
657

14
File System Framework

From its inception, UNIX has been built around two fundamental entities: pro-
cesses and files. In this chapter, we look at the implementation of files in Solaris
and discuss the framework for file systems.

14.1 File System Framework

Solaris OS includes a framework, the virtual file system framework, under which
multiple file system types are implemented. Earlier implementations of UNIX
used a single file system type for all of the mounted file systems, typically, the UFS
file system from BSD UNIX. The virtual file system framework was developed to
allow Sun’s distributed computing file system (NFS) to coexist with the UFS file
system in SunOS 2.0; it became a standard part of System V in SVR4 and Solaris
OS. We can categorize Solaris file systems into the following types:

� Storage-based. Regular file systems that provide facilities for persistent
storage and management of data. The Solaris UFS and PC/DOS file systems
are examples.

� Network file systems. File systems that provide files that are accessible in
a local directory structure but are stored on a remote network server; for
example, NFS.

� Pseudo file systems. File systems that present various abstractions as files
in a file system. The /proc pseudo file system represents the address space
of a process as a series of files.

solarisinternals.book Page 657 Thursday, June 15, 2006 1:27 PM

658 Chapter 14 File System Framework

The framework provides a single set of well-defined interfaces that are file sys-
tem independent; the implementation details of each file system are hidden behind
these interfaces. Two key objects represent these interfaces: the virtual file, or
vnode, and the virtual file system, or vfs objects. The vnode interfaces implement
file-related functions, and the vfs interfaces implement file system management
functions. The vnode and vfs interfaces direct functions to specific file systems,
depending on the type of file system being operated on. Figure 14.1 shows the file
system layers. File-related functions are initiated through a system call or from
another kernel subsystem and are directed to the appropriate file system by the
vnode/vfs layer.

14.2 Process-Level File Abstractions

Within a process, a file is referenced through a file descriptor. An integer space of
file descriptors per process is shared by multiple threads within each process. A
file descriptor is a value in an integer space. It is assigned when a file is first
opened and freed when a file is closed.

Figure 14.1 Solaris File System Framework

System Call Interface

VFS: File-System-Independent Layer (VFS and VNODE INTERFACES)

UFS PCFS HSFS VxFS NFS PROCFS

w
r
i
t
e
(
)

o
p
e
n
(
)

c
l
o
s
e
(
)

m
k
d
i
r
(
)

r
m
d
i
r
(
)

r
e
n
a
m
e
(
)

l
i
n
k
(
)

u
n
l
i
n
k
(
)

s
e
e
k
(
)

f
s
y
n
c
(
)

i
o
c
t
l
(
)

c
r
e
a
t
(
)

m
o
u
n
t
(
)

u
m
o
u
n
t
(
)

s
t
a
t
f
s
(
)

s
y
n
c
(
)

VNODE OPERATIONS VFS OPERATIONS

QFS

r
e
a
d
(
)

solarisinternals.book Page 658 Thursday, June 15, 2006 1:27 PM

14.2 PROCESS-LEVEL FILE ABSTRACTIONS 659

Each process has a list of active file descriptors, which are an index into a per-
process file table. Each file table entry holds process-specific data including the
current file’s seek offset and has a reference to a systemwide virtual file node
(vnode). The list of open file descriptors is kept inside a process’s user area (struct
user) in an fi_list array indexed by the file descriptor number. The fi_list is
an array of uf_entry_t structures, each with its own lock and a pointer to the
corresponding file_t file table entry.

Although multiple file table entries might reference the same file, there is a sin-
gle vnode entry, as Figure 14.2 highlights. The vnode holds systemwide informa-
tion about a file, including its type, size, and containing file system.

Figure 14.2 Structures Used for File Access

f_vnode
f_offset
f_cred
f_count

file_t

v_flags
v_type
v_count
v_data

vnodes

inode

disk blocks
Active File
Descriptors

uf_file
uf_flag
uf_refcnt
uf_file
uf_flag
uf_refcnt
uf_file
uf_flag
uf_refcnt

fi_list

Per File System
Implementation Specific

rnode

network
file

pnode

kernel
object

...

uf_entry {

uf_file
uf_flag
uf_refcnt
uf_file
uf_flag
uf_refcnt
uf_file
uf_flag
uf_refcnt

fi_rlist

Index into
fi_list

Process
System
Wide

Retired
File
Descriptors

References
from other
processes

solarisinternals.book Page 659 Thursday, June 15, 2006 1:27 PM

660 Chapter 14 File System Framework

14.2.1 File Descriptors

A file descriptor is a non-negative integer that is returned from the system calls
open(), fcntl(), pipe(), or dup(). A process uses the file descriptor on other
system calls, such as read() and write(), that perform operations on open files.
Each file descriptor is represented by a uf_entry_t, shown below, and the file
descriptor is used as an index into an array of uf_entry_t entries.

The file descriptor list is anchored in the process’s user area in the uf_info_t
structure pointed to by u_finfo.

/*
 * Entry in the per-process list of open files.
 * Note: only certain fields are copied in flist_grow() and flist_fork().
 * This is indicated in brackets in the structure member comments.
 */
typedef struct uf_entry {
 kmutex_t uf_lock; /* per-fd lock [never copied] */
 struct file *uf_file; /* file pointer [grow, fork] */
 struct fpollinfo *uf_fpollinfo; /* poll state [grow] */
 int uf_refcnt; /* LWPs accessing this file [grow] */
 int uf_alloc; /* right subtree allocs [grow, fork] */
 short uf_flag; /* fcntl F_GETFD flags [grow, fork] */
 short uf_busy; /* file is allocated [grow, fork] */
 kcondvar_t uf_wanted_cv; /* waiting for setf() [never copied] */
 kcondvar_t uf_closing_cv; /* waiting for close() [never copied] */
 struct portfd *uf_portfd; /* associated with port [grow] */
 /* Avoid false sharing - pad to coherency granularity (64 bytes) */
 char uf_pad[64 - sizeof (kmutex_t) - 2 * sizeof (void*) -
 2 * sizeof (int) - 2 * sizeof (short) -
 2 * sizeof (kcondvar_t) - sizeof (struct portfd *)];
} uf_entry_t;

See usr/src/uts/common/sys/user.h

typedef struct user {
...
 uf_info_t u_finfo; /* open file information */
} user_t;

/*
 * Per-process file information.
 */
typedef struct uf_info {
 kmutex_t fi_lock; /* see below */
 kmutex_t fi_pad; /* unused -- remove in next release */
 int fi_nfiles; /* number of entries in fi_list[] */
 uf_entry_t *volatile fi_list; /* current file list */
 uf_rlist_t *fi_rlist; /* retired file lists */
} uf_info_t;

See usr/src/uts/common/sys/user.h

solarisinternals.book Page 660 Thursday, June 15, 2006 1:27 PM

14.2 PROCESS-LEVEL FILE ABSTRACTIONS 661

There are two lists of file descriptor entries in each process: an active set (fi_list)
and a retired set (fi_rlist). The active set contains all the current file descriptor
entries (open and closed), each of which points to a corresponding file_t file table
entry. The retired set is used when the fi_list array is resized; as part of a lock-
less find algorithm, once file_t entries are allocated, they are never unallocated,
so pointers to file_t entries are always valid. In this manner, the algorithm need
only lock the fi_list during resize, making the common case (find) fast and scalable.

14.2.2 The open Code Path

As an example, a common path through file descriptor and file allocation is
through the open() system call. The open() system call returns a file descriptor
to the process for a given path name. The open() system call is implemented by
copen (common open), which first allocates a new file_t structure from the
file_cache kernel allocator cache. The algorithm then looks for the next avail-
able file descriptor integer within the process’s allocate fd integer space by using
fd_find(), and reserves it. With an fd in hand, the lookup routine parses the “/”-
separated components, calling the file-system-specific lookup function for each.
After all path-name components are resolved, the vnode for the path is returned
and linked into the file_t file table entry. The file-system-specific open function
is called to increment the vnode reference count and do any other per-vnode open
handling (typically very little else, since the majority of the open is done in lookup
rather than the file systems’ open() function. Once the file table handle is set up,
it is linked into the process’s file descriptor fi_list array and locked.

-> copen Common entry point from open(2)
 -> falloc Allocate a per-process file_t file table entry
 -> ufalloc_file Allocate a file descriptor uf_entry
 -> fd_find Find the next available fd integer
 <- fd_find
 -> fd_reserve Reserve the fd integer
 <- fd_reserve
 <- ufalloc_file
 <- falloc
 -> fop_lookup Look up the file name supplied in open()
 -> ufs_lookup In this case, get UFS to do the hard work
 -> dnlc_lookup Check in the DNLC
 <- dnlc_lookup
 <- ufs_lookup Return a vnode to copen()
 <- fop_lookup
 -> fop_open Call the file system specific open function
 -> ufs_open Bump ref count in vnode, etc...
 <- ufs_open
 <- fop_open
 -> setf Lock the processes uf_entry for this file
 <- setf
<- copen All done

solarisinternals.book Page 661 Thursday, June 15, 2006 1:27 PM

662 Chapter 14 File System Framework

14.2.3 Allocating and Deallocating File Descriptors

One of the central functions is that of managing the file descriptor integer space.
The fd_find(file_t *, int minfd) and fd_reserve() functions are the primary
interface into the file descriptor integer space management code. The fd_find()
function locates the next lowest available file descriptor number, starting with
minfd, to support fcntl(fd, F_DUPFD, minfd). The fd_reserve() function
either reserves or unreserves an entry by passing a 1 or −1 as an argument.

Beginning with Solaris 8, a significantly revised algorithm manages the integer
space. The file descriptor integer space is a binary tree of per-process file entries
(uf_entry) structures.

The algorithm is as follows. Keep all file descriptors in an infix binary tree in
which each node records the number of descriptors allocated in its right subtree,
including itself. Starting at minfd, ascend the tree until a non-fully allocated right
subtree is found. Then descend that subtree in a binary search for the smallest fd.
Finally, ascend the tree again to increment the allocation count of every subtree
containing the newly allocated fd. Freeing an fd requires only the last step:
Ascend the tree to decrement allocation counts. Each of these three steps (ascent to
find non-full subtree, descent to find lowest fd, ascent to update allocation counts)
is O(log n); thus the algorithm as a whole is O(log n).

We don’t implement the fd tree by using the customary left/right/parent point-
ers, but instead take advantage of the glorious mathematics of full infix binary
trees. For reference, here’s an illustration of the logical structure of such a tree,
rooted at 4 (binary 100), covering the range 1–7 (binary 001–111). Our canonical
trees do not include fd 0; we deal with that later.

We make the following observations, all of which are easily proven by induction
on the depth of the tree:

� (T1). The lowest-set bit (LSB) of any node is equal to its level in the tree. In
our example, nodes 001, 011, 101, and 111 are at level 0; nodes 010 and 110
are at level 1; and node 100 is at level 2 (see Figure 14.3).

Figure 14.3 File Descriptor Integer Space as an Infix Binary Tree

100

110010

001 011 101 111

solarisinternals.book Page 662 Thursday, June 15, 2006 1:27 PM

14.2 PROCESS-LEVEL FILE ABSTRACTIONS 663

� (T2). The child size (CSIZE) of node N—that is, the total number of right-
branch descendants in a child of node N, including itself—is given by clear-
ing all but the lowest-set bit of N. This follows immediately from (T1). Apply-
ing this rule to our example, we see that CSIZE(100) = 100, CSIZE(x10) = 10,
and CSIZE(xx1) = 1.

� (T3). The nearest left ancestor (LPARENT) of node N—that is, the nearest
ancestor containing node N in its right child—is given by clearing the LSB of
N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. Clearing
the LSB of nodes 001, 010, or 100 yields zero, reflecting the fact that these
are leftmost nodes. Note that this algorithm automatically skips generations
as necessary. For example, the parent of node 101 is 110, which is a right
ancestor (not what we want); but its grandparent is 100, which is a left ances-
tor. Clearing the LSB of 101 gets us to 100 directly, skipping right past the
uninteresting generation (110).

Note that since LPARENT clears the LSB, whereas CSIZE clears all but
the LSB, we can express LPARENT() nicely in terms of CSIZE():

 LPARENT(N) = N – CSIZE(N)

� (T4). The nearest right ancestor (RPARENT) of node N is given by

 RPARENT(N) = N + CSIZE(N)

� (T5). For every interior node, the children differ from their parent by
CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, and
indeed, the children of 100 are 100 ± 10 = 010 and 110.

Next, we need a few two’s-complement math tricks. Suppose a number, N, has
the following form:

N = xxxx10...0

That is, the binary representation of N consists of some string of bits, then a 1,
then all 0’s. This amounts to nothing more than saying that N has a lowest-set bit,
which is true for any N ≠ 0. If we look at N and N − 1 together, we see that we can
combine them in useful ways:

 N − 1 = xxxx01...1:

 N & (N − 1) = xxxx000000
 N | (N − 1) = xxxx111111
 N ^ (N − 1) = 111111

solarisinternals.book Page 663 Thursday, June 15, 2006 1:27 PM

664 Chapter 14 File System Framework

In particular, this suggests several easy ways to clear all but the LSB, which by
(T2) is exactly what we need to determine CSIZE(N) = 10...0. We opt for this for-
mulation:

 (C1) CSIZE(N) = (N – 1) ^ (N | (N –1))

Similarly, we have an easy way to determine LPARENT(N), which requires that
we clear the LSB of N:

 (L1) LPARENT(N) = N & (N –1)

We note in the above relations that (N | (N − 1)) − N = CSIZE(N) − 1. When com-
bined with (T4), this yields an easy way to compute RPARENT(N):

 (R1) RPARENT(N) = (N | (N − 1)) + 1

Finally, to accommodate fd 0, we must adjust all of our results by ± 1 to move
the fd range from [1, 2^n) to [0, 2^n − 1). This is straightforward, so there’s no
need to belabor the algebra; the revised relations become

 (C1a) CSIZE(N) = N ^ (N | (N + 1))
 (L1a) LPARENT(N) = (N & (N + 1)) − 1

 (R1a) RPARENT(N) = N | (N + 1)

This completes the mathematical framework. We now have all the tools we need
to implement fd_find() and fd_reserve().

The fd_find(fip, minfd) function finds the smallest available file descriptor
≥ minfd. It does not actually allocate the descriptor; that's done by fd_reserve().

fd_find() proceeds in two steps:

1. Find the leftmost subtree that contains a descriptor ≥ minfd. We start at the
right subtree rooted at minfd. If this subtree is not full—if fip->fi_
list[minfd].uf_alloc != CSIZE(minfd)—then step 1 is done. Other-
wise, we know that all fds in this subtree are taken, so we ascend to RPAR-
ENT(minfd) using (R1a). We repeat this process until we either find a
candidate subtree or exceed fip->fi_nfiles. We use (C1a) to compute
CSIZE().

2. Find the smallest fd in the subtree discovered by step 1. Starting at the root
of this subtree, we descend to find the smallest available fd. Since the left
children have the smaller fds, we descend rightward only when the left child
is full.

We begin by comparing the number of allocated fds in the root to the number of
allocated fds in its right child; if they differ by exactly CSIZE(child), we know the
left subtree is full, so we descend right; that is, the right child becomes the search

solarisinternals.book Page 664 Thursday, June 15, 2006 1:27 PM

14.2 PROCESS-LEVEL FILE ABSTRACTIONS 665

root. Otherwise, we leave the root alone and start following the right child’s left
children. As fortune would have it, this is simple computationally: by (T5), the
right child of fd is just fd + size, where size = CSIZE(fd) / 2. Applying (T5) again,
we find that the right child’s left child is fd + size − (size / 2) = fd + (size / 2); its
left child is fd + (size / 2) − (size / 4) = fd + (size / 4), and so on. In general, fd’s
right child’s leftmost nth descendant is fd + (size >> n). Thus, to follow the right
child’s left descendants, we just halve the size in each iteration of the search.

 When we descend leftward, we must keep track of the number of fds that
were allocated in all the right subtrees we rejected so that we know how many of
the root fd’s allocations are in the remaining (as yet unexplored) leftmost part of
its right subtree. When we encounter a fully allocated left child—that is, when we
find that fip->fi_list[fd].uf_alloc == ralloc + size—we descend right
(as described earlier), resetting ralloc to zero.

The fd_reserve(fip, fd, incr) function either allocates or frees fd,
depending on whether incr is 1 or −1. Starting at fd, fd_reserve() ascends the
leftmost ancestors (see (T3)) and updates the allocation counts. At each step we
use (L1a) to compute LPARENT(), the next left ancestor.

14.2.4 File Descriptor Limits

Each process has a hard and soft limit for the number of files it can have opened at
any time; these limits are administered through the Resource Controls infrastruc-
ture by process.max-file-descriptor (see Section 7.5 for a description of
Resource Controls). The limits are checked during falloc(). Limits can be
viewed with the prctl command.

If no resource controls are set for the process, then the defaults are taken from
system tuneables; rlim_fd_max is the hard limit, and rlim_fd_cur is the cur-
rent limit (or soft limit). You can set these parameters systemwide by placing
entries in the /etc/system file.

sol9$ prctl -n process.max-file-descriptor $$
process: 21471: -ksh
NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT
process.max-file-descriptor
 basic 256 - deny 21471
 privileged 65.5K - deny -
 system 2.15G max deny -

set rlim_fd_max=8192
set rlim_fd_cur=1024

solarisinternals.book Page 665 Thursday, June 15, 2006 1:27 PM

666 Chapter 14 File System Framework

14.2.5 File Structures

A kernel object cache segment is allocated to hold file structures, and they are sim-
ply allocated and linked to the process and vnode as files are created and opened.

We can see in Figure 14.2 that each process uses file descriptors to reference a
file. The file descriptors ultimately link to the kernel file structure, defined as a
file_t data type, shown below.

The fields maintained in the file structure are, for the most part, self-explana-
tory. The f_tlock kernel mutex lock protects the various structure members.
These include the f_count reference count, which lists how many file descriptors
reference this structure, and the f_flag file flags.

Since files are allocated from a systemwide kernel allocator cache, you can use
MDB’s ::kmastat dcmd to look at how many files are opened systemwide. The
sar command also shows the same information in its file-sz column.

This example shows 1049 opened files. The format of the sar output is a hold-
over from the early days of static tables, which is why it is displayed as 1049/1049.
Originally, the value on the left represented the current number of occupied table
slots, and the value on the right represented the maximum number of slots. Since
file structure allocation is completely dynamic in nature, both values will always
be the same.

/*
 * fio locking:
 * f_rwlock protects f_vnode and f_cred
 * f_tlock protects the rest
 *
 * The purpose of locking in this layer is to keep the kernel
 * from panicking if, for example, a thread calls close() while
 * another thread is doing a read(). It is up to higher levels
 * to make sure 2 threads doing I/O to the same file don't
 * screw each other up.
 */
/*
 * One file structure is allocated for each open/creat/pipe call.
 * Main use is to hold the read/write pointer associated with
 * each open file.
 */
typedef struct file {
 kmutex_t f_tlock; /* short term lock */
 ushort_t f_flag;
 ushort_t f_pad; /* Explicit pad to 4 byte boundary */
 struct vnode *f_vnode; /* pointer to vnode structure */
 offset_t f_offset; /* read/write character pointer */
 struct cred *f_cred; /* credentials of user who opened it */
 struct f_audit_data *f_audit_data; /* file audit data */
 int f_count; /* reference count */
} file_t;

See usr/src/uts/common/sys/file.h

solarisinternals.book Page 666 Thursday, June 15, 2006 1:27 PM

14.2 PROCESS-LEVEL FILE ABSTRACTIONS 667

We can use MDB’s ::pfiles dcmd to explore the linkage between a process
and file table entries.

For a specific process, we use the pfiles(1) command to create a list of all the
files opened.

sol8# mdb -k
> ::kmastat !grep file
cache buf buf buf memory alloc alloc
name size in use total in use succeed fail
------------------------- ------ ------ ------ --------- --------- -----
file_cache 56 1049 1368 77824 9794701 0

sar -v 3 333

SunOS ozone 5.10 Generic i86pc 07/13/2005

17:46:49 proc-sz ov inod-sz ov file-sz ov lock-sz
17:46:52 131/16362 0 8884/70554 0 1049/1049 0 0/0
17:46:55 131/16362 0 8884/70554 0 1049/1049 0 0/0

sol8# mdb -k
> 0t1119::pid2proc
ffffffff83135890
> ffffffff83135890::pfiles -fp
 FILE FD FLAG VNODE OFFSET CRED CNT
ffffffff85ced5e8 0 1 ffffffff857c8580 0 ffffffff83838a40 1
ffffffff85582120 1 2 ffffffff857c8580 0 ffffffff83838a40 2
ffffffff85582120 2 2 ffffffff857c8580 0 ffffffff83838a40 2
ffffffff8362be00 3 2001 ffffffff836d1680 0 ffffffff83838c08 1
ffffffff830d3b28 4 2 ffffffff837822c0 0 ffffffff83838a40 1
ffffffff834aacf0 5 2 ffffffff83875a80 33 ffffffff83838a40 1
> ffffffff8362be00::print file_t
{
 f_tlock = {
 _opaque = [0]
 }
 f_flag = 0x2001
 f_pad = 0xbadd
 f_vnode = 0xffffffff836d1680
 f_offset = 0
 f_cred = 0xffffffff83838c08
 f_audit_data = 0
 f_count = 0x1
}
> 0xffffffff836d1680::vnode2path
/zones/gallery/root/var/run/name_service_door

sol8$ pfiles 1119
1119: /usr/lib/sendmail -Ac -q15m
 Current rlimit: 1024 file descriptors
 0: S_IFCHR mode:0666 dev:281,2 ino:16484 uid:0 gid:3 rdev:13,2
 O_RDONLY
 /zones/gallery/root/dev/null

continues

solarisinternals.book Page 667 Thursday, June 15, 2006 1:27 PM

668 Chapter 14 File System Framework

In the preceding examples, the pfiles command is executed on PID 1119. The
PID and process name are dumped, followed by a listing of the process’s opened
files. For each file, we see a listing of the file descriptor (the number to the left of
the colon), the file type, file mode bits, the device from which the file originated,
the inode number, file UID and GID, and the file size.

14.3 Solaris File System Framework

The vnode/vfs interfaces—the “top end” of the file system module—implement
vnode and vfs objects. The “bottom end” of the file system uses other kernel inter-
faces to access, store, and cache the data they represent. Disk-based file systems
interface to device drivers to provide persistent storage of their data. Network file
systems access remote storage by using the networking subsystem to transmit and
receive data. Pseudo file systems typically access local kernel functions and struc-
tures to gather the information they represent.

� Loadable file system modules. A dynamically loadable module type is pro-
vided for Solaris file systems. File system modules are dynamically loaded at
the time each file system type is first mounted (except for the root file sys-
tem, which is mounted explicitly at boot).

� The vnode interface. As discussed, this is a unified file-system-independent
interface between the operating system and a file system implementation.

� File system caching. File systems that implement caching interface with
the virtual memory system to map, unmap, and manage the memory used for
caching. File systems use physical memory pages and the virtual memory
system to cache files. The kernel’s seg_map driver maps file system cache

 1: S_IFCHR mode:0666 dev:281,2 ino:16484 uid:0 gid:3 rdev:13,2
 O_WRONLY
 /zones/gallery/root/dev/null
 2: S_IFCHR mode:0666 dev:281,2 ino:16484 uid:0 gid:3 rdev:13,2
 O_WRONLY
 /zones/gallery/root/dev/null
 3: S_IFDOOR mode:0444 dev:279,0 ino:34 uid:0 gid:0 size:0
 O_RDONLY|O_LARGEFILE FD_CLOEXEC door to nscd[762]
 /zones/gallery/root/var/run/name_service_door
 4: S_IFCHR mode:0666 dev:281,2 ino:16486 uid:0 gid:3 rdev:21,0
 O_WRONLY FD_CLOEXEC
 /zones/gallery/root/dev/conslog
 5: S_IFREG mode:0600 dev:102,198 ino:11239 uid:25 gid:25 size:33
 O_WRONLY
 /zones/gallery/root/var/spool/clientmqueue/sm-client.pid

solarisinternals.book Page 668 Thursday, June 15, 2006 1:27 PM

14.3 SOLARIS FILE SYSTEM FRAMEWORK 669

into the kernel’s address space when accessing the file system through the
read() and write() system calls. (See Section 14.8.1.)

� Path-name management. Files are accessed by means of path names,
which are assembled as a series of directory names and file names. The file
system framework provides routines that resolve and manipulate path names
by calling into the file system’s lookup() function to convert paths into
vnode pointers.

� Directory name caching. A central directory name lookup cache (DNLC)
provides a mechanism to cache pathname-to-vnode mappings, so that the
directory components need not be read from disk each time they are needed.

14.3.1 Evolution of the File System Framework

Solaris 10 introduces a new file system interface that significantly improves the
portability of file systems. In prior releases of Solaris OS, the vnode and vfs
structures were entirely visible to their consumers. A file system client would ref-
erence, manipulate, or update raw vfs and vnode structure members directly,
which meant that file systems had operating system revision-specific assumptions
compiled into them. Whenever the vfs or vnode structures changed in the Solaris
kernel, file systems would need to be recompiled to match the changes. The new
interface allows the vnode structures to change in many ways without breaking
file system compatibility.

The new model replaces the old file system VOP macros with a new set of func-
tions. The goals of the new interface are as follows:

� It separates the vnode from FS-dependent node so that changes in the vnode
structure that affect its size do not affect the size of other data structures.

� It provides interfaces to access nonpublic vnode structure members.

� It delivers a flexible operation registration mechanism that provides appro-
priate defaults for unspecified operations and allows the developer to specify
a corresponding default or error routine.

� It delivers a flexible mechanism to invoke vnode/vfs operations without
requiring the client module to have knowledge of how the operations are
stored.

� It provides a facility for creation, initialization, and destruction of vnodes.

� It provides accessor functions for file systems that require information on the
following characteristics of a vnode: existence of locks, existence of cached
data, read-only attribute.

solarisinternals.book Page 669 Thursday, June 15, 2006 1:27 PM

670 Chapter 14 File System Framework

The following major changes have been made to the file system interface as part
of this project:

� The following related vnode fields are now private: v_filocks, v_shrlocks,
v_nbllock, v_pages and v_cv.

� Support routines allow a vnode/vfs client to set a vnode’s or vfs’s opera-
tions, retrieve the operations, compare the operations vector to a given value,
compare a specific operation in the operations vector to a given value. The
related vnode field v_op and the related vfs field vfs_op should not be
directly accessed by file systems.

� An accessor routine returns a pointer to the vfs, if any, which may be
mounted on a given vnode. Another routine determines whether a given
vnode is mounted on. The related vnode field v_vfsmountedhere is now
private.

� An operation registration mechanism can fill in default operation values (if
appropriate) for operations that are not explicitly specified by the file system.

� The operation registration mechanism enables developers to add new opera-
tions to a new (updated) version of Solaris OS without requiring existing file
systems to support those new operations, provided that the new operations
have system-defined defaults.

� The file system module loading mechanism is updated to enable these
changes.

� Vnodes are no longer embedded in file system data structures (for example,
inodes).

� The following functions have been added to support the separation of the
vnode from the FS-dependent node: vn_alloc(), vn_free(), and
vn_reinit().

� Certain fields in the vnode have been made “private” to satisfy the require-
ments of other projects. Also, the fields in the vnode have been rearranged to
put the “public” structure members at the top and the private members at the
bottom.

� File systems now register their vnode and vfs operations by providing an
operation definition table that specifies operations by using name/value pairs.

� The VOP and VFSOP macros no longer directly dereference the vnode and
vfs structures and their operations tables. They each call corresponding
functions that perform that task.

� File system module loading no longer takes a vfs switch entry. Instead, it
takes a vfsdef structure that is similar. The difference is that the vfsdef
structure includes a version number but does not include a vfsops table.

solarisinternals.book Page 670 Thursday, June 15, 2006 1:27 PM

14.3 SOLARIS FILE SYSTEM FRAMEWORK 671

The following accessor functions have been added to provide information about
the state and characteristics of a vnode.

� vn_is_readonly(). Returns non-zero if the vnode is on a read-only file sys-
tem.

� vn_has_flocks(). Returns non-zero if the vnode has active file locks.

� vn_has_mandatory_locks(). Returns non-zero if the vnode has manda-
tory locks.

� vn_has_cached_data(). Returns non-zero if the vnode has pages in the
page cache.

� vn_mountedvfs(). Returns the vfs mounted on this vnode, if any.

� vn_ismntpt(). Returns true (non-zero) if this vnode is mounted on, zero
otherwise.

New interfaces have been developed to register vnode and vfs operations.

� vn_make_ops(). Creates and builds the private vnodeops table.

� vn_freevnodeops(). Frees a vnodeops structure created by vn_make_
ops().

� vfs_setfsops(). Builds a vfsops table and associates it with a vfs switch
table entry.

� vfs_freevfsops_by_type(). Frees a vfsops structure created by
vfs_makefsops().

� vfs_makefsops(). Creates and builds (dummy) vfsops structures.

� vfs_freevfsops(). Frees a vfsops structure created by vfs_makefsops().

The following support routines have been developed to set and provide informa-
tion about the vnode’s operations vector.

� vn_setops(). Sets the operations vector for this vnode.

� vn_getops(). Retrieves the operations vector for this vnode.

� vn_matchops(). Determines if the supplied operations vector matches the
vnode’s operations vector. Note that this is a “shallow” match. The pointer to
the operations vector is compared, not each individual operation.

� vn_matchopval(). Determines if the supplied function exists for a particu-
lar operation in the vnode’s operations vector.

solarisinternals.book Page 671 Thursday, June 15, 2006 1:27 PM

672 Chapter 14 File System Framework

The following support routines have been developed to set and provide informa-
tion about the vfs’s operations vector.

� vfs_setops(). Sets the operations vector for this vfs.

� vfs_getops(). Retrieves the operations vector for this vfs.

� vfs_matchops(). Determines if the supplied operations vector matches the
vfs’s operations vector. Note that this is a “shallow” match. The pointer to
the operations vector is compared, not each individual operation.

� vfs_can_sync(). Determines if a vfs has an FS-supplied (nondefault, non-
error) sync routine.

14.3.2 The Solaris File System Interface

The file system interface can be categorized into three major parts:

� A single systemwide, file system module-specific declaration

� A per-file system mount instance declaration

� A set of per-file operations with each file system mount instance

14.4 File System Modules

A file system is implemented as a dynamically loadable kernel module. Each file
system declares the standard module _init, _info, and _fini entry points,
which are used to install and remove the file system within the running kernel
instance.

The primary descriptive entry for each file system is provided by a static decla-
ration of a vfsdef_t, which includes the following:

� The version of the vfs interface used at module compile time (by specifica-
tion of VFSDEF_VERSION).

� The name of the file system (a string).

� The global initialization function to be called when the file system module is
loaded. Although a file system module is typically loaded on the first mount,
a module can be loaded modload(1M) without mounting a file system.

� A set of options that can be set at mount time.

solarisinternals.book Page 672 Thursday, June 15, 2006 1:27 PM

14.4 FILE SYSTEM MODULES 673

14.4.1 Interfaces for Mount Options

The options template is used to accept and validate options at mount time. A
standard set is defined in sys/vfs.h, but you can add your own by simply supply-
ing a string (as tmpfs does for size).

The mntopts_t struct (usually called the mount options table) consists of a
count of the number of options and an array of options structures of length count.
Each file system should define a prototype mount options table that will be used
by the vfs_initopttbl() function to initialize the working mount options table
for each mount instance. The text below describes the initialization of the proto-
type mount options table. The vfs_initopttbl() function should be used to ini-
tialize working mount options tables from the prototype mount options table.

Each mount option contains fields to drive the parser and fields to accept the
results of the parser’s execution. Here is the structure that defines an individual
option in the mount options table.

static mntopt_t tmpfs_options[] = {
 /* Option name Cancel Opt Arg Flags Data */
 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, NULL},
 { MNTOPT_NOXATTR, noxattr_cancel, NULL, NULL, NULL},
 { "size", NULL, "0", MO_HASVALUE, NULL}
};

static mntopts_t tmpfs_proto_opttbl = {
 sizeof (tmpfs_options) / sizeof (mntopt_t),
 tmpfs_options
};

static vfsdef_t vfw = {
 VFSDEF_VERSION,
 "tmpfs",
 tmpfsinit,
 VSW_HASPROTO,
 &tmpfs_proto_opttbl
};

See usr/src/uts/common/fs/tmpfs/tmp_vfsops.c

typedef struct mntopts {
 int mo_count; /* number of entries in table */
 mntopt_t *mo_list; /* list of mount options */
} mntopts_t;

See usr/src/uts/common/sys/vfs.h

typedef struct mntopt {
 char *mo_name; /* option name */
 char **mo_cancel; /* list of options cancelled by this one */
 char *mo_arg; /* argument string for this option */
 int mo_flags; /* flags for this mount option */
 void *mo_data; /* file system specific data */
} mntopt_t;

See usr/src/uts/common/sys/vfs.h

solarisinternals.book Page 673 Thursday, June 15, 2006 1:27 PM

674 Chapter 14 File System Framework

Each option must have a string that gives the name of the option. Additionally,
if an option is one that invalidates other options, the mo_cancel field points to a
NULL-terminated list of names of options to turn off if this option is recognized. If an
option accepts an argument (that is, it is of the form opt=arg), then the mo_arg
field should be initialized with the string that is the default for the argument (if it
has a default value; otherwise NULL). During option parsing, the parser will then
replace the string in the working mount options table with the string provided by
the user if the option is recognized during option parsing. The following flags are
recognized by or set by the parser during option parsing.

� MO_NODISPLAY. Option will not be listed in mounted file system table.

� MO_HASVALUE. Option is expected to have an argument (that is, of form
opt = arg)

� MO_IGNORE. Option is ignored by the parser and will not be set even if seen
in the options string. (Can be set manually with vfs_setmntopt function.)

� MO_DEFAULT. Option is set on by default and will show in mnttab even if not
seen by parser in options string.

The mo_data field is for use by a file system to hold any option-specific data it
may wish to make use of.

14.4.2 Module Initialization

A standard file system module will provide a module _init function and register
an initialization function to be called back by the file system module-loader facil-
ity. The following example shows the initialization linkage between the module
declaration and the file-system-specific initialization function.

static vfsdef_t vfw = {
 VFSDEF_VERSION,
 "tmpfs",
 tmpfsinit,
 VSW_HASPROTO,
 &tmpfs_proto_opttbl
};

/*
 * Module linkage information
 */

continues

solarisinternals.book Page 674 Thursday, June 15, 2006 1:27 PM

14.5 THE VIRTUAL FILE SYSTEM (vfs) INTERFACE 675

The module is automatically loaded by the first invocation of mount(2) (typi-
cally from a mount command). Upon module load, the _init() function of the file
system is called; this function completes its self-install with mod_install(),
which subsequently calls the file system init function (tmpfsinit() in this exam-
ple) defined in the vfsdef_t.

Note that file systems no longer need to create and install a vfs switch entry;
this is done automatically by the module loading using the information supplied in
the vfsdef_t.

14.5 The Virtual File System (vfs) Interface

The vfs layer provides an administrative interface into the file system to support
commands like mount and umount in a file-system-independent manner. The
interface achieves independence by means of a virtual file system (vfs) object. The
vfs object represents an encapsulation of a file system’s state and a set of meth-
ods for each of the file system administrative interfaces. Each file system type pro-
vides its own implementation of the object. Figure 14.4 illustrates the vfs object.
A set of support functions provides access to the contents of the vfs structure; file
systems should not directly modify the vfs object contents.

static struct modlfs modlfs = {
 &mod_fsops, "filesystem for tmpfs", &vfw
};

static struct modlinkage modlinkage = {
 MODREV_1, &modlfs, NULL
};

int
_init()
{
 return (mod_install(&modlinkage));
}

/*
 * initialize global tmpfs locks and such
 * called when loading tmpfs module
 */
static int
tmpfsinit(int fstype, char *name)
{
...
}

See usr/src/uts/common/fs/tmpfs/tmp_vfsops.c

solarisinternals.book Page 675 Thursday, June 15, 2006 1:27 PM

676 Chapter 14 File System Framework

14.5.1 vfs Methods

The methods within the file system implement operations on behalf of the com-
mon operating system code. For example, given a pointer to a tmpfs’s vfs object,
the generic VFS_MOUNT() call will invoke the appropriate function in the underly-
ing file system by calling the tmpfs_mount() method defined within that
instance of the object.

Figure 14.4 The vfs Object

#define VFS_MOUNT(vfsp, mvp, uap, cr) fsop_mount(vfsp, mvp, uap, cr)

int
fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
{
 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
}

See usr/src/uts/common/sys/vfs.h

vfs_next

struct vfs

vfs_fstype
vfs_op
.
.
v_data

vfs_mountroot()

.

.

vfs_mount()

struct

vfs_umount()
vfs_root()
vfs_statvfs()
vfs_sync()
vfs_vget()

vfsops

File-System-
Dependent
Data

solarisinternals.book Page 676 Thursday, June 15, 2006 1:27 PM

14.5 THE VIRTUAL FILE SYSTEM (vfs) INTERFACE 677

A file system declares its vfs methods through a call to vfs_setfsops(). A
template provides allows a selection of methods to be defined, according to Table 14.1.

A regular file system will define mount, unmount, root, statvfs, and vget
methods. The vfs methods are defined in an fs_operation_def_t template, ter-
minated by a NULL entry. The template is constructed from an array of fs_
operation_def_t structures. The following example from the tmpfs implementation
shows how the template is initialized and then instantiated with vfs_setfsops().
The call to vfs_setfsops() is typically done once per module initialization,
systemwide.

Table 14.1 Solaris 10 vfs Interface Methods from sys/vfs.h

Method Description

VFS_MOUNT Mounts a file system on the supplied vnode. The file-system-
dependent part of mount includes these actions.

• Determine if mount device is appropriate.
• Prepare mount device (e.g., flush pages/blocks).
• Read file-system-dependent data from mount device.
• Sanity-check file-system-dependent data.
• Create/initialize file-system-dependent kernel data structures.
• Reconcile any transaction devices.

VFS_UNMOUNT Unmounts the file system. The file-system-dependent part of
unmount includes these actions.

• Lock out new transactions and complete current transactions.
• Flush data to mount device.
• Close down any helper threads.
• Tear down file-system-dependent kernel data structures.

VFS_ROOT Finds the root vnode for a file system.

VFS_STATVFS Queries statistics on a file system.

VFS_SYNC Flushes the file system cache.

VFS_VGET Finds a vnode that matches a unique file ID.

VFS_MOUNTROOT Mounts the file system on the root directory.

VFS_FREEVFS Calls back to free resources after last unmount. NFS appears
to be the only one that needs this. All others default to
fs_freevfs(), which is a no-op.

VFS_VNSTATE Interface for vnode life cycle reporting.

solarisinternals.book Page 677 Thursday, June 15, 2006 1:27 PM

678 Chapter 14 File System Framework

A corresponding free of the vfs methods is required at module unload time and
is typically located in the _fini() function of the module.

The following routines are available in the vfs layer to manipulate the vfs
object. They provide support for creating and modifying the FS methods (fsops),

static int
tmpfsinit(int fstype, char *name)
{
 static const fs_operation_def_t tmp_vfsops_template[] = {
 VFSNAME_MOUNT, tmp_mount,
 VFSNAME_UNMOUNT, tmp_unmount,
 VFSNAME_ROOT, tmp_root,
 VFSNAME_STATVFS, tmp_statvfs,
 VFSNAME_VGET, tmp_vget,
 NULL, NULL
 };
 int error;

 error = vfs_setfsops(fstype, tmp_vfsops_template, NULL);
...
}

See usr/src/uts/common/fs/tmpfs/tmp_vfsops.c

int
_fini()
{
 int error;

 error = mod_remove(&modlinkage);
 if (error)
 return (error);
 /*
 * Tear down the operations vectors
 */
 (void) vfs_freevfsops_by_type(tmpfsfstype);
 vn_freevnodeops(tmp_vnodeops);
 return (0);
}

See usr/src/uts/common/fs/tmpfs/tmp_vfsops.c

/*
 * File systems use arrays of fs_operation_def structures to form
 * name/value pairs of operations. These arrays get passed to:
 *
 * - vn_make_ops() to create vnodeops
 * - vfs_makefsops()/vfs_setfsops() to create vfsops.
 */
typedef struct fs_operation_def {
 char *name; /* name of operation (NULL at end) */
 fs_generic_func_p func; /* function implementing operation */
} fs_operation_def_t;

int vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual);

Creates and builds (dummy) vfsops structures

continues

solarisinternals.book Page 678 Thursday, June 15, 2006 1:27 PM

14.5 THE VIRTUAL FILE SYSTEM (vfs) INTERFACE 679

14.5.2 vfs Support Functions

The following support functions are available for parsing option strings and filling
in the necessary vfs structure fields. The file systems also need to parse the
option strings to learn what options should be used in completing the mount
request. The routines and data structures are all defined in the vfs.h header file.

It is expected that all the fields used by the file-system-specific mount code in
the vfs structure are normally filled in and interrogated only during a mount sys-
tem call. At mount time the vfs structure is private and not available to any other
parts of the kernel. So during this time, locking of the fields used in mnttab/
options is not necessary. If a file system wants to update or interrogate options at
some later time, then it should be locked by the vfs_lock_wait()/vfs_
unlock() functions. All memory allocated by the following routines is freed at
umount time, so callers need not worry about memory leakage. Any arguments
whose values are preserved in a structure after a call have been copied, so callers
need not worry about retained references to any function arguments.

void vfs_setops(vfs_t *vfsp, vfsops_t *vfsops);

Sets the operations vector for this vfs

vfsops_t * vfs_getops(vfs_t *vfsp);

Retrieves the operations vector for this vfs

void vfs_freevfsops(vfsops_t *vfsops);

Frees a vfsops structure created by vfs_makefsops()

int vfs_freevfsops_by_type(int fstype);

For a vfsops structure created by vfs_setfsops(), use vfs_freevfsops_by_type()

int vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops);

Determines if the supplied operations vector matches the vfs's operations vector. Note
that this is a "shallow" match. The pointer to the operations vector is compared, not
each individual operation.

See usr/src/uts/common/sys/vfs.h

struct mntopts_t *vfs_opttblptr(struct vfs *vfsp);

Returns a pointer to the mount options table for the given vfs structure.

void vfs_initopttbl(const mntopts_t *proto, mntopts_t *tbl);

Initializes a mount options table from the prototype mount options table pointed to by
the first argument. A file system should always initialize the mount options table in
the vfs structure for the current mount but may use this routine to initialize other
tables if desired. See the documentation below on how to construct a prototype mount
options table. Note that the vfs_opttblptr() function described above should be used to
access the vfs structures mount options table.

continues

solarisinternals.book Page 679 Thursday, June 15, 2006 1:27 PM

680 Chapter 14 File System Framework

void vfs_parsemntopts(mntopts_t *tbl, char *optionstr);

Parses the option string pointed to by the second argument, using the mount options
table pointed to by the first argument. Any recognized options will be marked by this
function as set in the pointed-to options table and any arguments found are recorded
there as well. Normally file systems would call this with a pointer to the mount
options table in the vfs structure for the mount currently being processed. The mount
options table may be examined after the parse is completed, to see which options have
been recognized, by using the vfs_optionisset() function documented below. Note that
the parser will alter the option string during parsing, but will restore it before
returning. Any options in the option string being parsed that are not recognized are
silently ignored. Also if an option requires an arg but it is not supplied, the argu-
ment pointer is silently set to NULL. Since options are parsed from left to right, the
last specification for any particular option in the option string is the one used. Sim-
ilarly, if options that toggle each other on or off (i.e. are mutually exclusive), are
in the same options string, the last one seen in left to right parsing determines the
state of the affected option(s).

void vfs_clearmntopt(mntopts_t *tbl, const char *opt);

Clears the option whose name is passed in the second argument from the option table
pointed to by the first argument, i.e., marks the option as not set and frees any argu-
ment that may be associated with the option. Used by file systems to unset options if
so desired in a mount options table. Note that the only way to return options to their
default state is to reinitialize the options table with vfs_initopttbl().

void vfs_setmntopt(mntopts_t *tbl, const char *opt, const char *arg, int flags);

Marks the option whose name is given by the second argument as set in the mount options
table pointed to by the first argument. If the option takes an argument, the third
parameter points to the string for the argument. The flags arg is provided to affect
the behavior of the vfs_setmntopt function. It can cause it to override the MO_IGNORE
flag if the particular option being set has this flag enabled. It can also be used to
request toggling the MO_NODISPLAY bit for the option on or off. (see the documentation
for mount option tables). Used by file systems to manually mark options as set in a
mount options table. Possible flags to vfs_setmntopt:
VFS_DISPLAY 0x02 /* Turn off MO_NODISPLAY bit for option */
VFS_NODISPLAY 0x04 /* Turn on MO_NODISPLAY bit for option */

int vfs_optionisset(mntopts_t *tbl, const char *opt, char **argp);

Inquires if the option named by the second argument is marked as set in the mount
options table pointed to by the first argument. Returns non-zero if the option was set.
If the option has an argument string, the arg pointed to by the argp pointer is filled
in with a pointer to the argument string for the option. The pointer is to the saved
argument string and not to a copy. Users should not directly alter the pointed to
string. If any change is desired to the argument string the caller should use the set/
clearmntopt() functions.

int vfs_buildoptionstr(mntopts_t *tbl, char *buf, int len);

Builds a comma-separated, null-terminated string of the mount options that are set in
the table passed in the first argument. The buffer passed in the second argument is
filled in with the generated options string. If the length passed in the third argument
would be exceeded, the function returns EOVERFLOW; otherwise, it returns zero on suc-
cess. If an error is returned, the contents of the result buffer are undefined.

int vfs_setoptprivate(mntopts_t *tbl, const char *opt, void *arg);

Sets the private data field of the given option in the specified option table to the
provided value. Returns zero on success, non-zero if the named option does not exist in
the table. Note that option private data is not managed for the user. If the private
data field is a pointer to allocated memory, then it should be freed by the file system
code prior to returning from a umount call.

continues

solarisinternals.book Page 680 Thursday, June 15, 2006 1:27 PM

14.5 THE VIRTUAL FILE SYSTEM (vfs) INTERFACE 681

14.5.3 The mount Method

The mount method is responsible for initializing a per-mount instance of a file sys-
tem. It is typically invoked as a result of a user-initiated mount command.

int vfs_getoptprivate(mntopts_t *tbl, const char *opt, void **argp);

Fills in the pointer pointed to by the argp pointer with the value of the private data
field of the given option in the specified table. Returns zero on success, non-zero if
the named option does not exist in the table.

void vfs_setmntpoint(struct vfs *vfsp, char *mp);

Sets the vfs_mntpt field of the vfs structure to the given mount point. File systems
call this if they want some value there other than what was passed by the mount system
call.

int vfs_can_sync(vfs_t *vfsp);

Determines if a vfs has an FS-supplied (non default, non error) sync routine.

void vfs_setresource(struct vfs *vfsp, char *resource);

Sets the vfs_resource field of the vfs structure to the given resource. File systems
call this if they want some value there other than what was passed by the mount system
call.

See usr/src/uts/common/sys/vfs.h

Figure 14.5 Mount Invocation

mount
/usr/lib/fs/foofs/mount

mount -F foofs -o rw,moose=fred /dev/somedevice /mount/point

Command

User Mode

Kernel Mode

vfs code for mounting and option parsing

File-system-specific foofs_mount routine

Calls to mount Callback to parse
options passed in

execs

solarisinternals.book Page 681 Friday, June 16, 2006 11:14 AM

682 Chapter 14 File System Framework

The tasks completed in the mount method will often include

� A security check, to ensure that the user has sufficient privileges to perform
the requested mount. This is best done with a call to secpolicy_fs_
mount(), with the Solaris Least Privilege framework.

� A check to see if the specified mount point is a directory.

� Initialization and allocation of per-file system mount structures and locks.

� Parsing of the options supplied into the mount call, with the assistance of the
vfs_option_* support functions.

� Manufacture of a unique file system ID, with the help of vfs_make_fsid().
This is required to support NFS mount instances over the wire protocol using
unique file system IDs.

� Creation or reading of the root inode for the file system.

An excerpt from the tmpfs implementation shows an example of the main func-
tions within a file system mount method.

static int
tmp_mount(
 struct vfs *vfsp,
 struct vnode *mvp,
 struct mounta *uap,
 struct cred *cr)
{
 struct tmount *tm = NULL;
...
 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
 return (error);

 if (mvp->v_type != VDIR)
 return (ENOTDIR);

 /* tmpfs doesn't support read-only mounts */
 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
 error = EINVAL;
 goto out;
 }
...
 if (error = pn_get(uap->dir,
 (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn))
 goto out;

 if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) {
 pn_free(&dpn);
 error = ENOMEM;
 goto out;
 }

continues

solarisinternals.book Page 682 Thursday, June 15, 2006 1:27 PM

14.5 THE VIRTUAL FILE SYSTEM (vfs) INTERFACE 683

14.5.4 The umount Method

The umount method is almost the reverse of mount. The tasks completed in the
umount method will often include

� A security check, to ensure that the user has sufficient privileges to perform
the requested mount. This is best done with a call to secpolicy_fs_
mount(), with the Solaris Least Privilege framework.

� A check to see if the mount is a forced mount (to take special action, or reject
the request if the file system doesn’t support forcible unmounts and the refer-
ence count on the root node is >1).

� Freeing of per-file system mount structures and locks.

14.5.5 Root vnode Identification

The root method of the file system is a simple function used by the file system
lookup functions when traversing across a mount point into a new file system. It
simply returns a pointer to the root vnode in the supplied vnode pointer argument.

...
 vfsp->vfs_data = (caddr_t)tm;
 vfsp->vfs_fstype = tmpfsfstype;
 vfsp->vfs_dev = tm->tm_dev;
 vfsp->vfs_bsize = PAGESIZE;
 vfsp->vfs_flag |= VFS_NOTRUNC;
 vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype);
...
 tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor);
...

See usr/src/uts/common/fs/tmpfs/tmp_vfsops.c

static int
tmp_root(struct vfs *vfsp, struct vnode **vpp)
{
 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
 struct tmpnode *tp = tm->tm_rootnode;
 struct vnode *vp;

 ASSERT(tp);

 vp = TNTOV(tp);
 VN_HOLD(vp);
 *vpp = vp;
 return (0);
}

See usr/src/uts/common/fs/tmpfs/tmp_vfsops.c

solarisinternals.book Page 683 Thursday, June 15, 2006 1:27 PM

684 Chapter 14 File System Framework

14.5.6 vfs Information Available with MDB

The mounted list of vfs objects is linked as shown in Figure 14.6.

You can traverse the list with an mdb walker. Below is the output of such a
traversal.

Figure 14.6 The Mounted vfs List

sol10# mdb -k
> ::walk vfs
fffffffffbc7a7a0
fffffffffbc7a860
> ::walk vfs |::fsinfo -v
 VFSP FS MOUNT
fffffffffbc7a7a0 ufs /
 R: /dev/dsk/c3d1s0
 O: remount,rw,intr,largefiles,logging,noquota,xattr,nodfratime
fffffffffbc7a860 devfs
/devices
 R: /devices
ffffffff80129300 ctfs /system/contract
 R: ctfs
ffffffff80129240 proc /proc
 R: proc

vfs_next

struct vfs

vfs_fstype
vfs_op
.
.
v_data

ufs_mountroot()

.

.

ufs_mount()

struct

ufs_umount()
ufs_root()
ufs_statvfs()
ufs_sync()
ufs_vget()

vfsops * ufs_vfsops

vfs_next

struct vfs

vfs_fstype
vfs_op
.
.
v_data

rootvfs

vfs_next

struct vfs

vfs_fstype
vfs_op
.
.
v_data

nfs_mountroot()

.

.

nfs_mount()

struct

nfs_umount()
nfs_root()
nfs_statvfs()
nfs_sync()
nfs_vget()

vfsops * nfs_vfsops

solarisinternals.book Page 684 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 685

You can also inspect a vfs object with mdb. An example is shown below.

14.6 The Vnode

A vnode is a file-system-independent representation of a file in the Solaris kernel.
A vnode is said to be objectlike because it is an encapsulation of a file’s state and
the methods that can be used to perform operations on that file. A vnode repre-
sents a file within a file system; the vnode hides the implementation of the file sys-
tem it resides in and exposes file-system-independent data and methods for that
file to the rest of the kernel.

A vnode object contains three important items (see Figure 14.7).

� File-system-independent data. Information about the vnode, such as the
type of vnode (file, directory, character device, etc.), flags that represent
state, pointers to the file system that contains the vnode, and a reference
count that keeps track of how many subsystems have references to the vnode.

sol10# mdb -k
> ::walk vfs
fffffffffbc7a7a0
fffffffffbc7a860
> fffffffffbc7a7a0::print vfs_t
{
 vfs_next = devices
 vfs_prev = 0xffffffffba3ef0c0
 vfs_op = vfssw+0x138
 vfs_vnodecovered = 0
 vfs_flag = 0x420
 vfs_bsize = 0x2000
 vfs_fstype = 0x2
 vfs_fsid = {
 val = [0x19800c0, 0x2]
 }
 vfs_data = 0xffffffff8010ae00
 vfs_dev = 0x66000000c0
 vfs_bcount = 0
 vfs_list = 0
 vfs_hash = 0xffffffff816a8b40
 vfs_reflock = {
 _opaque = [0, 0]
 }
 vfs_count = 0x2
 vfs_mntopts = {
 mo_count = 0x20
 mo_list = 0xffffffff8133d580
 }
 vfs_resource = 0xffffffff8176dbb8
 vfs_mntpt = 0xffffffff81708590
 vfs_mtime = 2005 May 17 23:47:13
 vfs_femhead = 0
 vfs_zone = zone0
 vfs_zone_next = devices
 vfs_zone_prev = 0xffffffffba3ef0c0
}

solarisinternals.book Page 685 Thursday, June 15, 2006 1:27 PM

686 Chapter 14 File System Framework

� Functions to implement file methods. A structure of pointers to file-
system-dependent functions to implement file functions such as open(),
close(), read(), and write().

� File-system-specific data. Data that is used internally by each file system
implementation: typically, the in-memory inode that represents the vnode
on the underlying file system. UFS uses an inode, NFS uses an rnode, and
tmpfs uses a tmpnode.

14.6.1 Object Interface

The kernel uses wrapper functions to call vnode functions. In that way, it can per-
form vnode operations (for example, read(), write(), open(), close()) with-
out knowing what the underlying file system containing the vnode is. For

Figure 14.7 The vnode Object

v_flags

struct vnode

v_type
v_op
v_path
.
v_data

vop_link()

.

.

f_flag

struct inode

f_vnode
f_offset

.

.

vop_open()

struct

vop_read()
vop_write()
vop_close()
vop_ioctl()
vop_create()

vnodeops

� VREG – Regular File

� VDIR – Directory
� VBLK – Block Device
� VCHR – Character Device

� VLNK – Link

(UFS inode shown
in this example)

Hint of vnode’s path name

solarisinternals.book Page 686 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 687

example, to read from a file without knowing that it resides on a UFS file system,
the kernel would simply call the file-system-independent function for read(),
VOP_READ(), which would call the vop_read() method of the vnode, which in
turn calls the UFS function, ufs_read(). A sample of a vnode wrapper function
from sys/vnode.h is shown below.

The vnode structure in Solaris OS can be found in sys/vnode.h and is shown
below. It defines the basic interface elements and provides other information con-
tained in the vnode.

#define VOP_READ(vp, uiop, iof, cr, ct) \
 fop_read(vp, uiop, iof, cr, ct)
int
fop_read(
 vnode_t *vp,
 uio_t *uiop,
 int ioflag,
 cred_t *cr,
 struct caller_context *ct)
{
 return (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
}

See usr/src/uts/common/sys/vnode.h

typedef struct vnode {
 kmutex_t v_lock; /* protects vnode fields */
 uint_t v_flag; /* vnode flags (see below) */
 uint_t v_count; /* reference count */
 void *v_data; /* private data for fs */
 struct vfs *v_vfsp; /* ptr to containing VFS */
 struct stdata *v_stream; /* associated stream */
 enum vtype v_type; /* vnode type */
 dev_t v_rdev; /* device (VCHR, VBLK) */

 /* PRIVATE FIELDS BELOW - DO NOT USE */

 struct vfs *v_vfsmountedhere; /* ptr to vfs mounted here */
 struct vnodeops *v_op; /* vnode operations */
 struct page *v_pages; /* vnode pages list */
 pgcnt_t v_npages; /* # pages on this vnode */
 pgcnt_t v_msnpages; /* # pages charged to v_mset */
 struct page *v_scanfront; /* scanner front hand */
 struct page *v_scanback; /* scanner back hand */
 struct filock *v_filocks; /* ptr to filock list */
 struct shrlocklist *v_shrlocks; /* ptr to shrlock list */
 krwlock_t v_nbllock; /* sync for NBMAND locks */
 kcondvar_t v_cv; /* synchronize locking */
 void *v_locality; /* hook for locality info */
 struct fem_head *v_femhead; /* fs monitoring */
 char *v_path; /* cached path */
 uint_t v_rdcnt; /* open for read count (VREG only) */
 uint_t v_wrcnt; /* open for write count (VREG only) */
 u_longlong_t v_mmap_read; /* mmap read count */
 u_longlong_t v_mmap_write; /* mmap write count */

continues

solarisinternals.book Page 687 Thursday, June 15, 2006 1:27 PM

688 Chapter 14 File System Framework

14.6.2 vnode Types

Solaris OS has specific vnode types for files. The v_type field in the vnode struc-
ture indicates the type of vnode, as described in Table 14.2.

14.6.3 vnode Method Registration

The vnode interface provides the set of file system object methods, some of which
we saw in Figure 14.1. The file systems implement these methods to perform all
file-system-specific file operations. Table 14.3 shows the vnode interface methods
in Solaris OS.

 void *v_mpssdata; /* info for large page mappings */
 hrtime_t v_scantime; /* last time this vnode was scanned */
 ushort_t v_mset; /* memory set ID */
 uint_t v_msflags; /* memory set flags */
 struct vnode *v_msnext; /* list of vnodes on an mset */
 struct vnode *v_msprev; /* list of vnodes on an mset */
 krwlock_t v_mslock; /* protects v_mset */
} vnode_t;

See usr/src/uts/common/sys/vnode.h

Table 14.2 Solaris 10 vnode Types from sys/vnode.h

Type Description

VNON No type

VREG Regular file

VDIR Directory

VBLK Block device

VCHR Character device

VLNK Symbolic link

VFIFO Named pipe

VDOOR Doors interface

VPROC procfs node

VSOCK sockfs node (socket)

VPORT Event port

VBAD Bad vnode

solarisinternals.book Page 688 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 689

File systems register their vnode and vfs operations by providing an operation
definition table that specifies operations using name/value pairs. The definition is
typically provided by a predefined template of type fs_operation_def_t, which
is parsed by vn_make_ops(), as shown below. The definition is often set up in the
file system initialization function.

The following example shows how the tmpfs file system sets up its vnode
operations.

/*
 * File systems use arrays of fs_operation_def structures to form
 * name/value pairs of operations. These arrays get passed to:
 *
 * - vn_make_ops() to create vnodeops
 * - vfs_makefsops()/vfs_setfsops() to create vfsops.
 */
typedef struct fs_operation_def {
 char *name; /* name of operation (NULL at end) */
 fs_generic_func_p func; /* function implementing operation */
} fs_operation_def_t;

int
vn_make_ops(
 const char *name, /* Name of file system */
 const fs_operation_def_t *templ, /* Operation specification */
 vnodeops_t **actual); /* Return the vnodeops */

Creates and builds the private vnodeops table

void vn_freevnodeops(vnodeops_t *vnops);

Frees a vnodeops structure created by vn_make_ops()

void vn_setops(vnode_t *vp, vnodeops_t *vnodeops);

Sets the operations vector for this vnode

vnodeops_t * vn_getops(vnode_t *vp);

Retrieves the operations vector for this vnode

int vn_matchops(vnode_t *vp, vnodeops_t *vnodeops);

Determines if the supplied operations vector matches the vnode's operations vector.
Note that this is a "shallow" match. The pointer to the operations vector is compared,
not each individual operation. Returns non-zero (1) if the vnodeops matches that of the
vnode. Returns zero (0) if not.

int vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)

Determines if the supplied function exists for a particular operation in the vnode's
operations vector

See usr/src/uts/common/sys/vfs.h

solarisinternals.book Page 689 Thursday, June 15, 2006 1:27 PM

690 Chapter 14 File System Framework

14.6.4 vnode Methods

The following section describes the method names that can be passed into vn_
make_ops(), followed by the function prototypes for each method.

struct vnodeops *tmp_vnodeops;

const fs_operation_def_t tmp_vnodeops_template[] = {
 VOPNAME_OPEN, tmp_open,
 VOPNAME_CLOSE, tmp_close,
 VOPNAME_READ, tmp_read,
 VOPNAME_WRITE, tmp_write,
 VOPNAME_IOCTL, tmp_ioctl,
 VOPNAME_GETATTR, tmp_getattr,
 VOPNAME_SETATTR, tmp_setattr,
 VOPNAME_ACCESS, tmp_access,

See usr/src/uts/common/fs/tmpfs/tmp_vnops.c

static int
tmpfsinit(int fstype, char *name)
{
...
 error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops);
 if (error != 0) {
 (void) vfs_freevfsops_by_type(fstype);
 cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template");
 return (error);
 }

...}

See usr/src/uts/common/fs/tmpfs/tmp_vfsops.c

Table 14.3 Solaris 10 vnode Interface Methods from sys/vnode.h

Method Description

VOP_ACCESS Checks permissions

VOP_ADDMAP Increments the map count

VOP_CLOSE Closes the file

VOP_CMP Compares two vnodes

VOP_CREATE Creates the supplied path name

VOP_DELMAP Decrements the map count

VOP_DISPOSE Frees the given page from the vnode.

VOP_DUMP Dumps data when the kernel is in a frozen state

VOP_DUMPCTL Prepares the file system before and after a dump
continues

solarisinternals.book Page 690 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 691

VOP_FID Gets unique file ID

VOP_FRLOCK Locks files and records

VOP_FSYNC Flushes out any dirty pages for the supplied vnode

VOP_GETATTR Gets the attributes for the supplied vnode

VOP_GETPAGE Gets pages for a vnode

VOP_GETSECATTR Gets security access control list attributes

VOP_INACTIVE Frees resources and releases the supplied vnode

VOP_IOCTL Performs an I/O control on the supplied vnode

VOP_LINK Creates a hard link to the supplied vnode

VOP_LOOKUP Looks up the path name for the supplied vnode

VOP_MAP Maps a range of pages into an address space

VOP_MKDIR Makes a directory of the given name

VOP_VNEVENT Support for File System Event Monitoring

VOP_OPEN Opens a file referenced by the supplied vnode

VOP_PAGEIO Supports page I/O for file system swap files

VOP_PATHCONF Establishes file system parameters

VOP_POLL Supports the poll() system call for file systems

VOP_PUTPAGE Writes pages in a vnode

VOP_READ Reads the range supplied for the given vnode

VOP_READDIR Reads the contents of a directory

VOP_READLINK Follows the symlink in the supplied vnode

VOP_REALVP Gets the real vnode from the supplied vnode

VOP_REMOVE Removes the file for the supplied vnode

VOP_RENAME Renames the file to the new name

VOP_RMDIR Removes a directory pointed to by the supplied vnode

VOP_RWLOCK Holds the reader/writer lock for the supplied vnode

VOP_RWUNLOCK Releases the reader/writer lock for the supplied vnode

VOP_SEEK Checks seek bounds within the supplied vnode

VOP_SETATTR Sets the attributes for the supplied vnode

VOP_SETFL Sets file-system-dependent flags on the supplied vnode

VOP_SETSECATTR Sets security access control list attributes
continues

Table 14.3 Solaris 10 vnode Interface Methods from sys/vnode.h (continued)

Method Description

solarisinternals.book Page 691 Thursday, June 15, 2006 1:27 PM

692 Chapter 14 File System Framework

VOP_SHRLOCK Supports NFS shared locks

VOP_SPACE Frees space for the supplied vnode

VOP_SYMLINK Creates a symbolic link between the two path names

VOP_WRITE Writes the range supplied for the given vnode

extern int fop_access(vnode_t *vp, int mode, int flags, cred_t *cr);

Checks to see if the user (represented by the cred structure) has permission to do an
operation. Mode is made up of some combination (bitwise OR) of VREAD, VWRITE, and VEXEC.
These bits are shifted to describe owner, group, and "other" access.

extern int fop_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
 cred_t *cr);

Increments the map count.

extern int fop_close(vnode_t *vp, int flag, int count, offset_t off, cred_t *cr);

Closes the file given by the supplied vnode. When this is the last close, some file sys-
tems use vop_close() to initiate a writeback of outstanding dirty pages by checking the
reference count in the vnode.

extern int fop_cmp(vnode_t *vp1, vnode_t *vp2);

Compares two vnodes. In almost all cases, this defaults to fs_cmp() which simply does a:
return (vp1 == vp2);

NOTE: NFS/NFS3 and Cachefs have their own CMP routines, but they do
exactly what fs_cmp() does. Procfs appears to be the only exception. It looks like it
follows a chain.

extern int fop_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, int mode,
 vnode_t **vp, cred_t *cr, int flag);

Creates a file with the supplied path name.

extern int fop_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr);

Decrements the map count.

extern void fop_dispose(vnode_t *vp, struct page *pp, int flag, int dn, cred_t *cr);

Frees the given page from the vnode.

extern int fop_dump(vnode_t *vp, caddr_t addr, int lbdn, int dblks);

Dumps data when the kernel is in a frozen state.

extern int fop_dumpctl(vnode_t *vp, int action, int *blkp);

Prepares the file system before and after a dump.

continues

Table 14.3 Solaris 10 vnode Interface Methods from sys/vnode.h (continued)

Method Description

solarisinternals.book Page 692 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 693

extern int fop_fid(vnode_t *vp, struct fid *fidp);

Puts a unique (by node, file system, and host) vnode/xxx_node identifier into fidp. Used
for NFS file-handles.

extern int fop_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
 offset_t off, struct flk_callback *flk_cbp, cred_t *cr);

Does file and record locking for the supplied vnode. Most file systems either map this
to fs_frlock() or do some special case checking and call fs_frlock() directly. As you
might expect, fs_frlock() does all the dirty work.

extern int fop_fsync(vnode_t *vp, int syncflag, cred_t *cr);

Flushes out any dirty pages for the supplied vnode.

extern int fop_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr);

Gets the attributes for the supplied vnode.

extern int fop_getpage(vnode_t *vp, offset_t off, size_t len, uint_t protp,
 struct page **plarr, size_t plsz, struct seg *seg,
 caddr_t addr, enum seg_rw rw, cred_t *cr);

Gets pages in the range offset and length for the vnode from the backing store of the
file system. Does the real work of reading a vnode. This method is often called as a
result of read(), which causes a page fault in seg_map, which calls vop_getpage.

extern int fop_getsecattr(vnode_t *vp, vsecattr_t *vsap, int flag, cred_t *cr);

Gets security access control list attributes.

extern void fop_inactive(vnode_t *vp, cred_t *cr);

Frees resources and releases the supplied vnode. The file system can choose to destroy
the vnode or put it onto an inactive list, which is managed by the file system implemen-
tation.

extern int fop_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr,
 int *rvalp);

Performs an I/O control on the supplied vnode.

extern int fop_link(vnode_t *targetvp, vnode_t *sourcevp, char *targetname, cred_t
*cr);

Creates a hard link to the supplied vnode.

extern int fop_lookup(vnode_t *dvp, char *name, vnode_t **vpp, int flags, vnode_t
*rdir,
 cred_t *cr);

Looks up the name in the directory vnode dvp with the given dirname and returns the new
vnode in vpp. The vop_lookup() does file-name translation for the open, stat system
calls.

extern int fop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, size_t len,
 uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr);

Maps a range of pages into an address space by doing the appropriate checks and calling
as_map().

continues

solarisinternals.book Page 693 Thursday, June 15, 2006 1:27 PM

694 Chapter 14 File System Framework

extern int fop_mkdir(vnode_t *dvp, char *name, vattr_t *vap, vnode_t **vpp, cred_t
*cr);

Makes a directory in the directory vnode (dvp) with the given name (dirname) and returns
the new vnode in vpp.

extern int fop_vnevent(vnode_t *vp, vnevent_t vnevent);

Interface for reporting file events. File systems need not implement this method.

extern int fop_open(vnode_t **vpp, int mode, cred_t *cr);

Opens a file referenced by the supplied vnode. The open() system call has already done
a vop_lookup() on the path name, which returned a vnode pointer and then calls to vop_
open(). This function typically does very little, since most of the real work was per-
formed by vop_lookup(). Also called by file systems to open devices as well as by any-
thing else that needs to open a file or device.

extern int fop_pageio(vnode_t *vp, struct page *pp, u_offset_t io_off, size_t io_len,
 int flag, cred_t *cr);

Paged I/O support for file system swap files.

extern int fop_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr);

Establishes file system parameters with the pathconf system call.

extern int fop_poll(vnode_t *vp, short events, int anyyet, short *reventsp,
 struct pollhead **phpp);

File system support for the poll() system call.

extern int fop_putpage(vnode_t *vp, offset_t off, size_t len, int, cred_t *cr);

Writes pages in the range offset and length for the vnode to the backing store of the
file system. Does the real work of writing a vnode.

extern int fop_read(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr,
 caller_context_t *ct);

Reads the range supplied for the given vnode. vop_read() typically maps the requested
range of a file into kernel memory and then uses vop_getpage() to do the real work.

extern int fop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp);

Reads the contents of a directory.

extern int fop_readlink(vnode_t *vp, uio_t *uiop, cred_t *cr);

Follows the symlink in the supplied vnode.

extern int fop_realvp(vnode_t *vp, vnode_t **vpp);

Gets the real vnode from the supplied vnode.

extern int fop_remove(vnode_t *dvp, char *name, cred_t *cr);

Removes the file for the supplied vnode.

extern int fop_rename(vnode_t *sourcedvp, char *sourcename, vnode_t *targetdvp,
 char *targetname, cred_t *cr);

Renames the file named (by sourcename) in the directory given by sourcedvp to the new
name (targetname) in the directory given by targetdvp.

continues

solarisinternals.book Page 694 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 695

extern int fop_rmdir(vnode_t *dvp, char *name, vnode_t *vp, cred_t *cr);

Removes the name in the directory given by dvp.

extern int fop_rwlock(vnode_t *vp, int write_lock, caller_context_t *ct);

Holds the reader/writer lock for the supplied vnode. This method is called for each
vnode, with the rwflag set to 0 inside a read() system call and the rwflag set to 1
inside a write() system call. POSIX semantics require only one writer inside write() at
a time. Some file system implementations have options to ignore the writer lock inside
vop_rwlock().

extern void fop_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ct);

Releases the reader/writer lock for the supplied vnode.

extern int fop_seek(vnode_t *vp, offset_t oldoff, offset_t *newoffp);

Checks the FS-dependent bounds of a potential seek.
NOTE: VOP_SEEK() doesn't do the seeking. Offsets are usually saved in the file_t struc-
ture and are passed down to VOP_READ/VOP_WRITE in the uiostructure.

extern int fop_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
 caller_context_t *cr);

Sets the file attributes for the supplied vnode.

extern int fop_setfl(vnode_t *vp, int oldflags, int newflags, cred_t *cr);

Sets the file system-dependent flags (typically for a socket) for the supplied vnode.

extern int fop_setsecattr(vnode_t *vp, vsecattr_t *vsap, int flag, cred_t *cr);

Sets security access control list attributes.

extern int fop_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr);

ONC shared lock support.

extern int fop_space(vnode_t vp*, int cmd, struct flock64 *bfp, int flag,
 offset_t off, cred_t *cr, caller_context_t *ct);

Frees space for the supplied vnode.

extern int fop_symlink(vnode_t *vp, char *linkname, vattr_t *vap, char *target,
 cred_t *cred);

Creates a symbolic link between the two path names.

extern int fop_write(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr,
 caller_context_t *ct);

Writes the range supplied for the given vnode. The write system call typically maps the
requested range of a file into kernel memory and then uses vop_putpage() to do the real
work.

See usr/src/uts/common/sys/vnode.h

solarisinternals.book Page 695 Thursday, June 15, 2006 1:27 PM

696 Chapter 14 File System Framework

14.6.5 Support Functions for Vnodes

Following is a list of the public functions available for obtaining information from
within the private part of the vnode.

14.6.6 The Life Cycle of a Vnode

A vnode is an in-memory reference to a file. It is a transient structure that lives in
memory when the kernel references a file within a file system.

A vnode is allocated by vn_alloc() when a first reference to an existing file is
made or when a file is created. The two common places in a file system implemen-
tation are within the VOP_LOOKUP() method or within the VOP_CREAT() method.

When a file descriptor is opened to a file, the reference count for that vnode is
incremented. The vnode is always in memory when the reference count is greater

int vn_is_readonly(vnode_t *);

Is the vnode write protected?

int vn_is_opened(vnode_t *, v_mode_t);

Is the file open?

int vn_is_mapped(vnode_t *, v_mode_t);

Is the file mapped?

int vn_can_change_zones(vnode_t *vp);

Check if the vnode can change zones: used to check if a process can change zones. Mainly
used for NFS.

int vn_has_flocks(vnode_t *);

Do file/record locks exist for this vnode?

int vn_has_mandatory_locks(vnode_t *, int);

Does the vnode have mandatory locks in force for this mode?

int vn_has_cached_data(vnode_t *);

Does the vnode have cached data associated with it?

struct vfs *vn_mountedvfs(vnode_t *);

Returns the vfs mounted on this vnode if any

int vn_ismntpt(vnode_t *);

Returns true (non-zero) if this vnode is mounted on, zero otherwise

See usr/src/uts/common/sys/vnode.h

solarisinternals.book Page 696 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 697

than zero. The reference count may drop back to zero after the last file descriptor
has been closed, at which point the file system framework calls the file system’s
VOP_INACTIVE() method.

Once a vnode’s reference count becomes zero, it is a candidate for freeing. Most
file systems won’t free the vnode immediately, since to recreate it will likely
require a disk I/O for a directory read or an over-the-wire operation. For example,
the UFS keeps a list of inactive inodes on an “inactive list” (see Section 15.3.1).
Only when certain conditions are met (for example, a resource shortage) is the
vnode actually freed.

Of course, when a file is deleted, its corresponding in-memory vnode is freed.
This is also performed by the VOP_INACTIVE() method for the file system: Typi-
cally, the VOP_INACTIVE() method checks to see if the link count for the vnode is
zero and then frees it.

Figure 14.8 The Life Cycle of a vnode Object

vn_alloc()
VOP_LOOKUP()

vn_alloc()
VOP_CREAT()

In Memory

 ref=1

 ref=0

fop_open()

 ref=1
In Memory
 ref=0

fop_close()

open(2)

Destroy

FS idle queue (tail)

(head)

fop_inactive()

vn_alloc()
VOP_REMOVE()

 ref=1

In Memory
 ref=0

fop_inactive()

vn_free()

solarisinternals.book Page 697 Thursday, June 15, 2006 1:27 PM

698 Chapter 14 File System Framework

14.6.7 vnode Creation and Destruction

The allocation of a vnode must be done by a call to the appropriate support function.
The functions for allocating, destroying, and reinitializing vnodes are shown below.

14.6.8 The vnode Reference Count

A vnode is created by the file system at the time a file is first opened or created
and stays active until the file system decides the vnode is no longer needed. The
vnode framework provides an infrastructure that keeps track of the number of ref-
erences to a vnode. The kernel maintains the reference count by means of the
VN_HOLD() and VN_RELE() macros, which increment and decrement the v_count
field of the vnode. The vnode stays valid while its reference count is greater than
zero, so a subsystem can rely on a vnode’s contents staying valid by calling VN_
HOLD() before it references a vnode’s contents. It is important to distinguish a
vnode reference from a lock; a lock ensures exclusive access to the data, and the
reference count ensures persistence of the object.

When a vnode’s reference count drops to zero, VN_RELE() invokes the VOP_
INACTIVE() method for that file system. Every subsystem that references a
vnode is required to call VN_HOLD() at the start of the reference and to call VN_
RELE() at the end of each reference. Some file systems deconstruct a vnode when
its reference count falls to zero; others hold on to the vnode for a while so that if it
is required again, it is available in its constructed state. UFS, for example, holds
on to the vnode for a while after the last release so that the virtual memory sys-
tem can keep the inode and cache for a file, whereas PCFS frees the vnode and all
of the cache associated with the vnode at the time VOP_INACTIVE() is called.

14.6.9 Interfaces for Paging vnode Cache

Solaris OS unifies file and memory management by using a vnode to represent the
backing store for virtual memory (see Chapter 8). A page of memory represents a

vnode_t *vn_alloc(int kmflag);

Allocate a vnode and initialize all of its structures.

void vn_free(vnode_t *vp);

Free the allocated vnode.

void vn_reinit(vnode_t *vp);

(Re)initializes a vnode.
See usr/src/uts/common/sys/vnode.h

solarisinternals.book Page 698 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 699

particular vnode and offset. The file system uses the memory relationship to
implement caching for vnodes within a file system. To cache a vnode, the file sys-
tem has the memory system create a page of physical memory that represents the
vnode and offset.

The virtual memory system provides a set of functions for cache management
and I/O for vnodes. These functions allow the file systems to cluster pages for I/O
and handle the setup and checking required for synchronizing dirty pages with
their backing store. The functions, described below, set up pages so that they can
be passed to device driver block I/O handlers.

int pvn_getdirty(struct page *pp, int flags);

Queries whether a page is dirty. Returns 1 if the page should be written back (the
iolock is held in this case), or 0 if the page has been dealt with or has been unlocked.

void pvn_plist_init(struct page *pp, struct page **pl, size_t plsz,
 u_offset_t off, size_t io_len, enum seg_rw rw);

Releases the iolock on each page and downgrades the page lock to shared after new pages
have been created or read.

void pvn_read_done(struct page *plist, int flags);

Unlocks the pages after read is complete. The function is normally called automatically
by pageio_done() but may need to be called if an error was encountered during a read.

struct page *pvn_read_kluster(struct vnode *vp, u_offset_t off,
 struct seg *seg, caddr_t addr, u_offset_t *offp,
 size_t *lenp, u_offset_t vp_off, size_t vp_len,
 int isra);

Finds the range of contiguous pages within the supplied address / length that fit within
the provided vnode offset / length that do not already exist. Returns a list of newly
created, exclusively locked pages ready for I/O. Checks that clustering is enabled by
calling the segop_kluster() method for the given segment. On return from pvn_read_klus-
ter, the caller typically zeroes any parts of the last page that are not going to be
read from disk, sets up the read with pageio_setup for the returned offset and length,
and then initiates the read with bdev_strategy().Once the read is complete, pvn_plist_
init() can release the I/O lock on each page that was created.

void pvn_write_done(struct page *plist, int flags);

Unlocks the pages after write is complete. For asynchronous writes, the function is nor-
mally called automatically by pageio_done() when an asynchronous write completes. For
synchronous writes, pvn_write_done() is called after pageio_done to unlock written
pages. It may also need to be called if an error was encountered during a write.

struct page *pvn_write_kluster(struct vnode *vp, struct page *pp,
 u_offset_t *offp, size_t *lenp, u_offset_t vp_off,
 size_t vp_len, int flags);

Finds the contiguous range of dirty pages within the supplied offset and length. Returns
a list of dirty locked pages ready to be written back. On return from pvn_write_klus-
ter(), the caller typically sets up the write with pageio_setup for the returned offset
and length, then initiates the write with bdev_strategy(). If the write is synchronous,
then the caller should call pvn_write_done() to unlock the pages. If the write is asyn-
chronous, then the io_done routine calls pvn_write_done when the write is complete.

continues

solarisinternals.book Page 699 Thursday, June 15, 2006 1:27 PM

700 Chapter 14 File System Framework

14.6.10 Block I/O on vnode Pages

The block I/O subsystem supports I/O initiation to and from vnode pages. It sched-
ules I/O from the device drivers directly to and from a page without buffering the
data in the buffer cache. These functions are typically used in the implementation
of vop_getpage() and vop_putpage() to do the physical I/O on behalf of the file
system. Three functions, shown below, initiate I/O between a physical page and a
device.

int pvn_vplist_dirty(struct vnode *vp, u_offset_t off,
 int (*putapage)(vnode_t *, struct page *, u_offset_t *,
 size_t *, int, cred_t *),
 int flags, struct cred *cred);

Finds all dirty pages in the page cache for a given vnode that have an offset greater
than the supplied offset and calls the supplied putapage() routine. pvn_vplist_dirty()
is often used to synchronize all dirty pages for a vnode when vop_putpage is called with
a zero length.

int pvn_getpages(int (*getpage)(vnode_t *, u_offset_t, size_t, uint_t *,
 struct page *[], size_t, struct seg *,
 caddr_t, enum seg_rw, cred_t *),
 struct vnode *vp, u_offset_t off, size_t len,
 uint_t *protp, struct page **pl, size_t plsz,
 struct seg *seg, caddr_t addr, enum seg_rw rw,
 struct cred *cred);

Handles common work of the VOP_GETPAGE routines when more than one page must be returned
by calling a file-system-specific operation to do most of the work. Must be called with
the vp already locked by the VOP_GETPAGE routine.

void pvn_io_done(struct page *plist);

Generic entry point used to release the "shared/exclusive" lock and the "p_iolock" on
pages after i/o is complete.

void pvn_vpzero(struct vnode *vp, u_offset_t vplen, size_t zbytes);

Zeros-out zbytes worth of data. Caller should be aware that this routine may enter back
into the fs layer (xxx_getpage). Locks that the xxx_getpage routine may need should not
be held while calling this.

See usr/src/uts/common/sys/pvn.h

struct buf *pageio_setup(struct page *, size_t, struct vnode *, int);

Sets up a block buffer for I/O on a page of memory so that it bypasses the block buffer
cache by setting the B_PAGEIO flag and putting the page list on the b_pages field.

extern int bdev_strategy(struct buf *);

Initiates an I/O on a page, using the block I/O device.

void pageio_done(struct buf *);

Waits for the block device I/O to complete.
See usr/src/uts/common/sys/bio.h

solarisinternals.book Page 700 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 701

14.6.11 vnode Information Obtainable with mdb

You can use mdb to traverse the vnode cache, inspect a vnode object, view the
path name, and examine linkages between vnodes.

With the centralized vn_alloc(), a central vnode cache holds all the vnode
structures. It is a regular kmem cache and can be traversed with mdb and the
generic kmem cache walker.

Similarly, you can inspect a vnode object.

sol10# mdb -k
> ::walk vn_cache
ffffffff80f24040
ffffffff80f24140
ffffffff80f24240
ffffffff8340d940
...

sol10# mdb -k
> ::walk vn_cache
ffffffff80f24040
ffffffff80f24140
ffffffff80f24240
ffffffff8340d940
...
> ffffffff8340d940::print vnode_t
{
 v_lock = {
 _opaque = [0]
 }
 v_flag = 0x10000
 v_count = 0x2
 v_data = 0xffffffff8340e3d8
 v_vfsp = 0xffffffff816a8f00
 v_stream = 0
 v_type = 1 (VREG)
 v_rdev = 0xffffffffffffffff
 v_vfsmountedhere = 0
 v_op = 0xffffffff805fe300
 v_pages = 0
 v_npages = 0
 v_msnpages = 0
 v_scanfront = 0
 v_scanback = 0
 v_filocks = 0
 v_shrlocks = 0
 v_nbllock = {
 _opaque = [0]
 }
 v_cv = {
 _opaque = 0
 }
 v_locality = 0
 v_femhead = 0
 v_path = 0xffffffff8332d440 "/zones/gallery/root/var/svc/log/work-inetd:default.log"

continues

solarisinternals.book Page 701 Thursday, June 15, 2006 1:27 PM

702 Chapter 14 File System Framework

With other mdb d-commands, you can view the vnode’s path name (a guess,
cached during vop_lookup), the linkage between vnodes, which processes have
them open, and vice versa.

 v_rdcnt = 0
 v_wrcnt = 0x1
 v_mmap_read = 0
 v_mmap_write = 0
 v_mpssdata = 0
 v_scantime = 0
 v_mset = 0
 v_msflags = 0
 v_msnext = 0
 v_msprev = 0
 v_mslock = {
 _opaque = [0]
 }
}

> ffffffff8340d940::vnode2path
/zones/gallery/root/var/svc/log//network-inetd:default.log
> ffffffff8340d940::whereopen
file ffffffff832d4bd8
ffffffff83138930
> ffffffff83138930::ps
S PID PPID PGID SID UID FLAGS ADDR NAME
R 845 1 845 845 0 0x42000400 ffffffff83138930 inetd
> ffffffff83138930::pfiles
FD TYPE VNODE INFO
 0 CHR ffffffff857c8580 /zones/gallery/root/dev/null
 1 REG ffffffff8340d940 /zones/gallery/root/var/svc/log//network-inetd:default.log
 2 REG ffffffff8340d940 /zones/gallery/root/var/svc/log//network-inetd:default.log
 3 FIFO ffffffff83764940
 4 DOOR ffffffff836d1680 [door to 'nscd' (proc=ffffffff835ecd10)]
 5 DOOR ffffffff83776800 [door to 'svc.configd' (proc=ffffffff8313f928)]
 6 DOOR ffffffff83776900 [door to 'svc.configd' (proc=ffffffff8313f928)]
 7 FIFO ffffffff83764540
 8 CHR ffffffff83776500 /zones/gallery/root/dev/sysevent
 9 CHR ffffffff83776300 /zones/gallery/root/dev/sysevent
 10 DOOR ffffffff83776700 [door to 'inetd' (proc=ffffffff83138930)]
 11 REG ffffffff833fcac0 /zones/gallery/root/system/contract/process/template
 12 SOCK ffffffff83215040 socket: AF_UNIX /var/run/.inetd.uds
 13 CHR ffffffff837f1e40 /zones/gallery/root/dev/ticotsord
 14 CHR ffffffff837b6b00 /zones/gallery/root/dev/ticotsord
 15 SOCK ffffffff85d106c0 socket: AF_INET6 :: 48155
 16 SOCK ffffffff85cdb000 socket: AF_INET6 :: 20224
 17 SOCK ffffffff83543440 socket: AF_INET6 :: 5376
 18 SOCK ffffffff8339de80 socket: AF_INET6 :: 258
 19 CHR ffffffff85d27440 /zones/gallery/root/dev/ticlts
 20 CHR ffffffff83606100 /zones/gallery/root/dev/udp
 21 CHR ffffffff8349ba00 /zones/gallery/root/dev/ticlts
 22 CHR ffffffff8332f680 /zones/gallery/root/dev/udp
 23 CHR ffffffff83606600 /zones/gallery/root/dev/ticots
 24 CHR ffffffff834b2d40 /zones/gallery/root/dev/ticotsord
 25 CHR ffffffff8336db40 /zones/gallery/root/dev/tcp
 26 CHR ffffffff83626540 /zones/gallery/root/dev/ticlts
 27 CHR ffffffff834f1440 /zones/gallery/root/dev/udp
 28 CHR ffffffff832d5940 /zones/gallery/root/dev/ticotsord
 29 CHR ffffffff834e4b80 /zones/gallery/root/dev/ticotsord

continues

solarisinternals.book Page 702 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 703

14.6.12 DTrace Probes in the vnode Layer

DTrace provides probes for file system activity through the vminfo provider and,
optionally, through deeper tracing with the fbt provider. All the cpu_vminfo sta-
tistics are updated from pageio_setup() (see Section 14.6.10).

The vminfo provider probes correspond to the fields in the “vm” named kstat:
a probe provided by vminfo fires immediately before the corresponding vm value is
incremented. Table 14.4 lists the probes available from the VM provider; these are
further described in Section 6.11 in Solaris™ Performance and Tools. A probe
takes the following arguments.

arg0. The value by which the statistic is to be incremented. For most
probes, this argument is always 1, but for some it may take other values; these
probes are noted in Table 14.4.

arg1. A pointer to the current value of the statistic to be incremented.
This value is a 64-bit quantity that is incremented by the value in arg0. Derefer-
encing this pointer allows consumers to determine the current count of the statis-
tic corresponding to the probe.

For example, the following paging activity that is visible with vmstat indicates
page-in from the file system (fpi).

See Section 6.11 in Solaris™ Performance and Tools for examples of how to use
dtrace for memory analysis.

 30 SOCK ffffffff83789580 socket: AF_INET 0.0.0.0 514
 31 SOCK ffffffff835a6e80 socket: AF_INET6 :: 514
 32 SOCK ffffffff834e4d80 socket: AF_INET6 :: 5888
 33 CHR ffffffff85d10ec0 /zones/gallery/root/dev/ticotsord
 34 CHR ffffffff83839900 /zones/gallery/root/dev/tcp
 35 SOCK ffffffff838429c0 socket: AF_INET 0.0.0.0 11904

sol8# vmstat -p 3
 memory page executable anonymous filesystem
 swap free re mf fr de sr epi epo epf api apo apf fpi fpo fpf
 1512488 837792 160 20 12 0 0 0 0 0 8102 0 0 12 12 12
 1715812 985116 7 82 0 0 0 0 0 0 7501 0 0 45 0 0
 1715784 983984 0 2 0 0 0 0 0 0 1231 0 0 53 0 0
 1715780 987644 0 0 0 0 0 0 0 0 2451 0 0 33 0 0

sol10$ dtrace -n fspgin’{@[execname] = count()}’
dtrace: description ’fspgin’ matched 1 probe
 svc.startd 1
 sshd 2
 ssh 3
 dtrace 6
 vmstat 8
 filebench 13

solarisinternals.book Page 703 Thursday, June 15, 2006 1:27 PM

704 Chapter 14 File System Framework

Table 14.4 DTrace VM Provider Probes and Descriptions

Probe Name Description

anonfree Fires whenever an unmodified anonymous page is freed as part of
paging activity. Anonymous pages are those that are not associated
with a file; memory containing such pages include heap memory,
stack memory, or memory obtained by explicitly mapping zero(7D).

anonpgin Fires whenever an anonymous page is paged in from a swap device.

anonpgout Fires whenever a modified anonymous page is paged out to a swap
device.

as_fault Fires whenever a fault is taken on a page and the fault is neither a
protection fault nor a copy-on-write fault.

cow_fault Fires whenever a copy-on-write fault is taken on a page. arg0
contains the number of pages that are created as a result of the
copy-on-write.

dfree Fires whenever a page is freed as a result of paging activity. When-
ever dfree fires, exactly one of anonfree, execfree, or fsfree
will also subsequently fire.

execfree Fires whenever an unmodified executable page is freed as a result of
paging activity.

execpgin Fires whenever an executable page is paged in from the backing
store.

execpgout Fires whenever a modified executable page is paged out to the back-
ing store. If it occurs at all, most paging of executable pages will
occur in terms of execfree; execpgout can only fire if an execut-
able page is modified in memory—an uncommon occurrence in
most systems.

fsfree Fires whenever an unmodified file system data page is freed as part
of paging activity.

fspgin Fires whenever a file system page is paged in from the backing store.

fspgout Fires whenever a modified file system page is paged out to the back-
ing store.

kernel_
asflt

Fires whenever a page fault is taken by the kernel on a page in its
own address space. Whenever kernel_asflt fires, it will be imme-
diately preceded by a firing of the as_fault probe.

maj_fault Fires whenever a page fault is taken that results in I/O from a back-
ing store or swap device. Whenever maj_fault fires, it will be
immediately preceded by a firing of the pgin probe.

pgfrec Fires whenever a page is reclaimed off the free page list.

solarisinternals.book Page 704 Thursday, June 15, 2006 1:27 PM

14.6 THE VNODE 705

Below is an example of tracing a generic vnode layer with DTrace.

dtrace:::BEGIN
{
 printf("%-15s %-10s %51s %2s %8s %8s\n",
 "Event", "Device", "Path", "RW", "Size", "Offset");
 self->trace = 0;
 self->path = "";
}

fbt::fop_*:entry
/self->trace == 0/
{
 /* Get vp: fop_open has a pointer to vp */
 self->vpp = (vnode_t **)arg0;
 self->vp = (vnode_t *)arg0;
 self->vp = probefunc == "fop_open" ? (vnode_t *)*self->vpp : self->vp;

 /* And the containing vfs */
 self->vfsp = self->vp ? self->vp->v_vfsp : 0;

 /* And the paths for the vp and containing vfs */
 self->vfsvp = self->vfsp ? (struct vnode *)((vfs_t *)self->vfsp)->vfs_vnodecov-
ered : 0;
 self->vfspath = self->vfsvp ? stringof(self->vfsvp->v_path) : "unknown";

 /* Check if we should trace the root fs */
 ($1 == "/all" ||
 ($1 == "/" && self->vfsp && \
 (self->vfsp == `rootvfs))) ? self->trace = 1 : self->trace;

 /* Check if we should trace the fs */
 ($1 == "/all" || (self->vfspath == $1)) ? self->trace = 1 : self->trace;
}

/*
 * Trace the entry point to each fop
 *
 */
fbt::fop_*:entry
/self->trace/
{
 self->path = (self->vp != NULL && self->vp->v_path) ? stringof(self->vp->v_path)
: "unknown";
 self->len = 0;
 self->off = 0;

 /* Some fops has the len in arg2 */
 (probefunc == "fop_getpage" || \
 probefunc == "fop_putpage" || \
 probefunc == "fop_none") ? self->len = arg2 : 1;

 /* Some fops has the len in arg3 */
 (probefunc == "fop_pageio" || \
 probefunc == "fop_none") ? self->len = arg3 : 1;

 /* Some fops has the len in arg4 */
 (probefunc == "fop_addmap" || \
 probefunc == "fop_map" || \
 probefunc == "fop_delmap") ? self->len = arg4 : 1;

continues

solarisinternals.book Page 705 Thursday, June 15, 2006 1:27 PM

706 Chapter 14 File System Framework

 /* Some fops has the offset in arg1 */

 (probefunc == "fop_addmap" || \
 probefunc == "fop_map" || \
 probefunc == "fop_getpage" || \
 probefunc == "fop_putpage" || \
 probefunc == "fop_seek" || \
 probefunc == "fop_delmap") ? self->off = arg1 : 1;

 /* Some fops has the offset in arg3 */
 (probefunc == "fop_close" || \
 probefunc == "fop_pageio") ? self->off = arg3 : 1;

 /* Some fops has the offset in arg4 */
 probefunc == "fop_frlock" ? self->off = arg4 : 1;

 /* Some fops has the pathname in arg1 */
 self->path = (probefunc == "fop_create" || \
 probefunc == "fop_mkdir" || \
 probefunc == "fop_rmdir" || \
 probefunc == "fop_remove" || \
 probefunc == "fop_lookup") ?
 strjoin(self->path, strjoin("/", stringof(arg1))) : self->path;
 printf("%-15s %-10s %51s %2s %8d %8d\n",
 probefunc,
 "-", self->path, "-", self->len, self->off);
 self->type = probefunc;
}

fbt::fop_*:return
/self->trace == 1/
{
 self->trace = 0;
}

/* Capture any I/O within this fop */
io:::start
/self->trace/
{
 printf("%-15s %-10s %51s %2s %8d %8u\n",
 self->type, args[1]->dev_statname,
 self->path, args[0]->b_flags & B_READ ? "R" : "W",
 args[0]->b_bcount, args[2]->fi_offset);

}

sol10# ./voptrace.d /tmp
Event Device Path RW Size Offset
fop_putpage - /tmp/bin/i386/fastsu - 4096 4096
fop_inactive - /tmp/bin/i386/fastsu - 0 0
fop_putpage - /tmp/WEB-INF/lib/classes12.jar - 4096 204800
fop_inactive - /tmp//WEB-INF/lib/classes12.jar - 0 0
fop_putpage - /tmp/s10_x86_sparc_pkg.tar.Z - 4096 7655424
fop_inactive - /tmp/s10_x86_sparc_pkg.tar.Z - 0 0
fop_putpage - /tmp/xanadu/WEB-INF/lib/classes12.jar - 4096 782336
fop_inactive - /tmp/xanadu/WEB-INF/lib/classes12.jar - 0 0
fop_putpage - /tmp/bin/amd64/filebench - 4096 36864

solarisinternals.book Page 706 Thursday, June 15, 2006 1:27 PM

14.7 FILE SYSTEM I/O 707

14.7 File System I/O

Two distinct methods perform file system I/O:

� read(), write(), and related system calls

� Memory-mapping of a file into the process’s address space

Both methods are implemented in a similar way: Pages of a file are mapped into
an address space, and then paged I/O is performed on the pages within the mapped
address space. Although it may be obvious that memory mapping is performed
when we memory-map a file into a process’s address space, it is less obvious that
the read() and write() system calls also map a file before reading or writing it.
The major differences between these two methods lie in where the file is mapped
and who does the mapping; a process calls mmap() to map the file into its address
space for memory mapped I/O, and the kernel maps the file into the kernel’s
address space for read and write. The two methods are contrasted in Figure 14.9.

Figure 14.9 The read()/write() vs. mmap() Methods for File I/O

mmap()

write()

File Segment

Paged Vnode VM Core

(File System Cache and Page Cache)

Vnode Segment
Driver (seg_map) Driver (seg_vn)

Binary (Text)

Stack

read()

Kernel Address
Space

File
Systemsegkpm

Process Address
Space

Binary (Text)mapping

segkpm provides
access to all

physical pages
within this segment.

solarisinternals.book Page 707 Thursday, June 15, 2006 1:27 PM

708 Chapter 14 File System Framework

14.7.1 Memory Mapped I/O

A request to memory-map a file into an address space is handled by the file sys-
tem vnode method vop_map() and the seg_vn memory segment driver (see
Section 14.7.4). A process requests that a file be mapped into its address space. Once
the mapping is established, the address space represented by the file appears as reg-
ular memory and the file system can perform I/O by simply accessing that memory.

Memory mapping of files hides the real work of reading and writing the file
because the seg_vn memory segment driver quietly works with the file system to
perform the I/Os without the need for process-initiated system calls. I/O is per-
formed, in units of pages, upon reference to the pages mapped into the address
space; reads are initiated by a memory access; writes are initiated as the VM sys-
tem finds dirty pages in the mapped address space.

The system call mmap() calls the file system for the requested file with the
vnode’s vop_map() method. In turn, the file system calls the address space map
function for the current address space, and the mapping is created. The protection
flags passed into the mmap() system call are reduced to the subset allowed by the file
permissions. If mandatory locking is set for the file, then mmap() returns an error.

Once the file mapping is created in the process’s address space, file pages are
read when a fault occurs in the address space. A fault occurs the first time a mem-
ory address within the mapped segment is accessed because at this point, no phys-
ical page of memory is at that location. The memory management unit causes a
hardware trap for that memory segment; the memory segment calls its fault func-
tion to handle the I/O for that address. The segvn_fault() routine handles a
fault for a file mapping in a process address space and then calls the file system to
read in the page for the faulted address, as shown below.

segvn_fault (hat, seg, addr, len, type, rw) {

 for (page = all pages in region) {

 advise = lookup_advise (page); /* Look up madvise settings for page */
 if (advise == MADV_SEQUENTIAL)
 free_all_pages_up_to (page);

 /* Segvn will read at most 64k ahead */
 if (len > PVN_GETPAGE_SZ)
 len = PVN_GETPAGE_SZ;

 vp = segvp (seg);
 vpoff = segoff (seg);

continues

solarisinternals.book Page 708 Thursday, June 15, 2006 1:27 PM

14.7 FILE SYSTEM I/O 709

For each page fault, seg_vn reads in an 8-Kbyte page at the fault location. In
addition, seg_vn initiates a read-ahead of the next eight pages at each 64-Kbyte
boundary. Memory mapped read-ahead uses the file system cluster size (used by
the read() and write() system calls) unless the segment is mapped MA_SHARED
or memory advice MADV_RANDOM is set.

Recall that you can provide paging advice to the pages within a memory mapped
segment by using the madvise system call. The madvise system call and (as in
the example) the advice information are used to decide when to free behind as the
file is read.

Modified pages remain unwritten to disk until the fsflush daemon passes over
the page, at which point they will be written out to disk. You can also use the
memcntl() system call to initiate a synchronous or asynchronous write of pages.

14.7.2 read() and write() System Calls

The vnode’s vop_read() and vop_write() methods implement reading and writ-
ing with the read() and write() system calls. As shown in Figure 14.10, the seg_
map segment driver directly accesses a page by means of the seg_kpm mapping of
the system’s physical pages within the kernel’s address space during the read()
and write() system calls. The read and write file system calls copy data to or
from the process during a system call to a portion of the file that is mapped into the
kernel’s address space by seg_kpm. The seg_map driver maintains a cache of addresses
between the vnode/offset and the virtual address where the page is mapped.

 /* Read 64k at a time if the next page is not in memory,
 * else just a page
 */
 if (hat_probe (addr+PAGESIZE)==TRUE)
 len=PAGESIZE;

 /* Ask the file system for the next 64k of pages if the next*/
 VOP_GETPAGE(vp, vp_off, len,
 &vpprot, plp, plsz, seg, addr + (vp_off - off), arw, cred)
 }
}

See usr/src/uts/common/vm/seg_vn.c

solarisinternals.book Page 709 Thursday, June 15, 2006 1:27 PM

710 Chapter 14 File System Framework

14.7.3 The seg_kpm Driver

The seg_kpm driver provides a fast mapping for physical pages within the ker-
nel’s address space. It is used by file systems to provide a virtual address when
copying data to and from the user’s address space for file system I/O. The use of
this seg_kpm mapping facility is new for Solaris 10.

Since the available virtual address range in a 64-bit kernel is always larger than
physical memory size, the entire physical memory can be mapped into the kernel.
This eliminates the need to map/unmap pages every time they are accessed through
segmap, significantly reducing code path and the need for TLB shoot-downs. In
addition, seg_kpm can use large TLB mappings to minimize TLB miss overhead.

14.7.4 The seg_map Driver

The seg_map driver maintains the relationship between pieces of files into the
kernel address space and is used only by the file systems. Every time a read or
write system call occurs, the seg_map segment driver locates the virtual address
space where the page of the file can be mapped. The system call can then copy the
data to or from the user address space.

The seg_map segment provides a full set of segment driver interfaces (see
Section 9.5); however, the file system directly uses a small subset of these inter-

Figure 14.10 File System Data Movement with seg_map/seg_kpm

write()

Kernel Page
Map Driver

read()

Kernel Address
Space

File
System

segkpm
mapping

segkpm provides
access to

physical memory
within this mapping

Physical
Memory

Mappings for
physical pages

mmap()

Binary (Text)

Stack

Process Address
Space

Binary (Text)

Heap (Text)
uiocopy()

(seg_kpm)

File Segment
Driver

(seg_map)

hat_kpm_page2va(page) mapped

addr

addrget mapped addr

segmap_getmap()

solarisinternals.book Page 710 Thursday, June 15, 2006 1:27 PM

14.7 FILE SYSTEM I/O 711

faces without going through the generic segment interface. The subset handles the
bulk of the work that is done by the seg_map segment for file read and write oper-
ations. The functions used by the file systems are shown on page 714.

The seg_map segment driver divides the segment into block-sized slots that rep-
resent blocks in the files it maps. The seg_map block size for the Solaris kernel is
8,192 bytes. A 128-Mbyte segkmap segment would, for example, be divided into
128-MB/8-KB slots, or 16,384 slots. The seg_map segment driver maintains a hash
list of its page mappings so that it can easily locate existing blocks. The list is based
on file and offsets. One list entry exists for each slot in the segkmap segment. The
structure for each slot in a seg_map segment is defined in the <vm/segmap.h>
header file, shown below.

The key smap structures are

� sm_vp. The file (vnode) this slot represents (if slot not empty)

� sm_hash, sm_next, sm_prev. Hash list reference pointers

� sm_off. The file (vnode) offset for a block-sized chunk in this slot in the file

/*
 * Machine independent per instance kpm mapping structure
 */
struct kpme {
 struct kpme *kpe_next;
 struct kpme *kpe_prev;
 struct page *kpe_page; /* back pointer to (start) page */
};

See usr/src/uts/common/vm/kpm.h

/*
 * Each smap struct represents a MAXBSIZE sized mapping to the
 * <sm_vp, sm_off> given in the structure. The location of the
 * the structure in the array gives the virtual address of the
 * mapping. Structure rearranged for 64bit sm_off.
 */
struct smap {
 kmutex_t sm_mtx; /* protect non-list fields */
 struct vnode *sm_vp; /* vnode pointer (if mapped) */
 struct smap *sm_hash; /* hash pointer */
 struct smap *sm_next; /* next pointer */
 struct smap *sm_prev; /* previous pointer */
 u_offset_t sm_off; /* file offset for mapping */
 ushort_t sm_bitmap; /* bit map for locked translations */
 ushort_t sm_refcnt; /* reference count for uses */
 ushort_t sm_flags; /* smap flags */
 ushort_t sm_free_ndx; /* freelist */
#ifdef SEGKPM_SUPPORT
 struct kpme sm_kpme; /* segkpm */
#endif
};

See usr/src/uts/common/vm/segmap.h

solarisinternals.book Page 711 Thursday, June 15, 2006 1:27 PM

712 Chapter 14 File System Framework

� sm_bitmap. Bitmap to maintain translation locking

� sm_refcnt. The number of references to this mapping caused by concurrent
reads

The important fields in the smap structure are the file and offset fields, sm_vp
and sm_off. These fields identify which page of a file is represented by each slot in
the segment.

An example of the interaction between a file system read and segmap is shown
in Figure 14.11.

Figure 14.11 vop_read() segmap Interaction

read(myfile, 16384)

16K of heap space
in process

User Process Address Space Kernel Address Space

read() vop_read

1. vop_read asks seg_map

16K of file in
kernel address
space

3a. If seg_map finds the pages

6. The file system copies the 16K
of file data from the kernel
address space to user
address space.

2. seg_map checks to see if

for a kernel mapping for
the requested range.

the requested range already
has a known address in the
seg_kpm segment.

then it simply returns the
address.

3b. If seg_map does not find
the addresses, it creates
a slot and then calls
vop_getpage to bring in
the pages.

4. The page cache is checked to
see if it has the requested pages.

5a. If vop_getpage finds the
pages in page cache, then it
simply returns to seg_map.

5b. If vop_getpage does not
have the pages, then it asks
ufs_bmap for the disk address
of the pages and brings them
in from storage.

7. seg_map releases the
virtual address space onto its
free-list.

solarisinternals.book Page 712 Thursday, June 15, 2006 1:27 PM

14.7 FILE SYSTEM I/O 713

A read system call invokes the file-system-dependent vop_read function. The
vop_read method calls into the seg_map segment to locate a virtual address in
the kernel address space via segkpm for the file and offset requested with the
segmap_getmapflt() function. The seg_map driver determines whether it
already has a slot for the page of the file at the given offset by looking into its
hashed list of mapping slots. Once a slot is located or created, an address for the
page is located, and segmap then calls back into the file system with vop_
getpage() to soft-initiate a page fault to read in a page at the virtual address of
the seg_map slot. While the segmap_getmapflt() routine is still running, the
page fault is initiated by a call to segmap_fault(), which in turn calls back into
the file system with vop_getpage().

The file system’s vop_getpage() routine handles the task of bringing the
requested range of the file (vnode, offset, and length) from disk into the virtual
address and length passed into the vop_getpage() function.

Once the page is read by the file system, the requested range is copied back to
the user by the uio_move() function. Then, the file system releases the slot asso-
ciated with that block of the file with the segmap_release() function. At this
point, the slot is not removed from the segment because we may need the same file
and offset later (effectively caching the virtual address location); instead, it is
added onto a seg_map free list so it can be reclaimed or reused later.

Writing is a similar process. Again, segmap_getmap() is called to retrieve or
create a mapping for the file and offset, the I/O is done, and the segmap slot is
released. An additional step is involved if the file is being extended or a new page
is being created within a hole of a file. This additional step calls the segmap_
pagecreate() function to create and lock the new pages, then calls segmap_
pageunlock() to unlock the pages that were locked during the page_create().

The key segmap functions are shown below.

caddr_t segmap_getmapflt(struct seg *seg,
 struct vnode *vp,
 u_offset_t off,
 size_t len,
 int forcefault,
 enum seg_rw rw);

Retrieves an address in the kernel’s address space for a range of the file at the given
offset and length. segmap_getmap allocates a MAXBSIZE big slot to map the vnode vp in
the range <off, off + len). off doesn't need to be MAXBSIZE aligned. The return address
is always MAXBSIZE aligned. If forcefault is nonzero and the MMU translations haven't
yet been created, segmap_getmap will call segmap_fault(..., F_INVAL, rw) to create
them.

int segmap_release(struct seg *seg, caddr_t addr, uint_t flags);

Releases the mapping for a given file at a given address.

continues

solarisinternals.book Page 713 Thursday, June 15, 2006 1:27 PM

714 Chapter 14 File System Framework

We can observe the seg_map slot activity with the kstat statistics that are col-
lected for the seg_map segment driver. These statistics are visible with the kstat
command, as shown below.

Table 14.5 describes the segmap statistics.

int segmap_pagecreate(struct seg *seg, caddr_t addr, size_t len, int softlock);

Creates new page(s) of memory and slots in the seg_map segment for a given file. Used
for extending files or writing to holes during a write. This function creates pages
(without using VOP_GETPAGE) and loads up translations to them. If softlock is TRUE, then
set things up so that it looks like a call to segmap_fault with F_SOFTLOCK. Returns 1
if a page is created by calling page_create_va(), or 0 otherwise.

All fields in the generic segment (struct seg) are considered to be read-only for "seg-
map" even though the kernel address space (kas) may not be locked; hence, no lock is
needed to access them.

void segmap_pageunlock(struct seg *seg, caddr_t addr, size_t len, enum seg_rw rw);

Unlocks pages in the segment that was locked during segmap_pagecreate().

See usr/src/uts/common/vm/segmap.h

sol10$ kstat -n segmap
module: unix instance: 0
name: segmap class: vm
 crtime 42.268896913
 fault 352197
 faulta 0
 free 1123987
 free_dirty 50836
 free_notfree 2073
 get_nofree 0
 get_nomtx 0
 get_reclaim 5644590
 get_reuse 1356990
 get_unused 0
 get_use 386
 getmap 7005644
 pagecreate 1375991
 rel_abort 0
 rel_async 291640
 rel_dontneed 291640
 rel_free 7054
 rel_write 304570
 release 6694020
 snaptime 1177936.33212098
 stolen 0

solarisinternals.book Page 714 Thursday, June 15, 2006 1:27 PM

14.7 FILE SYSTEM I/O 715

Table 14.5 Statistics from the seg_map Segment Driver

Field Name Description

fault The number of times segmap_fault was called, usually as a
result of a read or write system call.

faulta The number of times the segmap_faulta function was called. It
is called to initiate asynchronous paged I/O on a file.

getmap The number of times the segmap_getmap function was called. It
is called by the read and write system calls each time a read or
write call is started. It sets up a slot in the seg_map segment for
the requested range on the file.

get_use The number of times a valid mapping was found in seg_map,
which was also already referenced by another user.

get_reclaim The number of times a valid mapping was found in seg_map,
which was otherwise unused.

get_reuse The number of times getmap deleted the mapping in a non-
empty slot and created a new mapping for the file and offset
requested.

get_unused Not used—always zero.

get_nofree The number of times a request for a slot was made and none was
available on the internal free list of slots. This number is usually
zero because each slot is put on the free list when release is
called at the end of each I/O. Hence, ample free slots are usually
available.

rel_async The slot was released with a delayed I/O on it.

rel_write The slot was released as a result of a write system call.

rel_free The slot was released, and the VM system was told that the page
may be needed again but to free it and retain its file/offset infor-
mation. These pages are placed on the cache list tail so that they
are not the first to be reused.

rel_abort The slot was released and asked to be removed from the seg_map
segment as a result of a failed aborted write.

rel_dontneed The slot was released, and the VM system was told to free the
page because it won’t be needed again. These pages are placed on
the cache list head so they will be reused first.

released The slot was released and the release was not affected by
rel_abort, rel_async, or rel_write.

pagecreate Pages were created in the segmap_pagecreate function.
continues

solarisinternals.book Page 715 Thursday, June 15, 2006 1:27 PM

716 Chapter 14 File System Framework

14.7.5 Interaction between segmap and segkpm

The following three examples show the code flow through the file system into segmap
for three important cases:

1. The requested vnode/offset has a cached slot in seg_map, and the physical
page is in the page cache.

2. The requested vnode/offset does not have a cached slot in seg_map, but the
physical page is in the page cache.

3. The requested vnode/offset is not in either.

free_notfree An attempt was made to free a page which was still mapped

free_dirty Pages that were dirty were freed from segmap.

free Pages that were clean were freed from segmap.

stolen A smap slot was taken during a getmap.

get_nomtx This field is not used.

Hit in page cache and segmap:
-> ufs_read read() Entry point into UFS
 -> segmap_getmapflt Locate the segmap slot for the vnode/off
 -> hat_kpm_page2va Identify the virtual address for the vnode/off
 <- hat_kpm_page2va
 <- segmap_getmapflt
 -> uiomove Copy the data from the segkpm address to userland
 <- uiomove
 -> segmap_release Release the segmap slot
 -> hat_kpm_vaddr2page Locate the page by looking up its address
 <- hat_kpm_vaddr2page
 -> segmap_smapadd Add the segmap slot to the reuse pool
 <- segmap_smapadd
 <- segmap_release
<- ufs_read

See examples/segkpm.d

Hit in page cache, miss in segmap:
-> ufs_read read() Entry point into UFS
 -> segmap_getmapflt Locate the segmap slot for the vnode/off
 -> get_free_smp Find a segmap slot that can be reused
 -> grab_smp Flush out the old segmap slot identity
 -> segmap_hashout
 <- segmap_hashout
 -> hat_kpm_page2va Identify the virtual address for the vnode/off
 <- hat_kpm_page2va

continues

Table 14.5 Statistics from the seg_map Segment Driver (continued)

Field Name Description

solarisinternals.book Page 716 Thursday, June 15, 2006 1:27 PM

14.7 FILE SYSTEM I/O 717

 <- grab_smp
 -> segmap_pagefree Put the page back on the cachelist
 <- segmap_pagefree
 <- get_free_smp
 -> segmap_hashin Set up the segmap slot for the new vnode/off
 <- segmap_hashin
 -> segkpm_create_va Create a virtual address for this vnode/off
 <- segkpm_create_va
 -> ufs_getpage Find the page already in the page-cache
 <- ufs_getpage
 -> hat_kpm_mapin Reuse a mapping for the page in segkpm
 <- hat_kpm_mapin
 <- segmap_getmapflt
 -> uiomove Copy the data from the segkpm address to userland
 <- uiomove
 -> segmap_release Add the segmap slot to the reuse pool
 -> hat_kpm_vaddr2page
 <- hat_kpm_vaddr2page
 -> segmap_smapadd
 <- segmap_smapadd
 <- segmap_release
<- ufs_read

See examples/segkpm.d

Miss in page cache, miss in segmap:
-> ufs_read read() Entry point into UFS
 -> segmap_getmapflt Locate the segmap slot for the vnode/off
 -> get_free_smp Find a segmap slot that can be reused
 -> grab_smp Flush out the old segmap slot identity
 -> segmap_hashout
 <- segmap_hashout
 -> hat_kpm_page2va Identify the virtual address for the vnode/off
 <- hat_kpm_page2va
 -> hat_kpm_mapout Unmap the old slot’s page(s)
 <- hat_kpm_mapout
 <- grab_smp
 -> segmap_pagefree
 <- segmap_pagefree
 <- get_free_smp
 -> segmap_hashin Set up the segmap slot for the new vnode/off
 <- segmap_hashin
 -> segkpm_create_va Create a virtual address for this vnode/off
 <- segkpm_create_va
 -> ufs_getpage Call the file system getpage() to read in the page
 -> bdev_strategy Initiate the physical read
 <- bdev_strategy
 <- ufs_getpage
 -> hat_kpm_mapin Create a mapping for the page in segkpm
 -> sfmmu_kpm_mapin
 -> sfmmu_kpm_getvaddr
 <- sfmmu_kpm_getvaddr
 <- sfmmu_kpm_mapin
 -> sfmmu_kpme_lookup
 <- sfmmu_kpme_lookup
 -> sfmmu_kpme_add
 <- sfmmu_kpme_add
 <- hat_kpm_mapin
 <- segmap_getmapflt
 -> uiomove Copy the data from the segkpm address to userland
 <- uiomove
 -> segmap_release Add the segmap slot to the reuse pool

continues

solarisinternals.book Page 717 Thursday, June 15, 2006 1:27 PM

718 Chapter 14 File System Framework

14.8 File Systems and Memory Allocation

File system caching has been implemented as an integrated part of the Solaris vir-
tual memory system since as far back as SunOS 4.0. This has the great advantage
of dynamically using available memory as a file system cache. While this integra-
tion has many positive advantages (like being able to speed up some I/O-intensive
applications by as much as 500 times), there were some historic side effects: Appli-
cations with a lot of file system I/O could swamp the memory system with demand
for memory allocations, pressuring the memory system so much that memory
pages were aggressively stolen from important applications. Typical symptoms of
this condition were that everything seemed to “slow down” when file I/O was occur-
ring and that the system reported it was constantly out of memory. In Solaris 2.6
and 7, the paging algorithms were updated to steal only file system pages unless
there was a real memory shortage, as part of the feature named “priority paging.”
This meant that although there was still significant pressure from file I/O and
high “scan rates,” applications didn’t get paged out or suffer from the pressure. A
healthy Solaris 7 system still reported it was out of memory, but performed well.

14.8.1 Solaris 8—Cyclic Page Cache

Starting with Solaris 8, we significantly enhanced the architecture to solve the
problem more effectively. We changed the file system cache so that it steals mem-
ory from itself, rather than from other parts of the system. Hence, a system with a
large amount of file I/O will remain in a healthy virtual memory state—with large
amounts of visible free memory and, since the page scanner doesn’t need to run,
with no aggressive scan rates. Since the page scanner isn’t constantly required to
free up large amounts of memory, it no longer limits file-system-related I/O through-
put. Other benefits of the enhancement are that applications that need to allocate
a large amount of memory can do so by efficiently consuming it directly from the
file system cache. For example, starting Oracle with a 50-Gbyte SGA now takes
less than a minute, compared to the 20–30 minutes with the prior implementation.

 -> get_smap_kpm
 -> hat_kpm_vaddr2page
 <- hat_kpm_vaddr2page
 <- get_smap_kpm
 -> segmap_smapadd
 <- segmap_smapadd
 <- segmap_release
<- ufs_read

See examples/segkpm.d

solarisinternals.book Page 718 Thursday, June 15, 2006 1:27 PM

14.8 FILE SYSTEMS AND MEMORY ALLOCATION 719

14.8.2 The Old Allocation Algorithm

To keep this explanation relatively simple, let’s briefly look at what used to hap-
pen with Solaris 7, even with priority paging.

The file system consumes memory from the free lists every time a new page is
read from disk (or wherever) into the file system. The more pages read, the more
pages depleted from the system’s free list (the central place where memory is kept
for reuse). Eventually (sometimes rather quickly), the free memory pool is
depleted. At this point, if there is enough pressure, further requests for new mem-
ory pages are blocked until the free memory pool is replenished by the page scan-
ner. The page scanner scans inefficiently through all of memory, looking for pages
it can free, and slowly refills the free list, but only by enough to satisfy the imme-
diate request. Processes resume for a short time, and then stop as they again run
short on memory. The page scanner is a bottleneck in the whole memory life cycle.

In Figure 14.12, we can see the file system’s cache mechanism (segmap) con-
suming memory from the free list until the list is depleted. After those pages are

Figure 14.12 Life Cycle of Physical Memory

Process
Allocations

Mapped
Files

Segmap
File Cache

Page Scanner
(Bilge Pump)

Kernel
Internals

freelist
(Unused Memory)

Cachelist
Inactive File Pages

(Named files)

Process
pages
(anon)

File pages

File delete,
fs unmount,

memcntl

vmstat
“free memory”

File pages

Reclaim

Allocation
Free

Reclaim
Pageout Steal

Kernel Reap
(low freemem)

solarisinternals.book Page 719 Thursday, June 15, 2006 1:27 PM

720 Chapter 14 File System Framework

used, they are kept around, but they are only immediately accessible by the file
system cache in the direct reuse case; that is, if a file system cache hit occurs, then
they can be “reclaimed” into segmap to avoid a subsequent physical I/O. However,
if the file system cache needs a new page, there is no easy way of finding these
pages; rather, the page scanner is used to stumble across them. The page scanner
effectively “bilges out” the system, blindly looking for new pages to refill the free
list. The page scanner has to fill the free list at the same rate at which the file system
is reading new pages—and thus is a single point of constraint in the whole design.

14.8.3 The New Allocation Algorithm

The new algorithm uses a central list to place the inactive file cache (that which
isn’t immediately mapped anywhere), so that it can easily be used to satisfy new
memory requests. This is a very subtle change, but one with significant demon-
strable effects. First, the file system cache now appears as a single age-ordered
FIFO: Recently read pages are placed at the tail of the list, and new pages are con-
sumed from the head. While on the list, the pages remain as valid cached portions
of the file, so if a read cache hit occurs, they are simply removed from wherever
they are on the list. This means that pages that are accessed often (cache hit often)
are frequently moved to the tail of the list, and only the oldest and least used
pages migrate to the head as candidates for freeing.

The cache list is linked to the free list, such that if the free list is exhausted,
then pages are taken from the head of the cache list and their contents discarded.
New page requests are requested from the free list, but since this list is often
empty, allocations occur mostly from the head of the cache list, consuming the old-
est file system cache pages. The page scanner doesn’t need to get involved, thus
eliminating the paging bottleneck and the need to run the scanner at high rates
(and hence, not wasting CPU either).

If an application process requests a large amount of memory, it too can take
from the cache list via the free list. Thus, an application can take a large amount
of memory from the file system cache without needing to start the page scanner,
resulting in substantially faster allocation.

14.8.4 Putting It All Together: The Allocation Cycle

The most significant central pool physical memory is the free list. Physical mem-
ory is placed on the free list in page-size chunks when the system is first booted
and then consumed as required. Three major types of allocations occur from the
free list, as shown in Figure 14.12.

solarisinternals.book Page 720 Thursday, June 15, 2006 1:27 PM

14.8 FILE SYSTEMS AND MEMORY ALLOCATION 721

Anonymous/Process Allocations. Anonymous memory, the most com-
mon form of allocation from the free list, is used for most of a process’s memory
allocation, including heap and stack. Anonymous memory also fulfills shared memory
mappings allocations. A small amount of anonymous memory is also used in the ker-
nel for items such as thread stacks. Anonymous memory is pageable and is returned
to the free list when it is unmapped or if it is stolen by the page scanner daemon.

File System Page Cache. The page cache caches file data for file sys-
tems. The file system page cache grows on demand to consume available physical
memory as a file cache and caches file data in page-size chunks. Pages are con-
sumed from the free list as files are read into memory. The pages then reside in
one of three places: on the segmap cache, in a process’s address space to which
they are mapped, or on the cache list.

The cache list is the heart of the page cache. All unmapped file pages reside on
the cache list. Working in conjunction with the cache list are mapped files and the
segmap cache.

Think of the segmap file cache as the fast first-level file system read/write
cache. segmap is a cache that holds file data read and written through the read
and write system calls. Memory is allocated from the free list to satisfy a read of a
new file page, which then resides in the segmap file cache. File pages are eventu-
ally moved from the segmap cache to the cache list to make room for more pages in
the segmap cache.

The cachelist is typically 12% of the physical memory size on SPARC systems.
The segmap cache works in conjunction with the system cache list to cache file
data. When files are accessed—through the read and write system calls—up to
12% of the physical memory file data resides in the segmap cache and the remain-
der is on the cache list.

Memory mapped files also allocate memory from the free list and remain allo-
cated in memory for the duration of the mapping or unless a global memory short-
age occurs. When a file is unmapped (explicitly or with madvise), file pages are
returned to the cache list.

The cache list operates as part of the free list. When the free list is depleted,
allocations are made from the oldest pages in the cache list. This allows the file
system page cache to grow to consume all available memory and to dynamically
shrink as memory is required for other purposes.

Kernel Allocations. The kernel uses memory to manage information
about internal system state, for example, memory that holds the list of processes
in the system. The kernel allocates memory from the free list for these purposes
with its own allocators: vmem and slab. However, unlike process and file alloca-
tions, the kernel seldom returns memory to the free list; memory is allocated and

solarisinternals.book Page 721 Thursday, June 15, 2006 1:27 PM

722 Chapter 14 File System Framework

freed between kernel subsystems and the kernel allocators. Memory is consumed
from the free list only when the total kernel allocation grows.

Memory allocated to the kernel is mostly nonpageable and so cannot be man-
aged by the system page scanner daemon. Memory is returned to the system free
list proactively by the kernel’s allocators when a global memory shortage occurs.
See Chapter 11.

14.9 Path-Name Management

All but a few of the vnode methods operate on vnode pointers rather than on path
names. Before calling file system vnode methods, the vnode framework first con-
verts path names and file descriptors into vnode references. File descriptors may
be directly translated into vnodes for the files they referenced, whereas path
names must be converted into vnodes by a lookup of the path-name components
and a reference to the underlying file. The file-system-independent lookuppn()
function converts path names to vnodes. An additional wrapper, lookupname(),
converts path names from user-mode system calls.

14.9.1 The lookuppn() Method

Given a path name, the lookuppn() method attempts to return a pointer to the
vnode the path represents. If the vnode is already available, then a new reference to
the vnode is established. If no vnode is available, one is created. The lookuppn()
function decomposes the components of the path name, separating them by “/” and
“.”, and calls the file-system-specific vop_lookup() method (see below) for each
component of the path name.

If the path name begins with a “/”, path-name traversal starts at the user’s root
directory. Otherwise, it starts at the vnode pointed to by the user’s current direc-
tory. lookuppn() traverses the path one component at a time, using the vop_
lookup() vnode method.

If a directory vnode has v_vfsmountedhere set, then it is a mount point. If
lookuppn() encounters a mount point while going down the file system tree, then
it follows the vnode’s v_vfsmountedhere pointer to the mounted file system and
calls the vfs_root() method to obtain the root vnode for the file system. Path-
name traversal then continues from this point.

If lookuppn() encounters a root vnode (VROOT flag in v_flag set) when fol-
lowing “..”, then lookuppn() follows the vfs_vnodecovered pointer in the
vnode’s associated vfs to obtain the covered vnode.

If lookuppn() encounters a symbolic link, then it calls the vn_readlink()
vnode method to obtain the symbolic link. If the symbolic link begins with a “/”,

solarisinternals.book Page 722 Thursday, June 15, 2006 1:27 PM

14.9 PATH-NAME MANAGEMENT 723

the path-name traversal is restarted from the root directory; otherwise, the tra-
versal continues from the last directory. The caller of lookuppn() specifies whether
the last component of the path name is to be followed if it is a symbolic link.

This procedure continues until the path name is exhausted or an error occurs.
When lookuppn() completes, it returns a vnode representing the desired file.

14.9.2 The vop_lookup() Method

The vop_lookup() method searches a directory for a path-name component
matching the supplied path name. The vop_lookup() method accepts a directory
vnode and a string path-name component as an argument and returns a vnode
pointer to the vnode representing the file. If the file cannot be located, then
ENOENT is returned.

Many regular file systems will first check the directory name lookup cache, and
if an entry is found there, the entry is returned. If the entry is not found in the
directory name cache, then a real lookup of the file is performed.

14.9.3 The vop_readdir() Method

The vop_readdir() method reads chunks of the directory into a uio structure.
Each chunk can contain as many entries as will fit within the size supplied by the
uio structure. The uio_resid structure member shows the size of the getdents
request in bytes, which is divided by the size of the directory entry made by the
vop_readdir() method to calculate how many directory entries to return.

Directories are read from disk with the buffered kernel file functions fbread
and fbwrite. These functions, described below, are provided as part of the generic
file system infrastructure.

/*
 * A struct fbuf is used to get a mapping to part of a file using the
 * segkmap facilities. After you get a mapping, you can fbrelse() it
 * (giving a seg code to pass back to segmap_release), you can fbwrite()
 * it (causes a synchronous write back using the file mapping information),
 * or you can fbiwrite it (causing indirect synchronous write back to
 * the block number given without using the file mapping information).
 */

struct fbuf {
 caddr_t fb_addr;
 uint_t fb_count;
};

continues

solarisinternals.book Page 723 Thursday, June 15, 2006 1:27 PM

724 Chapter 14 File System Framework

14.9.4 Path-Name Traversal Functions

Several path-name manipulation functions assist with decomposition of path
names. The path-name functions use a path-name structure, shown below, to pass
around path-name components.

extern int fbread(struct vnode *, offset_t, uint_t, enum seg_rw, struct fbuf **);

Returns a pointer to locked kernel virtual address for the given <vp, off> for len
bytes. The read may not cross a boundary of MAXBSIZE (8192) bytes.

extern void fbzero(struct vnode *, offset_t, uint_t, struct fbuf **);

Similar to fbread(), but calls segmap_pagecreate(), not segmap_fault(), so that SOFT-
LOCK can create the pages without using VOP_GETPAGE(). Then, fbzero() zeroes up to the
length rounded to a page boundary.

extern int fbwrite(struct fbuf *);

Direct write.

extern int fbiwrite(struct fbuf *, struct vnode *, daddr_t bn, int bsize);

Writes directly and invalidates pages.

extern int fbdwrite(struct fbuf *);

Delayed write.

extern void fbrelse(struct fbuf *, enum seg_rw);

Releases fbp.
See usr/src/uts/common/sys/fbuf.h

/*
 * Pathname structure.
 * System calls that operate on path names gather the path name
 * from the system call into this structure and reduce it by
 * peeling off translated components. If a symbolic link is
 * encountered the new path name to be translated is also
 * assembled in this structure.
 *
 * By convention pn_buf is not changed once it's been set to point
 * to the underlying storage; routines which manipulate the path name
 * do so by changing pn_path and pn_pathlen. pn_pathlen is redundant
 * since the path name is null-terminated, but is provided to make
 * some computations faster.
 */
typedef struct pathname {
 char *pn_buf; /* underlying storage */
 char *pn_path; /* remaining pathname */
 size_t pn_pathlen; /* remaining length */
 size_t pn_bufsize; /* total size of pn_buf */
} pathname_t;

See usr/src/uts/common/sys/pathname.h

solarisinternals.book Page 724 Thursday, June 15, 2006 1:27 PM

14.9 PATH-NAME MANAGEMENT 725

The path-name functions are shown below.

void pn_alloc(struct pathname *pnp);

Allocates a new path-name buffer.Structure is typically an automatic variable in call-
ing routine for convenience.May sleep in the call to kmem_alloc() and so must not be
called from interrupt level.

int pn_get(char *str, enum uio_seg seg, struct pathname *pnp);

Copies path-name string from user and mounts arguments into a struct path name.

int pn_set(struct pathname *pnp, char *path);

Sets a path name to the supplied string.

int pn_insert(struct pathname *pnp, struct pathname *sympnp, size_t complen);

Combines two argument path names by putting the second argument before the first in the
first's buffer. This isn't very general; it is designed specifically for symbolic link
processing. This function copies the symlink in-place in the path name. This is to
ensure that vnode path caching remains correct. At the point where this is called (from
lookuppnvp), we have called pn_getcomponent(), found it is a symlink, and are now
replacing the contents. The complen parameter indicates how much of the path name to
replace. If the symlink is an absolute path, then we overwrite the entire contents of
the pathname.

int pn_getsymlink(vnode_t *vp, struct pathname *pnp, cred_t *crp);

Follows a symbolic link for a path name.

int pn_getcomponent(struct pathname *pnp, char *component);

Extracts the next delimited path-name component.

void pn_setlast(struct pathname *pnp);

Sets pn_path to the last component in the path name, updating pn_pathlen. If pathname
is empty or degenerate, leaves pn_path pointing at NULL char.The path name is explicitly
null-terminated so that any trailing slashes are effectively removed.

void pn_skipslash(struct pathname *pnp);

Skips over consecutive slashes in the path name.

int pn_fixslash(struct pathname *pnp);

Eliminates any trailing slashes in the path name.

int pn_addslash(struct pathname *pnp);

Add sa slash to the end of the path name, if it will fit.Return ENAMETOOLONG if it
won't.

void pn_free(struct pathname *pnp);

Frees a struct path name.
See usr/src/uts/common/sys/pathname.h

solarisinternals.book Page 725 Thursday, June 15, 2006 1:27 PM

726 Chapter 14 File System Framework

14.10 The Directory Name Lookup Cache

The directory name lookup cache (DNLC) is based on BSD 4.2 code. It was ported to
Solaris 2.0 and threaded and has undergone some significant revisions. Most of the
enhancements to the DNLC have been performance and threading, but a few visible
changes are noteworthy. Table 14.6 summarizes the important changes to the DNLC.

14.10.1 DNLC Operation

Each time we open a file, we call the open() system call with a path name. That
path name must be translated to a vnode by the process of reading the directory
and finding the corresponding name that matches the requested name. To prevent
us from having to reread the directory every time we translate the path name, we
cache the containing directory vnode/file-name name and the corresponding vnode
mappings in the directory name lookup cache. The cache is managed as an LRU
cache, so that most frequently used directory entries are kept in the cache.

The Solaris DNLC replaces the original SVR4 DNLC algorithm. It yielded a sig-
nificant improvement in scalability. The Solaris 2.4 DNLC algorithm removed LRU
list lock contention by eliminating the LRU list completely. In addition, the list
takes into account the number of references to a vnode and whether the vnode
has any pages in the page cache. This design allows the DNLC to cache the most
relevant vnodes, rather than just the most frequently looked-up vnodes.

Figure 14.13 illustrates the Solaris DNLC.
The lookup algorithm uses a rotor pointing to a hash chain; the rotor switches

chains for each invocation of dnlc_enter() that needs a new entry. The algo-
rithm starts at the end of the chain and takes the first entry that has a vnode ref-
erence count of 1 or no pages in the page cache. In addition, during lookup, entries
are moved to the front of the chain so that each chain is sorted in LRU order.

The DNLC was enhanced to use the kernel memory allocator to allocate a vari-
able length string for the name; this change removed the 31-character limit. In the

Table 14.6 Solaris DNLC Changes

Year OS Rev Comment

1984 BSD 4.2 14-character name maximum

1990 Solaris 2.0 31-character name maximum

1994 Solaris 2.4 Performance (new locking/search algorithm)

1998 Solaris 7 Variable name length

2001 Solaris 8 Directory caching and negative entry caching

solarisinternals.book Page 726 Thursday, June 15, 2006 1:27 PM

14.10 THE DIRECTORY NAME LOOKUP CACHE 727

Solaris 7 DNLC structure, shown in Figure 14.13, note that the name field has
changed from a static structure to a pointer.

The number of entries in the DNLC is controlled by the ncsize parameter,
which is initialized to 4 * (max_nprocs + maxusers) + 320 at system boot.

Most of the DNLC work is done with two functions: dnlc_enter() and dnlc_
lookup(). When a file system wants to look up the name of a file, it first checks
the DNLC with the dnlc_lookup() function, which queries the DNLC for an
entry that matches the specified file name and directory vnode. If no entry is
found, dnlc_lookup fails and the file system reads the directory from disk. When
the file name is found, it is entered into the DNLC with the dnlc_enter() func-
tion. The DNLC stores entries on a hashed list (nc_hash[]) by file name and
directory vnode pointer. Once the correct nc_hash chain is identified, the chain is
searched linearly until the correct entry is found.

The original BSD DNLC had 8 nc_hash entries, which was increased to 64 in
SunOS 4.x. Solaris 2.0 sized the nc_hash list at boot, attempting to make the
average length of each chain no more than 4 entries. It used the total DNLC size,
ncsize, divided by the average length to establish the number of nc_hash
entries. Solaris 2.3 had the average length of the chain dropped to 2 in an attempt
to increase DNLC performance; however, other problems, related to the LRU list
locking and described below, adversely affected performance.

Each entry in the DNLC is also linked to an LRU list, in order of last use. When
a new entry is added into the DNLC, the algorithm replaces the oldest entry from
the LRU list with the new file name and directory vnode. Each time a lookup is

Figure 14.13 Solaris DNLC

nc_hash[]

dnlc_lookup
finds nc’s by
hash lookup

vnode
dir. vnode

char*

struct ncache

name

freelist rotor

DNLC entries are
taken from the
first entry with
a reference count=1,
starting from the end
of the chain.

solarisinternals.book Page 727 Thursday, June 15, 2006 1:27 PM

728 Chapter 14 File System Framework

done, the DNLC also takes the entry from the LRU and places it at the end of the
list so that it won’t be reused immediately. The DNLC uses the LRU list to attempt
to keep most-used references in the cache. Although the DNLC list had been made
short, the LRU list still caused contention because it required that a single lock be
held around the entire chain.

14.10.2 Primary DNLC Support Functions

 The primary DNLC support functions are summarized below.

void dnlc_enter(vnode_t *dvp, char *name, vnode_t *vp, cred_t *cr);

Enters a new ncache entry into the DNLC for the given name and directory vnode pointer.
If an entry already exists for the name and directory pointer, the function returns with
no action.

void dnlc_update(vnode_t *dvp, char *name, vnode_t *vp, cred_t *cr);

Enters a new ncache entry into the DNLC for the given name and directory vnode pointer.
If an entry already exists for the name and directory pointer but the vnode is differ-
ent, then the entry is overwritten. Otherwise, the function returns with no action.

vnode_t *dnlc_lookup(vnode_t *dvp, char *name, cred_t *cr);

Locates an ncache entry that matches the supplied name and directory vnode pointer.
Returns a pointer to the vnode for that entry or returns NULL.

void dnlc_purge(void);

Called by the vfs framework when an umountall() is called.

void dnlc_purge_vp(vnode_t *vp);

Purges all entries matching the vnode supplied.

int dnlc_purge_vfsp(vfs_t *vfs, int);

Purges all entries matching the vfs supplied.

void dnlc_remove(vnode_t *vp, char *name);

Removes the entry matching the supplied name and directory vnode pointer.

int dnlc_fs_purge1(struct vnodeops *vop);

Purge 1 entry from the dnlc that is part of the file system(s) represented by 'vop'. The
purpose of this routine is to allow users of the dnlc to free a vnode that is being held
by the dnlc.If we find a vnode that we release which will result in freeing the under-
lying vnode (count was 1), return 1, 0 if no appropriate vnodes found.

See usr/src/uts/common/sys/dnlc.h

solarisinternals.book Page 728 Thursday, June 15, 2006 1:27 PM

14.10 THE DIRECTORY NAME LOOKUP CACHE 729

14.10.3 DNLC Negative Cache

The DNLC has support for negative caching. Some applications repeatedly test for
the existence or nonexistence of a file (for example, a lock file or a results file). In
addition, many shell PATH variables list directories that don’t exist. For these
applications, caching the fact that the file doesn’t exist (negative caching) is a per-
formance boost.

The DNLC negative cache follows the NFS negative-cache solution. It defines a
negative cache vnode that is initialized with the reference count set to 1 so that
VOP_INACTIVE() never gets called on it.

File systems were updated in Solaris 8 to use negative caching so that each
dnlc_lookup() checks for a DNLC_NO_VNODE return. Negative cache entries will
be added when directory lookups fail, and will be invalidated by dnlc_update()
when a real file of that name is added.

14.10.4 DNLC Directory Cache

The directory cache adds a new set of interfaces to the DNLC to cache entire direc-
tories. The directory cache eliminates performance bottlenecks for directories with
tens of thousands of files. This helps performance when the file name repeatedly
changes and when new files are created. It removes the need to search the entire
directory to find out if the file name already exists. It turns out that mail and news
spool directories see this scenario all the time.

The DNLC structure is shown below.

vnode_t negative_cache_vnode;

#define DNLC_NO_VNODE &negative_cache_vnode

See usr/src/uts/common/sys/dnlc.h

/*
 * This structure describes the elements in the cache of recent
 * names looked up.
 *
 * Note namlen is a uchar_t to conserve space
 * and alignment padding. The max length of any
 * pathname component is defined as MAXNAMELEN
 * which is 256 (including the terminating null).
 * So provided this doesn't change, we don't include the null,
 * we always use bcmp to compare strings, and we don't start
 * storing full names, then we are ok. The space savings are worth it.
 */

continues

solarisinternals.book Page 729 Thursday, June 15, 2006 1:27 PM

730 Chapter 14 File System Framework

File systems must provide a structure for use only by the DNLC directory cach-
ing code for each directory.

All file systems have an in-memory xxnode (for example, inode in ufs) that could
contain such a structure. Following is an example of how a file system would use
the directory cache interfaces.

typedef struct ncache {
 struct ncache *hash_next; /* hash chain, MUST BE FIRST */
 struct ncache *hash_prev;
 struct vnode *vp; /* vnode the name refers to */
 struct vnode *dp; /* vnode of parent of name */
 int hash; /* hash signature */
 uchar_t namlen; /* length of name */
 char name[1]; /* segment name - null terminated */
} ncache_t;

See usr/src/uts/common/sys/dnlc.h

typedef struct dcanchor {
 void *dca_dircache; /* opaque directory cache handle */
 kmutex_t dca_lock; /* protects the pointer and cache */
} dcanchor_t;

fs_lookup(dir, name)
{
 Return entry if in regular dnlc
 dcap = dir->dcap;
 switch dnlc_dir_lookup(dcap, name, &handle)
 case DFOUND:
 use handle to get and return vnode
 break
 case DNOENT:
 return ENOENT
 }
 caching = 0;
 if want to cache directory {
 switch dnlc_dir_start(dcap, num_dir_entries)
 case DNOMEM:
 case DTOOBIG:
 mark directory as non cache-able
 break;
 case
 caching = 1;
 }
 while not end of directory {
 if entry && caching
 handle = ino and offset;
 dnlc_dir_add_entry(dcap, entry_name, handle)
 if free space && caching
 handle = offset;
 dnlc_dir_add_space(dcap, length. handle)
 if entry matches
 get vnode

continues

solarisinternals.book Page 730 Thursday, June 15, 2006 1:27 PM

14.10 THE DIRECTORY NAME LOOKUP CACHE 731

The following set of new dnlc interfaces will be provided to cache complete
directory contents (both entries and free space).

 if various errors
 if caching
 dnlc_dir_purge(dcap)
 return error

 }
 if caching
 dnlc_dir_complete(dcap)
 return vnode or ENOENT
}

Status returns from the directory cache interfaces

#define DOK 0 /* operation successful */
#define DNOCACHE 1 /* there is no cache */
#define DFOUND 2 /* entry found */
#define DNOENT 3 /* no entry found */
#define DTOOBIG 4 /* exceeds tunable dnlc_dir_max_size */
#define DNOMEM 5 /* no memory */

Interfaces for building and adding to the directory cache

int dnlc_dir_start(dcanchor_t *dcap, uint_t num_entries);

Requests that a directory be cached. This must be called initially to enable caching on
a directory. After a successful call, directory entries and free space can be added (see
below) until the directory is marked complete. num_entries is an estimate of the current
number of directory entries. The request is rejected with DNOCACHE if num_entries falls
below the tunable dnlc_dir_min_size (see below), and rejected with DTOOBIG if it's above
dnlc_dir_max_size.

Returns DOK, DNOCACHE, DTOOBIG, DNOMEM (see below)

int dnlc_dir_add_entry(dcanchor_t *dcap, char *name, uint64_t handle);

Adds an entry (name and handle) into the partial or complete cache. Handle is a file-
system-specific quantity that is returned on calls to dnlc_dir_lookup() - see below.
Handle for ufs holds the inumber and a directory entry offset.

Returns DOK, DNOCACHE, DTOOBIG

int dnlc_dir_add_space(dcanchor_t *dcap, uint_t len, uint64_t handle);

Add free space (length and file-system-specific handle) into the partial or complete
cache. Handle for ufs holds the directory entry offset

Returns DOK, DNOCACHE, DTOOBIG

void dnlc_dir_complete(dcanchor_t *dcap);

Indicates the previously partial cache is now complete

void dnlc_dir_purge(dcanchor_t *dcap);

Deletes the partial or complete cache

continues

solarisinternals.book Page 731 Thursday, June 15, 2006 1:27 PM

732 Chapter 14 File System Framework

Additional notes on the directory cache interface are as follows:

� Because of memory shortages, directory caches can be purged at any time. If
the last directory cache is purged because of a memory shortage, then the
directory cache is marked internally as “no memory.” Future returns will all
be DNOCACHE until the next dnlc_start_dir(), which will return DNOMEM
once. This memory shortage may only be transient. It’s up to the file system
to handle this condition, but an attempt to immediately rebuild the cache will
very likely lead to the same shortage of memory and to thrashing.

� It’s file system policy as to when and what size directories to cache.

Interface for reading the directory cache

int dnlc_dir_lookup(dcanchor_t *dcap, char *name, uint64_t *handlep);

Looks up a file in the cache. Handlep must be non-null, and will be set to point to the
file-system-supplied handle

Returns DFOUND, DNOENT, DNOCACHE

Interfaces for amending the cache

int dnlc_dir_update(dcanchor_t *dcap, char *name, uint64_t handle);

Update the handle for the given entry

Returns DFOUND, DNOENT, DNOCACHE

int dnlc_dir_rem_entry(dcanchor_t *dcap, char *name, uint64_t *handlep);

Remove an entry

Returns the handle if handlep non-null and DFOUND, DNOENT, DNOCACHE

int dnlc_dir_rem_space_by_len(dcanchor_t *dcap, uint_t len, uint64_t *handlep);

Find and remove a space entry with at least the given length and
Returns the handle, and DFOUND, DNOENT, DNOCACHE

int dnlc_dir_rem_space_by_handle(dcanchor_t *dcap, uint64_t handle);

Find and removes the free space with the given handle

Returns DFOUND, DNOENT, DNOCACHE

Interfaces for initializing and finishing with the directory cache anchor

void dnlc_dir_init(dcanchor_t *dcap);

Initializes the anchor. This macro clears the dca_dircache field and does a mutex_init
on the lock

void dnlc_dir_fini(dcanchor_t *dcap);

Called to indicate the anchor is no longer used. This macro asserts there's no cache and
mutex_destroys the lock.

solarisinternals.book Page 732 Thursday, June 15, 2006 1:27 PM

14.10 THE DIRECTORY NAME LOOKUP CACHE 733

� Directory caches are purged according to LRU basis when a plea to release
memory comes from the kmem system. A kmem_cache is used for one data
structure, and on the reclaim callback, the LRU directory cache is released.
Directory caches are also purged on failure to get additional memory. Other-
wise, directories are cached as much as memory allows.

14.10.5 DNLC Housekeeping Thread

The DNLC maintains a task queue. The dnlc_reduce_cache() activates the
task queue when there are ncsize name cache entries, and it reduces the size to
dnlc_nentries_low_water, which is by default one hundredth less than (or 99%
of) ncsize. If dnlc_nentries hits dnlc_max_nentries (twice ncsize), then
this means that dnlc_reduce_cache() is failing to keep up. In this case, we
refuse to add new entries to the dnlc until the task queue catches up.

14.10.6 DNLC Statistics

Below is an example of DNLC statistics obtained with the kstat command.

sol10$ kstat -n dnlcstats
module: unix instance: 0
name: dnlcstats class: misc
 crtime 70.644144966
 dir_add_abort 0
 dir_add_max 0
 dir_add_no_memory 0
 dir_cached_current 0
 dir_cached_total 269
 dir_entries_cached_current 0
 dir_fini_purge 0
 dir_hits 131992
 dir_misses 1312735
 dir_reclaim_any 23
 dir_reclaim_last 4
 dir_remove_entry_fail 0
 dir_remove_space_fail 0
 dir_start_no_memory 0
 dir_update_fail 0
 double_enters 310146
 enters 22732358
 hits 384680010
 misses 2390823
 negative_cache_hits 6048394
 pick_free 0
 pick_heuristic 15613169
 pick_last 632544
 purge_all 0
 purge_fs1 0
 purge_total_entries 5369737
 purge_vfs 27052
 purge_vp 3009
 snaptime 4408540.56846945

solarisinternals.book Page 733 Thursday, June 15, 2006 1:27 PM

734 Chapter 14 File System Framework

14.11 The File System Flush Daemon

The fsflush process writes modified pages to disk at regular intervals. The
fsflush process scans through physical memory looking for dirty pages. When it
finds one, it initiates a write (or putpage) operation on that page.

The fsflush process is launched by default every second and looks for pages
that have been modified (the modified bit is set in the page structure) more than
30 seconds ago. If a page has been modified, then a page-out is scheduled for that
page, but without the free flag so that the page remains in memory. The fsflush
daemon flushes both data pages and inodes by default. Table 14.7 describes the
parameters that affect the behavior of fsflush.

14.12 File System Conversion to Solaris 10

If you are porting a file system source to Solaris 10, you can follow these steps to
convert an older file system to the new Solaris 10 APIs.

1. Vnodes must be separated from FS-specific nodes (for example, inodes). Pre-
viously, most file systems embedded the vnode in the FS-specific node. The
node should now have a pointer to the vnode. vnodes are allocated by the file
system with vn_alloc() and freed with vn_free(). If the file system recy-
cles vnodes (by means of a node cache), then vnodes can be reinitialized with
vn_reinit().

Note: Make sure the VTO{node}() and {node}TOV() routines and the
corresponding FS-node macros are updated.

Table 14.7 Parameters That Affect fsflush

Parameter Description Min
Solaris 10
Default

tune_t_fsflushr This specifies the number of seconds
between fsflush scans.

1 1

autoup Pages older than autoup in seconds
are written to disk.

1 30

doiflush By default, fsflush flushes both
inode and data pages. Set to 0 to sup-
press inode updates.

0 1

dopageflush This is set to 0 to suppress page
flushes.

0 1

solarisinternals.book Page 734 Thursday, June 15, 2006 1:27 PM

14.12 FILE SYSTEM CONVERSION TO SOLARIS 10 735

2. Change all references to the “private” vnode fields to use accessors. The only
“public” fields are listed below.

Otherwise, information about the vnode can be accessed, as shown below.

3. The only significant change to the vfs structure is that the vfs_op field
should not be used directly. Any references or accesses to that field must
go through one of the following: vfs_setops(), vfs_getops(),
vfs_matchops(), vfs_can_sync().

4. Create an FS definition structure (vfsdef_t). This is similar to, but
replaces, the vfssw table entry.

5. Create the operation definition tables for vnode and vfs operations.

6. Update (or create) the FS initialization routine (called at module-loader
time) to create the vfsops and vnodeops structures. You do this by calling
vn_make_ops() and either vfs_setfsops() (or vfs_makefsops()), using
the “operations definition table” (created above).

7. Update the following vnode operation routines (if applicable):
 Add a pointer to the caller_context structure to the argument list for

the following FS-specific routines: xxx_read(), xxx_write(), xxx_space(),
xxx_setattr(), xxx_rwlock(), xxx_rwunlock().

 Add a pointer to the cred structure to the argument list for the following
FS-specific routine: xxx_shrlock().

 Important note: Because the compilers don’t yet support “designated ini-
tializers,” the compiler cannot strongly type-check the file-system-specific
vnode/vfs operations through the registration system. It’s important that
any changes to the argument list be done very carefully.

kmutex_t v_lock; /* protects vnode fields */
uint_t v_flag; /* vnode flags (see below) */
uint_t v_count; /* reference count */
caddr_t v_data; /* private data for fs */
struct vfs *v_vfsp; /* ptr to containing VFS */
struct stdata *v_stream; /* associated stream */
enum vtype v_type; /* vnode type */
dev_t v_rdev; /* device (VCHR, VBLK) */

For: Use:

v_vfsmountedhere vn_ismntpt() or vn_mountedvfs()
v_op vn_setops(), vn_getops(), vn_matchops(),
 vn_matchopval()
v_pages vn_has_cached_data()
v_filocks vn_has_flocks(), vn_has_mandatory_locks()

solarisinternals.book Page 735 Thursday, June 15, 2006 1:27 PM

736 Chapter 14 File System Framework

8. vnode life cycle: When a vnode is created (fully initialized, after locks are
dropped but before anyone can get to it), call vn_exists(vnode *vp). This
notifies anyone with registered interest on this file system that a new vnode
has been created. If just the vnode is to be torn down (still fully functional,
but before any locks are taken), call vn_invalid(vnode_t *vp) so that
anyone with registered interest can be notified that this vnode is about to
go away.

14.13 MDB Reference

Table 14.8 File System MDB Reference

dcmd or walker Description

dcmd dnlc Print DNLC contents

dcmd fsinfo Print mounted filesystems

dcmd inode Display summarized inode_t

dcmd inode_cache Search/display inodes from inode cache

dcmd vnode2path Vnode address to pathname

dcmd vnode2smap Translate vnode to smap

dcmd whereopen Given a vnode, dumps procs which have it open

walk dnlc_space_cache Walk the dnlc_space_cache cache

walk vfs Walk file system list

walk vn_cache Walk the vn_cache cache

solarisinternals.book Page 736 Thursday, June 15, 2006 1:27 PM

