dnlc_reduce_cache() is
failing to keep up. In this case, we refuse to add new entries to the dnlc until the
task queue catches up. Below is an example of DNLC statistics obtained with the
kstat command.

mdb -k
> ncsize/D
ncsize:
ncsize: 25520

vmstat -s
 0 swap ins
 0 swap outs
 0 pages swapped in
 0 pages swapped out
 405332 total address trans. faults taken
 1015894 page ins
 353 page outs
 4156331 pages paged in
 1579 pages paged out
 3600535 total reclaims
 3600510 reclaims from free list
 0 micro (hat) faults
 405332 minor (as) faults
 645073 major faults
 85298 copy-on-write faults
 117161 zero fill page faults
 0 pages examined by the clock daemon
 0 revolutions of the clock hand
 4492478 pages freed by the clock daemon
 3205 forks
 88 vforks
 3203 execs
 33830316 cpu context switches
 58808541 device interrupts
 928719 traps
214191600 system calls
 14408382 total name lookups (cache hits 90%)
 263756 user cpu
 462843 system cpu
 14728521 idle cpu
 2335699 wait cpu

solarispod.book Page 127 Thursday, June 22, 2006 11:58 AM

128 Chapter 5 � File Systems

The hit ratio of the directory name cache shows the number of times a name
was looked up and found in the name cache. A high hit ratio (>90%) typically
shows that the DNLC is working well. A low hit ratio does not necessarily mean
that the DNLC is undersized; it simply means that we are not always finding the
names we want in the name cache. This situation can occur if we are creating a
large number of files. The reason is that a create operation checks to see if a file
exists before it creates the file, causing a large number of cache misses.

The DNLC statistics are also available with kstat.

5.6.4 Block Buffer Cache

The buffer cache used in Solaris for caching of inodes and file metadata is now also
dynamically sized. In old versions of UNIX, the buffer cache was fixed in size by
the nbuf kernel parameter, which specified the number of 512-byte buffers. We
now allow the buffer cache to grow by nbuf, as needed, until it reaches a ceiling

$ kstat -n dnlcstats
module: unix instance: 0
name: dnlcstats class: misc
 crtime 208.832373709
 dir_add_abort 0
 dir_add_max 0
 dir_add_no_memory 0
 dir_cached_current 1
 dir_cached_total 13
 dir_entries_cached_current 880
 dir_fini_purge 0
 dir_hits 463
 dir_misses 11240
 dir_reclaim_any 8
 dir_reclaim_last 3
 dir_remove_entry_fail 0
 dir_remove_space_fail 0
 dir_start_no_memory 0
 dir_update_fail 0
 double_enters 6
 enters 11618
 hits 1347693
 misses 10787
 negative_cache_hits 76686
 pick_free 0
 pick_heuristic 0
 pick_last 0
 purge_all 1
 purge_fs1 0
 purge_total_entries 3013
 purge_vfs 158
 purge_vp 31
 snaptime 94467.490008162

solarispod.book Page 128 Thursday, June 22, 2006 11:58 AM

5.6 FILE SYSTEM CACHES 129

specified by the bufhwm kernel parameter. By default, the buffer cache is allowed
to grow until it uses 2% of physical memory. We can look at the upper limit for the
buffer cache by using the sysdef command.

Now that we only keep inode and metadata in the buffer cache, we don’t need a
very large buffer. In fact, we need only 300 bytes per inode and about 1 megabyte
per 2 gigabytes of files that we expect to be accessed concurrently (note that this
rule of thumb is for UFS file systems).

For example, if we have a database system with 100 files totaling 100 gigabytes
of storage space and we estimate that we will access only 50 gigabytes of those
files at the same time, then at most we would need 100 × 300 bytes = 30 kilobytes
for the inodes and about 50 ÷ 2 × 1 megabyte = 25 megabytes for the metadata
(direct and indirect blocks). On a system with 5 gigabytes of physical memory, the
defaults for bufhwm would provide us with a bufhwm of 102 megabytes, which is
more than sufficient for the buffer cache. If we are really memory misers, we could
limit bufhwm to 30 megabytes (specified in kilobytes) by setting the bufhwm
parameter in the /etc/system file. To set bufhwm smaller for this example, we
would put the following line into the /etc/system file.

You can monitor the buffer cache hit statistics by using sar -b. The statistics
for the buffer cache show the number of logical reads and writes into the buffer
cache, the number of physical reads and writes out of the buffer cache, and the
read/write hit ratios.

sysdef
*
* Tunable Parameters
*
 7757824 maximum memory allowed in buffer cache (bufhwm)
 5930 maximum number of processes (v.v_proc)
 99 maximum global priority in sys class (MAXCLSYSPRI)
 5925 maximum processes per user id (v.v_maxup)
 30 auto update time limit in seconds (NAUTOUP)
 25 page stealing low water mark (GPGSLO)
 5 fsflush run rate (FSFLUSHR)
 25 minimum resident memory for avoiding deadlock (MINARMEM)
 25 minimum swapable memory for avoiding deadlock (MINASMEM)

*
* Limit size of bufhwm
*
set bufhwm=30000

solarispod.book Page 129 Thursday, June 22, 2006 11:58 AM

130 Chapter 5 � File Systems

On this system we can see that the buffer cache is caching 100% of the reads
and that the number of writes is small. This measurement was taken on a
machine with 100 gigabytes of files that were being read in a random pattern. You
should aim for a read cache hit ratio of 100% on systems with only a few, but very
large, files (for example, database systems) and a hit ratio of 90% or better for sys-
tems with many files.

5.6.5 UFS Inode Cache

The UFS uses the ufs_ninode parameter to size the file system tables for the
expected number of inodes. To understand how the ufs_ninode parameter affects
the number of inodes in memory, we need to look at how the UFS maintains
inodes. Inodes are created when a file is first referenced. They remain in memory
much longer than when the file is last referenced because inodes can be in one of
two states: either the inode is referenced or the inode is no longer referenced but is
on an idle queue. Inodes are eventually destroyed when they are pushed off the
end of the inode idle queue. Refer to Section 15.3.2 in Solaris™ Internals for a
description of how ufs inodes are maintained on the idle queue.

The number of inodes in memory is dynamic. Inodes will continue to be allo-
cated as new files are referenced. There is no upper bound to the number of inodes
open at a time; if one million inodes are opened concurrently, then a little over one
million inodes will be in memory at that point. A file is referenced when its refer-
ence count is non-zero, which means that either the file is open for a process or
another subsystem such as the directory name lookup cache is referring to the file.

When inodes are no longer referenced (the file is closed and no other subsystem
is referring to the file), the inode is placed on the idle queue and eventually freed.
The size of the idle queue is controlled by the ufs_ninode parameter and is lim-
ited to one-fourth of ufs_ninode. The maximum number of inodes in memory at a
given point is the number of active referenced inodes plus the size of the idle queue
(typically, one-fourth of ufs_ninode). Figure 5.5 illustrates the inode cache.

sar -b 3 333
SunOS zangief 5.7 Generic sun4u 06/27/99

22:01:51 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
22:01:54 0 7118 100 0 0 100 0 0
22:01:57 0 7863 100 0 0 100 0 0
22:02:00 0 7931 100 0 0 100 0 0
22:02:03 0 7736 100 0 0 100 0 0
22:02:06 0 7643 100 0 0 100 0 0
22:02:09 0 7165 100 0 0 100 0 0
22:02:12 0 6306 100 8 25 68 0 0
22:02:15 0 8152 100 0 0 100 0 0
22:02:18 0 7893 100 0 0 100 0 0

solarispod.book Page 130 Thursday, June 22, 2006 11:58 AM

5.6 FILE SYSTEM CACHES 131

We can use the sar command and inode kernel memory statistics to determine
the number of inodes currently in memory. sar shows us the number of inodes cur-
rently in memory and the number of inode structures in the inode slab cache. We
can find similar information by looking at the buf_inuse and buf_total param-
eters in the inode kernel memory statistics.

The inode memory statistics show us how many inodes are allocated by the
buf_inuse field. We can also see from the ufs inode memory statistics that the
size of each inode is 440 bytes on this system See below to find out the size of an
inode on different architectures.

 Figure 5.5 In-Memory Inodes (Referred to as the “Inode Cache”)

sar -v 3 3

SunOS devhome 5.7 Generic sun4u 08/01/99

11:38:09 proc-sz ov inod-sz ov file-sz ov lock-sz
11:38:12 100/5930 0 37181/37181 0 603/603 0 0/0
11:38:15 100/5930 0 37181/37181 0 603/603 0 0/0
11:38:18 101/5930 0 37181/37181 0 607/607 0 0/0

kstat -n ufs_inode_cache
ufs_inode_cache:
buf_size 440 align 8 chunk_size 440 slab_size 8192 alloc 1221573 alloc_fail 0
free 1188468 depot_alloc 19957 depot_free 21230 depot_contention 18 global_alloc 48330
global_free 7823 buf_constructed 3325 buf_avail 3678 buf_inuse 37182
buf_total 40860 buf_max 40860 slab_create 2270 slab_destroy 0 memory_class 0
hash_size 0 hash_lookup_depth 0 hash_rescale 0 full_magazines 219
empty_magazines 332 magazine_size 15 alloc_from_cpu0 579706 free_to_cpu0 588106
buf_avail_cpu0 15 alloc_from_cpu1 573580 free_to_cpu1 571309 buf_avail_cpu1 25

Open Files

Files in the Name Cache (DNLC) Inodes in the Idle Queue

inodes

(number ≤ ncsize) (number ≤ ufs_ninode/4)

solarispod.book Page 131 Thursday, June 22, 2006 11:58 AM

132 Chapter 5 � File Systems

We can use this value to calculate the amount of kernel memory required for
desired number of inodes when setting ufs_ninode and the directory name cache
size.

The ufs_ninode parameter controls the size of the hash table that is used for
inode lookup and indirectly sizes the inode idle queue (ufs_ninode ÷ 4). The
inode hash table is ideally sized to match the total number of inodes expected to be
in memory—a number that is influenced by the size of the directory name cache.
By default, ufs_ninode is set to the size of the directory name cache, which is
approximately the correct size for the inode hash table. In an ideal world, we could
set ufs_ninode to four-thirds the size of the DNLC, to take into account the size
of the idle queue, but practice has shown this to be unnecessary.

We typically set ufs_ninode indirectly by setting the directory name cache size
(ncsize) to the expected number of files accessed concurrently, but it is possible to
set ufs_ninode separately in /etc/system.

5.6.6 Monitoring UFS Caches with fcachestat

We can monitor all four key UFS caches by using a single Perl tool: fcachestat.
This tool measures the DNLC, inode, UFS buffer cache (metadata), and page cache
by means of segmap.

mdb -k
Loading modules: [unix krtld genunix specfs dtrace ...]
> a$d
radix = 10 base ten
> ::sizeof inode_t
sizeof (inode_t) = 0t276
> $q

$ kstat unix::ufs_inode_cache:chunk_size
module: unix instance: 0
name: ufs_inode_cache class: kmem_cache
 chunk_size 280

* Set number of inodes stored in UFS inode cache
*
set ufs_ninode = new_value

solarispod.book Page 132 Thursday, June 22, 2006 11:58 AM

5.7 NFS STATISTICS 133

5.7 NFS Statistics

The NFS client and server are instrumented so that they can be observed with
iostat and nfsstat. For client-side mounts, iostat reports the latency for read
and write operations per mount, and instead of reporting disk response times,
iostat reports NFS server response times (including over-the-write latency). The
-c and -s options of the nfsstat command reports both client- and server-side
statistics for each NFS operation as specified in the NFS protocol.

5.7.1 NFS Client Statistics: nfsstat -c

The client-side statistics show the number of calls for RPC transport, virtual meta-
data (also described as attributes), and read/write operations. The statistics are
separated by NFS version number (currently 2, 3, and 4) and protocol options
(TCP or UDP).

$./fcachestat 5
 --- dnlc --- -- inode --- -- ufsbuf -- -- segmap --
 %hit total %hit total %hit total %hit total
99.64 693.4M 59.46 4.9M 99.80 94.0M 81.39 118.6M
66.84 15772 28.30 6371 98.44 3472 82.97 9529
63.72 27624 21.13 12482 98.37 7435 74.70 14699
10.79 14874 5.64 16980 98.45 12349 93.44 11984
11.96 13312 11.89 14881 98.37 10004 93.53 10478
 4.08 20139 5.71 25152 98.42 17917 97.47 16729
 8.25 17171 3.57 20737 98.38 15054 93.64 11154
15.40 12151 6.89 13393 98.37 9403 93.14 11941
 8.26 9047 4.51 10899 98.26 7861 94.70 7186
66.67 6 0.00 3 95.45 44 44.44 18

$ nfsstat -c

Client rpc:
Connection oriented:
calls badcalls badxids timeouts newcreds badverfs timers
202499 0 0 0 0 0 0
cantconn nomem interrupts
0 0 0
Connectionless:
calls badcalls retrans badxids timeouts newcreds badverfs
0 0 0 0 0 0 0
timers nomem cantsend
0 0 0

Client nfs:
calls badcalls clgets cltoomany
200657 0 200657 7
Version 2: (0 calls)

continues

solarispod.book Page 133 Thursday, June 22, 2006 11:58 AM

134 Chapter 5 � File Systems

5.7.2 NFS Server Statistics: nfsstat -s

The NFS server-side statistics show the NFS operations performed by the NFS
server.

null getattr setattr root lookup readlink read wrcache
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
write create remove rename link symlink mkdir rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
readdir statfs
0 0% 0 0%
Version 3: (0 calls)
null getattr setattr lookup access readlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
read write create mkdir symlink mknod
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
remove rmdir rename link readdir readdirplus
0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
fsstat fsinfo pathconf commit
0 0% 0 0% 0 0% 0 0%

$ nfsstat -s

Server rpc:
Connection oriented:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
5897288 0 0 0 0 372803 0
Connectionless:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
87324 0 0 0 0 0 0

...

Version 4: (949163 calls)
null compound
3175 0% 945988 99%
Version 4: (3284515 operations)
reserved access close commit
0 0% 72954 2% 199208 6% 2948 0%
create delegpurge delegreturn getattr
4 0% 0 0% 16451 0% 734376 22%
getfh link lock lockt
345041 10% 6 0% 101 0% 0 0%
locku lookup lookupp nverify
101 0% 145651 4% 5715 0% 171515 5%
open openattr open_confirm open_downgrade
199410 6% 0 0% 271 0% 0 0%
putfh putpubfh putrootfh read
914825 27% 0 0% 581 0% 130451 3%
readdir readlink remove rename
5661 0% 11905 0% 15 0% 201 0%
renew restorefh savefh secinfo
30765 0% 140543 4% 146336 4% 277 0%
setattr setclientid setclientid_confirm verify
23 0% 26 0% 26 0% 10 0%
write release_lockowner illegal
9118 0% 0 0% 0 0%
...

solarispod.book Page 134 Thursday, June 22, 2006 11:58 AM

