
SERVICE MANAGEMENT FACILITY (SMF)
IN THE SOLARIS™ 10 OPERATING SYSTEM

Rob Romack, PTS (Mid-Range Server Group)

Sun BluePrints™ OnLine — February 2006

Part No 819-5150-10
Revision 1.1, 2/20/06
Edition: February 2006

Please
Recycle

© 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Solaris, Sun BluePrints, Sun Enterprise, OpenSolaris, BigAdmin, and SunDocs are trademarks,

registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Oracle is a registered trademark of Oracle Corporation.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun

acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer

industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who

implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Table of Contents Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Table of Contents

About This Document . 1

An Introduction to SMF Services . 2

Features and Benefits of SMF. 2

SMF Repository. 3

SMF Restarters . 3

SMF Service Instances . 3

Components of a SMF Service . 4

SMF Manifests. 5

Service Methods . 5

Service Executable . 5

Service Log Files . 5

Service Identifiers — FMRIs . 5

Administering SMF Services . 7

Service States . 8

An Example of Using SMF Administrative Commands . 9

Administering Network Services with inetadm. 11

inetd as a Restarter . 13

Creating a New SMF Service . 15

Constructing a New SMF Service — An Example. 15

Service Dependencies. 18

Dependency Attributes . 20

Service Dependency Example. 21

SMF Initialization at Boot. 22

Milestone Services and System Booting . 23

Specifying a Milestone Dependency on a Service. 24

Resolving Dependency Cycles . 25

Another Dependency Example — Direct Root Login. 27

Summary . 28

About the Author . 28

References . 28

Ordering Sun Documents . 29

Accessing Sun Documentation Online . 29

1-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Service Management Facility (SMF) in the Solaris 10
Operating System

Introduction

A significant challenge in today's data centers is the demand for increased service levels in environments

that feature increasing complexity. The Solaris™ 10 Operating System (OS) introduces a new foundation

that improves service levels by detecting and correcting component failures while simplifying systems

management. This foundation — known as Predictive Self-Healing — includes new technologies that Sun

has incorporated into its hardware and software products to maximize availability in the event of system

faults. Overall, Predictive Self-Healing simplifies system administration and helps to contribute to a lower

total cost of ownership (TCO) in the data center.

A key component of Predictive Self-Healing is the new Service Management Facility (SMF) in the

Solaris 10 OS. SMF is designed to simplify the management of system and application services. It delivers

new and improved ways to control services, and tries to restart failed services automatically. In addition,

SMF allows administrators to define the relationships between services. It is now possible to define a

service that is dependent on other services — a dependent service will not run unless the other services

that it requires are already running. Through a set of new administrative interfaces, SMF allows services to

be easily and consistently configured, enabled, and controlled, at the same time providing better visibility

of errors and improved debugging capabilities to resolve service-related problems quickly when they occur.

About This Document
This BluePrint Article is intended for system administrators. It introduces the functionality provided by the

Service Management Facility (SMF) and demonstrates the use of new SMF administrative commands. It

assumes that the reader has a reasonable level of knowledge of the Solaris OS (in particular, of OS

versions prior to Solaris 10), or of other UNIX® systems in general. The article makes the assumption that

the reader is not already familiar with SMF or other specifics of the Solaris 10 OS.

This BluePrint Article addresses the following topics:

• Features and benefits of SMF

• The SMF repository, SMF services, and service instances

• Components of a service, including SMF manifests and service identifiers

• How to administer SMF services, including SMF commands and examples of how to perform common

SMF administrative tasks

• How to administer network services in SMF using the inetadm interface

• An example of how to create a new SMF service

• Service dependencies and examples of how dependencies are defined

• SMF initialization at boot time

• Milestone services and how to associate services with milestones

• Dependency cycles and the process of resolving them

2-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

In this article, the Courier font is used to represent command line entries, file names, or excerpts from

system files. When examples of a command are given, the use of bold Courier type represents what is

typed by the user, while regular-face Courier type indicates system prompts or system output.

An Introduction to SMF Services
In the most general sense, SMF services provide capabilities to applications and other services, both local

and remote. In the Solaris 10 OS, most system services — such as network services (ftp, telnet, rlogin,

etc.), file system services, security services, device services, print services, cron services, and so forth —

are implemented as SMF services. Besides typical UNIX® system services, the SMF management

framework is designed to support third-party software application services, including web services and

database services (such as starting an Oracle® database daemon). In addition to representing running

daemons, SMF services can also represent the configuration of a subsystem, the software state of a

device, or a set of other services.

Features and Benefits of SMF

SMF offers many advantages, including:

• Simplified service administration. Services are objects that can be viewed and easily managed with a

few simple administrative commands.

• Automated restart of failed services. SMF monitors service processes, and can proactively restart a

service when it detects an administrative error, hardware fault, or service death.

• Persistent service configuration. Service definitions and configurations persist across reboots, even after

installing OS upgrades or patches.

• Explicit dependencies. Relationships are defined between services to reflect that some services rely on

the availability of other services.

• Easier debugging. Individual service log files make it easier to determine why a service isn't running.

• Faster boot/shutdown processes. SMF parallelizes the start/stop of services when possible.

• Delegated service administration. Administrators can securely delegate service-related tasks to non-root

users, including the ability to configure, start, stop, or restart services.

In previous versions of the Solaris OS, init executed a series of rc scripts, which ran sequentially to start

all system services. With SMF and the Solaris 10 OS, most system services are no longer started from rc

scripts. Legacy rc scripts will continue to work, but moving customized rc scripts to SMF is strongly

recommended — SMF-managed services are easier to administer and control, and debugging service-

related problems is much easier.

In earlier versions of the Solaris OS, there was little consistency in how services were managed (especially

in the process of enabling and disabling them). In the past, to disable a service or daemon, administrators

often renamed a particular rc script to something that the system would ignore upon reboot. A common

problem with this was patch installation or upgrades, which might restore the renamed files. SMF provides

a more consistent and persistent means of managing services — for system and application services alike.

3-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

SMF Repository
At the core of SMF is the configuration repository, which stores service configuration information in local

memory and local files. The repository provides a persistent way to enable or disable services, a

consistent view of service state, and a unified interface to get and set service configuration properties. The

repository provides a snapshot of each service’s configuration at the time that the service successfully

starts, which allows the service to be easily restored to a known good configuration.

SMF Restarters
In the Solaris 10 OS, the init process starts up the SMF master restarter daemon svc.startd. (a restarter

is simply a program that restarts a service). The svc.startd daemon queries the SMF repository to locate

other system services, and starts them according to their dependencies, in parallel whenever possible.

This is in contrast to earlier versions of the Solaris OS and other UNIX® operating systems that use rc

scripts to start services in a serial fashion. As the SMF master restarter daemon initializes services, it

enforces defined dependency relationships between services, starting only those services where

dependency requirements have been met. (Dependencies are discussed later in this article — see

“Service Dependencies” on page 18.)

Each service specifies a restarter which is used to initialize the service. If a service has not specified a

restarter, then the default restarter svc.startd is used. If another restarter is specified, it is called a

“delegated restarter”. For many network services (such as rlogin, ftp, etc.), the Solaris OS defines inetd

as the service restarter. The delegated restarter inetd performs some common actions (such as port

binding) on behalf of the services it manages.

In addition to starting services, restarters keep track of service failures and dependency events. This

allows a restarter to automatically restart a service when it detects a service has failed or one of its

required dependencies is no longer available. In this way, restarters help to simplify and automate some

service-related tasks.

SMF Service Instances
It is not uncommon for a system to run multiple copies of the same service, usually with slightly different

configurations. For example, a web server is a service, but a specific web server daemon configured to

listen on port 80 is an instance of that service. To facilitate configuration sharing, SMF extracts

configuration properties for each service from service instances, which are represented in the repository by

service instance objects. Service instance objects are children of service objects, and may contain

configuration properties that are shared between the instances. If an instance does not explicitly override a

configuration property, then it inherits property values from the parent service object.

The following example clarifies the distinction between a service and a service instance. The remote login

server daemon, in.rlogind, has three distinct modes. By offering each mode as a separate instance of

the same service, SMF can use a single, common configuration for all three, while allowing the

administrator to enable or disable each mode independently. In the Solaris 10 OS, the service is named

network/login and the service instances are:

4-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

• Instance 1: svc:/network/login:rlogin (rlogin)

• Instance 2: svc:/network/login:klogin (rlogin with Kerberos)

• Instance 3: svc:/network/login:eklogin (rlogin with Kerberos and encryption)

Components of a SMF Service
A SMF service may have some or all of the following entities associated with it:

• A SMF manifest that defines the default set of service properties

• One or more methods that define how the service’s restarter interacts with the service

• One or more executables (or daemons) called by the methods to implement the service

• A log file that records the output of the service

• A Fault Management Resource Identifier (FMRI) used to identify a specific service instance

Minimally, a service can be defined using a set of methods and an FMRI, although some services may use

all of the entities listed above. To illustrate SMF concepts and terminology, Figure 1 shows the files,

executables, and identifiers associated with the cron service.

Figure 1. Files and identifiers related to the cron service

Service Start
Method

Service
Executable

Service
Identifier

Service
Log

(FMRI)

/usr/sbin/cron/var/svc/manifest/system/cron.xml

/var/svc/log/system-cron:default.log

/lib/svc/method/svc-cron

svc:/system/cron:default

Files and Identifiers

SMF Service
Manifest

for the cron
service

5-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

SMF Manifests

A SMF manifest is an XML file that contains a complete set of properties associated with a service or a

service instance. System manifest files are stored in /var/svc/manifest, although manifests may exist

elsewhere. (Note that only manifests in /var/svc/manifest are imported during boot.) SMF manifest files

are used to create configurations within the repository, which then maintains the authoritative source of

configuration information for all service instances. To import configuration properties from a new service’s

manifest into the repository, an administrator can either run svccfg import or allow the service to import

the information during a system boot. (See the service_bundle(4), svccfg(1M), or smf_bootstrap(5)

man pages.)

Note – It is not supported to change the properties of system services by directly modifying SMF manifest
files provided in the Solaris 10 OS. If Solaris OS or ISV-delivered manifests are modified directly,
customizations may not be preserved across software upgrades. The recommended way to change
service configuration properties stored in the repository is with the svccfg command.

Service Methods

Methods are used by a restarter to interact with the service, and typically may be an executable, a shell

script, or a keyword (such as “:kill”). For services managed by the master restarter svc.startd, methods

are often shell scripts similar to traditional rc scripts in previous Solaris OS versions. The restarter

svc.startd uses a “start method” to initialize a service, a “stop method” to halt it, and optionally a “refresh

method” to reread its configuration. Methods for many system services reside in the /lib/svc/method

directory. (For more information, see smf_method(5) or svc.startd(1M) man pages.)

Service Executable

In some cases, a start method invokes a service executable, which is responsible for providing the

capabilities of the service. The daemon /usr/sbin/cron, for example, is the executable for the cron

service (refer back to Figure 1). A service executable may also be invoked directly as a method.

Service Log Files

A service's restarter may specify a log file to capture information about the service. (For example,

svc.startd logs actions about specific services to each service’s log file in /var/svc/log.) Log files in

/var/svc/log differ from log file(s) associated with an executable that may be invoked as part of the

service. For example, the log file for the cron service is /var/svc/log/system-cron:default.log,

whereas /var/cron/log contains the output of the daemon /usr/sbin/cron.

Service Identifiers — FMRIs

Each service instance is named with a Fault Management Resource Identifier (FMRI), which is used with

SMF administrative commands to specify the service instance to be acted upon. An FMRI usually contains

three parts separated by colons:

6-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

The first part of the FMRI — the svc prefix — indicates that the FMRI describes a Solaris SMF service.

The second part gives the name of the service, in this case, network/login. The third part identifies the

service instance (in this example, rlogin, which is an instance for the remote login service).

Equivalent formats for an FMRI include:

The full FMRI describes a service uniquely (and should be used in shell scripts), but abbreviated forms are

easier to type and work as long as there is only one instance and SMF would infer that instance. The

following short-form could be used, for example, and SMF would infer the instance to be used:

The “default” name is used for the default instance of a service:

In this case “default” is the default instance of svc:/network/rpc/bind.

See the SMF command man pages, such as svcadm(1M) or svcs(1), for instructions about which FMRI

formats are appropriate.

svc:/network/login:rlogin

svc://localhost/system/system-log:default
svc:/system/system-log:default
system/system-log:default

system-log

svc:/network/rpc/bind:default

7-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Administering SMF Services
Table 1 contains a summary of commands that are frequently used to administer SMF services. For

common service-related tasks, Table 2 compares commands typically used in earlier OS versions to

comparable SMF commands.

Table 1. SMF Management Tools

Command Description Examples

svcs Displays information about
service instances

svcs -a
Lists all services, enabled or not.
svcs -p [FMRI]
Lists any processes associated with each service instance.
svcs -l FMRI
Displays details about a particular service.
svcs -x
Displays all broken services and gives a reason as to why SMF believes
the service is broken. This command is a powerful troubleshooting tool,
and can also be run with a “verbose” (-v) option.

svcadm

Issues requests for actions on
executing services, including
enabling, disabling, and restarting
service instances

svcadm enable foo
svcadm refresh print/server
Enables and refreshes a service instance. (Note that it is necessary to
refresh a service after any configuration changes via svccfg.)

svcadm disable -t cron
Disables the cron service temporarily (until the next reboot). To disable
a service persistently across reboots, do not use the “-t” option.

svccfg Displays and manipulates the
contents of the SMF repository

svccfg import /var/svc/manifest/system/foo.xml
Imports a service manifest into SMF.

svccfg delete FMRI
Deletes (removes) the service definition from the SMF repository.
svccfg
With no options, enters the svccfg interactive shell. In the interactive
shell, the “help” subcommand lists other available subcommands.

svcprop

Retrieves property values from the
SMF repository (with an output
format appropriate for use in shell
scripts)

svcprop -p propertygroup/property FMRI
Retrieves property values for the specified service instance.
svcprop -p start/exec system/cron
For the cron service, retrieves the start method property.

inetadm
Provides the ability to observe and
configure network services
controlled by inetd

inetadm -p
Display global defaults for all inetd services. See also
“Administering Network Services with inetadm” on page 11.

8-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Table 2. A Comparison of Common Tasks

In the comparable SMF commands, the last argument to svcadm is the service’s FMRI. Note that the

command svcadm can only be used for SMF services (services started and stopped in rc scripts can still be

started and stopped as before, but cannot be managed using SMF commands).

Service States

At any point in time, a service instance may have one of the following states:

• uninitialized: This state is the initial state for all services before their configuration has been read or

before their restarter has started.

• disabled: The service instance is not enabled and is not running.

• offline: The service instance is enabled, but cannot be started until its dependencies are met.

• online: The service instance is enabled and has successfully started.

• degraded: The service instance is enabled and running, but at less than full capacity.

• maintenance: The service instance has encountered an error that must be resolved by the administrator.

• legacy_run: This state is used only for legacy services. Legacy services cannot be controlled by SMF

commands. (See the Solaris 10 System Administration Guide: Basic Administration (817-1985-xx),

Chapter 14, “Managing Services".)

The svcs command displays the state, state time, and FMRI of service instances by default (use “-o” for

alternate display options).

Task Old Procedure Comparable SMF Procedure

Enabling and
disabling
services

To disable system services like cron:
rm /etc/rc2.d/S75cron
(Repeat after every cron patch application and
system upgrade.)

Later to enable cron, reinstall:
/etc/rc2.d/S75cron

To enable inetd services (like finger), edit
/etc/inet/inetd.conf and uncomment the
service to be enabled. Then issue:
pkill -HUP inetd

To disable system services like cron:
svcadm disable cron

Later to enable system services like cron:
svcadm enable cron

To enable inetd services (like finger:)
svcadm enable finger

Stopping
services /etc/init.d/sshd stop

svcadm disable -t ssh
(The "-t" indicates that the requested action should
be temporary until the next reboot.)

Starting
services /etc/init.d/sshd start svcadm enable -t ssh

Restarting
services

/etc/init.d/sshd stop;
/etc/init.d/sshd start svcadm restart ssh

Refreshing
the service
configuration

kill -HUP `cat /var/run/sshd.pid` svcadm refresh ssh

9-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

An Example of Using SMF Administrative Commands
A good way to learn about the SMF administrative commands is through an example. To illustrate the use

of some commonly used commands, the example given here breaks the print service and then fixes it.

Troubleshooting most service-related issues involves many of the same steps used to identify and resolve

the problem in this example.

The example includes the following steps:

1. Modifying the configuration for the service (in which an error is made)

2. Restarting it (which causes it to fail)

3. Viewing the log file (which points to the error)

4. Modifying the configuration again (to repair the service configuration)

5. Restarting it (which is successful)

To modify the configuration of the print service, use svccfg in interactive mode to list the available

services (for brevity, only an excerpt of the full svccfg output is given below):

Select the service to be modified (print/server), and list the properties specifically for that service:

The output shows that the start method (the start-up script) for the print service is

/lib/svc/method/print-svc.

svccfg
svc:> list
system/console-login
milestone/devices
system/device/local
...
network/initial
network/loopback
network/physical
system/svc/restarter
system/filesystem/root
...
application/print/server

svc:> select print/server
svc:/application/print/server> listprop
start/exec astring "/lib/svc/method/print-svc start"
...

10-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Modify the name of the start method using the setprop command. Change the name of the method to a

non-existent file, which will subsequently cause an error when the print service is restarted. After making

the change, refresh the configuration so that the change to the service’s properties takes effect and then

restart the service:

Since the start method for the service (lib/svc/method/print-svc.1) does not exist, the service fails

when it attempts to start.

To troubleshoot SMF service problems, begin by running svcs -xv. Many times, this simple command can

point to what is broken and suggest a possible cause:

The output indicates a problem with the service’s start method (it failed repeatedly) and suggests looking at

the log of the broken service — /var/svc/log/application-print-server:default.log. The log file

(shown below) indicates the source of the problem — the start method /lib/svc/method/print-svc.1

was not found:

Now that the problem is clearly identified, it can be fixed using the svccfg command (this time via the

command line mode rather than the interactive mode). Once the start method is correctly defined for the

service, the configuration can be refreshed and the service restarted:

svc:/application/print/server> setprop
 Usage: setprop pg/name = [type:] value
svc:/application/print/server> setprop start/exec = astring: "/lib/svc/method/print-svc.1
start"
svc:/application/print/server> quit (exit the svccfg interactive session)
#
svcadm refresh print/server
svcadm restart print/server

svcs -xv
svc:/application/print/server:default (LP print server)
 State: maintenance since Sat Apr 30 09:38:25 2005
Reason: Start method failed repeatedly, last exited with status 1.
 See: http://sun.com/msg/SMF-8000-KS
 See: man -M /usr/share/man -s 1M lpsched
 See: /var/svc/log/application-print-server:default.log
Impact: 1 dependent service is not running:
 svc:/application/print/rfc1179:default

tail /var/svc/log/application-print-server:default.log
...
[Feb 6 11:27:52 Method "start" exited with status 1]
[Feb 6 11:27:53 Executing start method ("/lib/svc/method/print-svc.1 start")]
/sbin/sh: /lib/svc/method/print-svc.1: not found

11-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

However, there is still a problem — the service is stuck in the maintenance state:

A service in the maintenance state requires administrative intervention. To remove a service from the

maintenance state, an administrator needs to explicitly “clear” the service to signal that all necessary

repairs are completed before the service can be restarted. After a service has been repaired, it must be

cleared before it will go online. If it is not cleared, it will remain in the maintenance state. Use svcadm to

clear the service as follows:

Now the print service is online and ready to accept service requests.

Administering Network Services with inetadm
The management of built-in network services in the Solaris 10 OS is now handled through SMF. The

Internet services daemon, inetd(1M), has been rewritten as a part of SMF, and configuration data for

network services is now stored in the SMF repository rather than in /etc/inet/inetd.conf. This allows

the SMF tools to be used to control and observe inetd-based network services.

Any records remaining in /etc/inet/inetd.conf after an OS upgrade to the Solaris 10 OS, or later

created by installing additional software, must be converted to SMF and imported into the SMF repository

using inetconv(1M) — otherwise the service will not be available. To provide compatibility for services

which have not yet been converted to SMF, entries can be added to inetd.conf using traditional syntax,

and the utility inetconv will convert the new services to SMF. The command inetconv should always be

run after changing /etc/inet/inetd.conf. Note that inetconv is run automatically during the first reboot

after an OS installation or upgrade. If inetd.conf has been modified since inetconv was run, then inetd

sends reminder messages to syslog.

After inetd.conf has converted a service, inetadm can be used to change properties of the converted

service. The SMF utilities (such as svcs, svcadm, etc.) can also be used to observe the service and perform

common actions.

svccfg -s print/server setprop start/exec = astring:'"/lib/svc/method/print-svc start"'
svcadm refresh print/server
svcadm restart print/server

svcs -p print/server
STATE STIME FMRI
maintenance 20:35:35 svc:/application/print/server:default

svcadm clear print/server
svcs -p print/server
STATE STIME FMRI
online 20:41:20 svc:/application/print/server:default
 20:41:20 1480 lpsched

12-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

The following commands show how to use inetadm to display and then set the tcp_wrappers attribute for

the ftp service:

inetadm -l ftp
SCOPE NAME=VALUE
 name="ftp"
 endpoint_type="stream"
 proto="tcp6"
 isrpc=FALSE
 wait=FALSE
 exec="/usr/sbin/in.ftpd -a"
 user="root"
default bind_addr=""
default bind_fail_max=-1
default bind_fail_interval=-1
default max_con_rate=-1
default max_copies=-1
default con_rate_offline=-1
default failrate_cnt=40
default failrate_interval=60
default inherit_env=TRUE
default tcp_trace=FALSE
default tcp_wrappers=FALSE (tcp_wrappers attribute is disabled here)

inetadm -m ftp tcp_wrappers=TRUE
inetadm -l ftp
SCOPE NAME=VALUE
 name="ftp"
 endpoint_type="stream"
 proto="tcp6"
 isrpc=FALSE
 wait=FALSE
 exec="/usr/sbin/in.ftpd -a"
 user="root"
default bind_addr=""
default bind_fail_max=-1
default bind_fail_interval=-1
default max_con_rate=-1
default max_copies=-1
default con_rate_offline=-1
default failrate_cnt=40
default failrate_interval=60
default inherit_env=TRUE
default tcp_trace=FALSE
 tcp_wrappers=TRUE (tcp_wrappers attribute is now set)

13-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

The following commands show how the svcadm and svcs commands can be used to control and monitor

the ftp service:

inetd as a Restarter

For many network services, inetd is the specified restarter, and it sometimes called a “delegated restarter”

(i.e., it manages the starting and stopping of services in lieu of the default restarter svc.startd). For

example, in the SMF repository for the ftp service, the service inetd is listed as the restarter. (By default,

the manifest for the ftp service, /var/svc/manifest/network/ftp.xml, specifies svc:/network/

inetd:default as the restarter.)

At boot, the master restarter svc.startd starts the service inetd, which in turn listens for requests for

network services such as ftp. When an incoming ftp request occurs, inetd determines that the request is

for the ftp service (network/ftp), and invokes the appropriate start method (/usr/sbin/in.ftpd -a).

Figure 2 shows the interaction of inetd and the ftp service.

svcadm disable ftp
svcs ftp
STATE STIME FMRI
disabled 9:09:26 svc:/network/ftp:default

svcadm enable ftp
svcs ftp
STATE STIME FMRI
online 9:09:47 svc:/network/ftp:default

14-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Figure 2. inetd-based services (such as ftp) are managed within SMF

SMF
repository

inetd reads
 properties from
SMF repository

Incoming
ftp

request?

Y

N

inetd determines
request is for

ftp service

 inetd invokes
start method

/usr/sbin/in.ftpd -a

15-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Creating a New SMF Service
The easiest way to add a new service to SMF is to write an XML manifest that describes the service, each

instance, and its properties. The manifest defines:

• Service methods. The manifest specifies a set of methods to start, stop, and, optionally, refresh the

service. (Once service properties are defined in the SMF repository, the svccfg command can be used

to list and modify the service methods.)

• Dependencies. Service instances may have dependencies on other services or files, and those

dependencies govern when the service is started and automatically stopped. When the dependencies

for an enabled service are not satisfied, the service is kept in the offline state. When all of the service’s

dependencies are satisfied, then the service is started and transitioned to the online state.

• Restarter. Each service is managed by a single restarter. The master restarter, svc.startd, manages

states for many service instances and their dependencies. For some services, a delegated restarter

(such as inetd for network services) is specified.

Constructing a New SMF Service — An Example

A step-by-step example will help to explain how to create a new service within SMF. Constructing the foo

service requires the following components:

• The daemon /opt/SUNWsmftest/bin/foo. This is a program with no controlling tty that constantly runs

and looks for service requests. In this example, the foo program is simply a placeholder and does

nothing useful.

• The method /opt/SUNWsmftest/lib/svc-foo.sh. This is a shell script that starts the daemon.

• The XML manifest file /var/svc/manifest/system/foo.xml. The manifest describes the service and its

properties to the SMF repository.

16-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

The method (/opt/SUNWsmftest/lib/svc-foo.sh) is the following shell script:

For the sake of simplicity, this example uses the XML manifest of the existing cron service — the

/var/svc/manifest/system/foo.xml file is actually a copy of the cron manifest with a few simple

modifications. It is beyond the scope of this article to extensively discuss the writing of SMF manifest files

using XML, but for more information, see the article “Predictive Self-Healing: Solaris Service Management

Facility — Service Developer Introduction” on the BigAdminSM System Administration Portal

(http://www.sun.com/bigadmin/content/selfheal/sdev_intro.html). In addition, the syntax specification for

SMF manifests is available in /usr/share/lib/xml/dtd/service_bundle.dtd.1, and may be helpful.

Note – It is not supported to edit any Solaris 10 OS XML manifest files shipped with the OS to modify built-
in system services. Changes to existing system services should be made using svccfg. In this example, a
copy of an XML manifest is edited to create a new service.

#!/sbin/sh
. /lib/svc/share/smf_include.sh

 if [-x /opt/SUNWsmftest/bin/foo]; then
 /opt/SUNWsmftest/bin/foo
 else
 echo "/opt/SUNWsmftest/bin/foo is missing or not executable."
 exit $SMF_EXIT_ERR_CONFIG
 fi

 exit $SMF_EXIT_OK

17-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Here is the contents of the XML manifest file foo.xml:

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">
<service_bundle type='manifest' name='SUNWcsu:foo'>

<service
name='system/foo'
type='service'
version='1'>

<single_instance />

<!-- foo_opt says that foo depends on local filesystem /opt -->
<dependency

name='foo_opt'
type='service'
grouping='require_all'
restart_on='none'>
<service_fmri value='svc:/system/filesystem/local' />

</dependency>

<!-- foo_cron says that foo depends on svc:/system/cron -->
<dependency

name='foo_cron'
type='service'
grouping='require_all'
restart_on='refresh'>
<service_fmri value='svc:/system/cron' />

</dependency>

<exec_method
type='method'
name='start'
exec='/opt/SUNWsmftest/lib/svc-foo.sh'
timeout_seconds='60'>
<method_context>

<method_credential user='root' group='root' />
</method_context>

</exec_method>

<exec_method
type='method'
name='stop'
exec=':kill'
timeout_seconds='60'>

</exec_method>

<instance name='default_foo' enabled='false' />

<template>
<common_name>

<loctext xml:lang='C'>
A simple example created by the author
</loctext>

</common_name>
</template>

</service>
</service_bundle>

18-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

In the first part of the XML manifest above, notice the name field, which contains the FMRI service identifier

system/foo. The two dependency blocks define dependencies called foo_cron (which states that foo

depends on the service system/cron) and foo_opt (which states that foo depends on the filesytem /opt).

The first exec_method block references the start method, /opt/SUNWsmftest/lib/svc-foo.sh, and

specifies the credentials with which the start method will be executed (user and group are “root”). The

second exec_method block includes the keyword “:kill” for the stop method, although a separate stop

method shell script or other executable could have been defined instead. (The syntax “:kill -9” could

also have been used; however this is a more drastic approach because it kills the process without allowing

it to gracefully exit.)

In the commands below, svccfg import reads in the XML manifest and adds the foo service to the

SMF repository:

At this point, the new foo service is defined within SMF, but the instance is in the disabled state. (This is

preferred so that an administrator can precisely control the start of a new service, rather than having it start

automatically. The instance element in the manifest specifies that the service instance should be created in

the disabled state.)

The administrator can then use the following commands to enable the foo service and to verify that the

service is online and that the daemon is running:

At this point, the foo service is ready to handle service requests.

Service Dependencies
Many services require the availability of other services before they are able to start. There are also cases

when a service must be restarted if another service is restarted, or stopped when another service has

been disabled.

Existing dependency relationships for a service can be viewed using options to the svcs command.

The "-d" option shows what other services this service depends on, and the "-D" option shows what

other services depend on this service. For example, the sendmail service has the following dependencies:

svccfg import /var/svc/manifest/system/foo.xml
svcs foo
STATE STIME FMRI
disabled 10:56:21 svc:/system/foo:default_foo

svcadm enable foo
svcs foo
STATE STIME FMRI
online 10:57:11 svc:/system/foo:default_foo
ps -ef | grep foo
 root 753 1 89 10:57:11 ? 0:48 /opt/SUNWsmftest/bin/foo

19-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Entries in a service’s XML manifest file are used to describe the dependency relationship between

services. An excerpt from the manifest for the cron service defines two dependency relationships for cron

(the cron service depends on local filesystem services and name services). A third dependency is defined

using the “dependent” block, which is used to indicate that the multi-user milestone service depends on the

cron service.

svcs -d network/smtp:sendmail
STATE STIME FMRI
online 18:20:14 svc:/system/identity:domain
online 18:20:26 svc:/network/service:default
online 18:20:27 svc:/system/filesystem/local:default
online 18:20:27 svc:/milestone/name-services:default
online 18:20:27 svc:/system/system-log:default
online 18:20:30 svc:/system/filesystem/autofs:default
svcs -D network/smtp:sendmail
STATE STIME FMRI
online 18:20:32 svc:/milestone/multi-user:default

...
<service

name='system/cron'
type='service'
version='1'>

<single_instance />

<dependency
name='usr'
type='service'
grouping='require_all'
restart_on='none'>
service_fmri value='svc:/system/filesystem/local' />

</dependency>

<dependency
name='ns'
type='service'
grouping='require_all'
restart_on='none'>
service_fmri value='svc:/milestone/name-services' />

</dependency>

<dependent
name='cron_multi-user'
type='service'
grouping='optional_all'
restart_on='none'>
service_fmri value='svc:/milestone/multi-user' />

</dependent>
...

20-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Dependency Attributes

In an XML manifest like the one above, the “grouping” attribute describes the meaning of a dependency

with multiple targets. Some of the options are:

• require_all means that all dependency services must be online before the dependent service will start.

• require_any means that only one in the group of dependency services must be online for the dependent

service to start.

• optional_all means that if the dependency services are enabled and able to run (not in maintenance),

they must be online or degraded before the dependent service is started.

• exclude_all means that all of the dependency services must not be running for the dependent service

to run.

Another attribute in the XML dependency block is the restart_on field, which describes what action the

dependent service’s restarter will take when one of the services on which it depends changes state. Here

is a list of options for the restart_on attribute:

• If restart_on is set to none, the dependency service(s) need only be online for the dependent service
to start. After that, the dependency service(s) can be stopped and the dependent service will continue
to run.

• If restart_on is set to error and the dependency service(s) are restarted because the service
encountered a hardware error or software error (such as a coredump), then the dependent service is
also restarted.

• If restart_on is set to restart and the dependency service(s) get restarted, then the dependent service
will be restarted also. (Note that the process associated with the service instance will be restarted with a
different process ID.)

• If restart_on is set to refresh and the dependency service(s) are restarted or refreshed (via svcadm
refresh svc) then the dependent service also gets restarted. (Note that the process associated with the
service instance will be restarted with a different process ID.)

21-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Service Dependency Example

In the earlier manifest for the foo service (page 17), a dependency property (foo_cron) is defined and

specifies that the foo service depends on system/cron. The dependency also specifies

“restart_on=refresh“. This means that if the cron service gets refreshed or restarted, then foo also gets

restarted. Table 3 shows how actions on cron might impact the foo service with restart_on=refresh.

Table 3. An example of dependent services with restart_on=refresh

Action Result

pkill -9 cron cron gets restarted (this is the Solaris OS default behavior)
foo also gets restarted

svcadm disable system/cron cron is disabled
foo goes offline

svcadm enable system/cron cron goes online
foo goes online

svcadm refresh system/cron
cron remains running and its configuration is updated (cron has no refresh
method)
foo gets restarted

pkill -9 foo cron is not affected
foo gets restarted

22-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

SMF Initialization at Boot
Figure 3 illustrates how SMF is initialized at boot time. As with previous Solaris OS versions, the init

process is still the first process that the Solaris 10 OS kernel starts at boot. The init process reads

/etc/inittab, which includes an entry for the SMF master restarter daemon svc.startd.

svc.startd starts (and restarts) all SMF services, except for services which specify a delegated restarter

(such as inetd, which manages network services like ftp, rlogin, etc.).

Figure 3. Initialization of SMF services

The SMF master restarter daemon invokes a second daemon, svc.configd. This daemon is the SMF

configuration daemon, and manages all access to the underlying SMF repository. The repository database

resides in the file /etc/svc/repository.db. It is backed up automatically and can be recovered if it

becomes corrupted (see the description of repository back-up and recovery in Chapter 14, “Managing

Services” in the Solaris 10 System Administration Guide: Basic Administration (817-1985-xx).

The repository maintains configuration information for each service, including its restarter and its methods.

The restarter specified for each service invokes the appropriate method to start each service.

As services start, there are two directories used for log files. The first directory, /etc/svc/volatile, is

used by svc.startd and records repository errors as well as errors for services that start before

svc:/system/filesystem/minimal (i.e., before /var is mounted). Other service messages are

logged to a second log file directory, /var/svc/log. For some system services, this is where the

restarter directs messages in related log files.

boot init (pid=1)
starts

init reads
/etc/inittab

svc.startd

svc:/system/ svc:/application/
print/server

svc.configd
SMF

Configuration

cron
svc:/network/

inetd

svc:/network/
login:rlogin

svc:/network/
ftp

Repository

23-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Milestone Services and System Booting
A milestone is a special type of SMF service that merges several service dependencies. Usually, a

milestone service does nothing useful itself, but declares a specific state of system-readiness on which

other services can depend. The run level-to-milestone relationship is a one-way master-slave model — the

run level is the master which, when changed, also changes the milestone. Changing the milestone,

however, does not inherently change the run level. To avoid confusion, it is better to continue to use the

previously available run level commands (e.g., “init s”, “boot -s", etc.).

The services that constitute run levels S, 2, and 3 are each represented by milestone services — the

single-user, multi-user, and multi-user-server milestones correspond to run levels S, 2, and 3, respectively

(Table 4). In addition to the run level milestones, there are two additional milestones: “all” and

“none”. These are shorthand for a milestone with no services, or a milestone with all enabled

services, respectively.

Table 4. Corresponding milestones and run levels

New boot options allow the system to be booted directly to one of these five specific milestones:

Note – The milestone boot options may be useful for system maintenance (particularly when the system
will not boot otherwise) and sometimes for testing the addition of new services. Although SMF adds "boot
-m" and “svcadm milestone”, the run level interfaces (e.g., “init s”, “boot -s", etc.) still exist, and should
be used for most system administrative tasks.

In the rare case when a milestone command is used, remember that there are distinct differences between

milestones and run levels. For example, booting to the single-user milestone (with “boot -m

milestone=single-user") is different than the commonly used "boot -s". When the system is explicitly

booted to the single-user milestone, exiting the console administrative shell with Control-D does not

complete the full system boot process (as Control-D does with "boot -s"). After the command

"boot -m milestone=single-user", the command:

SMF Milestone Run Level

milestone none N/A

milestone single-user S

milestone multi-user 2

milestone multi-user-server 3

milestone all 3

boot -m milestone=none

svcadm milestone all

24-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

brings the system to the multi-user-server milestone. Changing the milestone in this way, however, will not

change the run level as reported by “who -r”.

Specifying a Milestone Dependency on a Service

Suppose a new service is to start before a specific milestone is reached — for example, suppose the foo

service should start before the system reaches svc:/milestone/single-user. Using the dependent tag in

the manifest file foo.xml indicates that the the single-user milestone is dependent on the new service foo:

The dependent relationship is identified through the name foo_single-user. (Note the naming convention

indicates that the single-user milestone depends on foo, and helps to avoid name conflicts.) The grouping

tag optional_all means that if the foo service is enabled and able to run (it is not in the maintenance

state), then it must be online or degraded before the single-user milestone is considered complete.

Once the manifest file is read, the dependent tag creates a property group in svc:/milestone/single-

user as reported by svccfg:

It also creates a property group in svc:/system/foo:

By making a milestone service dependent on a new service, then the new service will be started

automatically when the run level is changed.

...
<!-- single-user milestone is dependent on foo -->
<dependent

name='foo_single-user'
grouping='optional_all'
restart_on='none'>
<service_fmri value='svc:/milestone/single-user' />
</dependent>

...

foo_single-user dependency
foo_single-user/entities fmri svc:/system/foo
foo_single-user/external boolean true
foo_single-user/grouping astring optional_all
foo_single-user/restart_on astring none
foo_single-user/type astring service

dependents framework
dependents/foo_single-user astring svc:/milestone/single-user

25-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Resolving Dependency Cycles
SMF service dependencies offer a tremendous benefit in making sure that a service is not started unless its

requirements are met. However, service dependencies also introduce the potential for system

administrators to inadvertently create a new service-related problem — a dependency cycle. A dependency

cycle occurs when a service depends on another service which in turn depends on the first service.

For example, suppose an administrator adds a new service (foo) by constructing a new service manifest

file. The new service is to run before the system reaches single-user mode, so the administrator adds a

dependency relationship such that milestone/single-user is dependent on foo (Figure 4). Since the

foo service also requires name services running before it can start, the administrator adds a second

dependency relationship such that foo depends on name-services. In this way, the administrator has

accidentally created a dependency cycle — milestone/single-user cannot complete until the foo service

starts, but the foo service cannot start until name-services starts, and name-services cannot start because

it is waiting on milestone/single-user to complete. Figure 4 shows a hypothetical chain of dependencies

that might exist in such a situation.

Figure 4. Dependency cycle example

svc:/network/
rpc/nisplus

svc:/network/rpc/
keyserv:default

depends on

svc:/network/
rpc/bind

svc:/system/
sysidtool

svc:/milestone/
single-user

svc:/system/
foo

svc:/milestone/
name-services

depends on

depends on

depends on depends on

depends on

depends on

Dependency
Cycle

Example

depends on

depends on
svc:/network/

service

svc:/network/
dns/client

26-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

If the system detects a dependency cycle during the import of the manifest file, it may generate an error

message as in the following:

If a dependency cycle is accidentally created, it is possible that the system will not go into multi-user mode,

or it might hang during the boot process. If this occurs, then booting to the “none” milestone may be useful:

After entering the root password, the root user is in a maintenance shell with a read-only root file system.

The next command mounts the /usr and root partitions in read-write mode so that the problem can

be resolved.

At this stage, the administrator can remove the XML manifest file for the foo service, disable the foo

service, delete its configuration from the repository, and reboot:

svccfg import /var/svc/manifest/system/foo_daemon.xml
Jan 1 08:08:22 v4u-5k svc.startd[7]: Putting service
svc:/milestone/single-user:default into maintenance because it
completes a dependency cycle:
Jan 1 08:08:22 v4u-5k svc:/system/foo_daemon
Jan 1 08:08:22 v4u-5k svc:/system/foo_daemon:default_foo_daemon
Jan 1 08:08:22 v4u-5k svc:/milestone/name-services
Jan 1 08:08:22 v4u-5k svc:/milestone/name-services:default
Jan 1 08:08:22 v4u-5k svc:/network/dns/client
Jan 1 08:08:22 v4u-5k svc:/network/dns/client:default
Jan 1 08:08:22 v4u-5k svc:/network/service
Jan 1 08:08:22 v4u-5k svc:/network/service:default
Jan 1 08:08:22 v4u-5k svc:/network/rpc/nisplus
Jan 1 08:08:22 v4u-5k svc:/network/rpc/nisplus:default
Jan 1 08:08:22 v4u-5k svc:/network/rpc/keyserv
Jan 1 08:08:22 v4u-5k svc:/network/rpc/keyserv:default
Jan 1 08:08:22 v4u-5k svc:/network/rpc/bind
Jan 1 08:08:22 v4u-5k svc:/network/rpc/bind:default
Jan 1 08:08:22 v4u-5k svc:/system/sysidtool:net
Jan 1 08:08:22 v4u-5k svc:/milestone/single-user:default

 # boot -m milestone=none

svcadm enable -rts filesystem/usr

rm /var/svc/manifest/system/foo.xml
svcadm disable foo
svccfg delete system/foo
reboot

27-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Another Dependency Example — Direct Root Login

The Solaris 10 OS features Role-Based Access Control (RBAC), which allows administrative tasks to be

divided among a number of roles, granting each role only the necessary authority needed to perform

related administrative tasks. RBAC allows all administrative actions to be traceable to an authenticated

individual instead of to just a single root user, which provides more granular user control and greater

accountability.

By leveraging RBAC capabilities, an administrator can make a server more secure by specifying root

privileges as a role and preventing direct login to the server as the user “root”. An administrator might also

disable all local logins on the server by modifying /etc/passwd. In such a configuration, to gain root

access, the administrator must have a valid network login on the corporate network and then assume the

privileged role of root. In this way root actions can be subsequently traced back to the actual user.

Although such a configuration improves accountability for root access, a problem can occur if name

services such as NIS do not initialize properly in this type of configuration — in such a case, no one, not

even root, can log in. (Such an error might occur, for example, if /etc/defaultdomain was incorrect or

missing.) The system continues to give the usual console login prompt, but every login attempt is

answered with a “Login incorrect” message.

Wouldn't it be great if the system was smart enough to allow root to login for a maintenance shell when

such a problem occurs? That's exactly what this dependency example does. The system/console-login

service, which displays the console login screen, must be prevented from starting if network/nis/client

won't start name services. By establishing a dependency relationship (system/console-login depends on

network/nis/client, as shown below), SMF mandates that the console login screen will not start without

name services running:

If svc.startd cannot start system/console-login (in this case, due to nis/client failing), then it calls

/etc/sulogin to enable a maintenance shell (similar to what the administrator sees with “boot -s”). If this

happens, then the administrator can still log in as root and make repairs.

svccfg
svc:> select console-login
svc:/system/console-login> addpg neednis dependency
svc:/system/console-login> setprop neednis/entities = fmri: svc:/network/nis/client
svc:/system/console-login> setprop neednis/grouping = astring: require_all
svc:/system/console-login> setprop neednis/restart_on = astring: none
svc:/system/console-login> setprop neednis/type = astring: service
svc:/system/console-login> quit (exit the svccfg interactive session)
svcadm refresh console-login

28-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Summary
The new Service Management Facility (SMF) in the Solaris 10 OS helps to simplify the management of

system and application services. The SMF repository maintains service properties even across system

reboots, allowing services to be easily and automatically restarted when necessary. In addition, SMF

allows administrators to define relationships between services so that a service is not started unless the

other services that it needs are already running.

SMF provides consistent management interfaces that create and control both system and application

services. It greatly improves visibility into service states and provides error logs that can help

administrators more quickly resolve service-related problems. As a part of the innovative Predictive Self-

Healing technologies that Sun has engineered into its software and hardware products, SMF capabilities

improve overall service management, simplifying data center administration and contributing to lower

administrative cost and enhanced availability.

About the Author
Rob Romack is a member of Sun's PTS Americas Midrange Server Group where he currently focuses on

resolving issues with Sun's midrange servers. Prior to his current role with PTS engineering, Rob worked

for Sun Enterprise™ Services in various roles including as a System Support Engineer in San Francisco,

and in the OS kernel support group in the call center.

References
• Man pages for the Solaris 10 OS, including:

– smf(5)
– smf_bootstrap(5)

– smf_method(5)
– svc.startd(1M)
– svcadm(1M)
– svccfg(1M)
– svcprop(1)
– svcs(1)

– service_bundle(4)
– inetadm(1M)

• Solaris 10 System Administration Guide: Basic Administration (817-1985-xx), Chapter 14,

“Managing Services"

• The OpenSolaris™ SMF community, http://opensolaris.org/os/community/smf/

• “Predictive Self-Healing: Solaris Service Management Facility — Service Developer Introduction,”

BigAdmin System Administration Portal, http://www.sun.com/bigadmin/content/selfheal/sdev_intro.html

• “Predictive Self-Healing: Solaris Service Management Facility — Quickstart Guide,” BigAdminSM System

Administration Portal, http://www.sun.com/bigadmin/content/selfheal/smf-quickstart.html

• “In a Class By Itself — The Solaris™ 10 Operating System”, A Sun Whitepaper, November, 2004.

• Brunette, Glenn. “Restricting Service Administration in the Solaris 10 Operating System,” Sun BluePrints

OnLine, June 2005. To access this article online, go to http://www.sun.com/blueprints/0605/819-

2887.pdf

29-Service Management Facility (SMF) in the Solaris 10 Operating System Sun Microsystems, Inc.

Service Management Facility (SMF) in the Solaris 10 Operating System — February 2006

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If you live in the

United States, Canada, Europe, or Japan, you can purchase documentation sets or individual manuals

through this program.

Accessing Sun Documentation Online
The docs.sun.com Web site enables you to access Sun technical documentation online. You can browse

the docs.sun.com archive or search for a specific book title or subject. The URL is http://docs.sun.com

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site at:

http://www.sun.com/blueprints/online.html

30-Service Management Facility (SMF) in the Solaris 10 Operating System sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

