
SolarisTM MemoryPlacementOptimization
andSunFireTM Servers

TechnicalWhitePaper
March,2003

Please

Recycle

© 2003 Sun Microsystems, Inc. All rights reserved.

Printed in the United States of America.

4150 Network Circle, Santa Clara, CA 95054 U.S.A

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-

19.

Sun Microsystems, Inc. has intellectual property rights relating to technology described in this document. In particular, and

without limitation, these intellectual property rights may include one or more patents or pending patent applications in the

U.S. or other countries.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Solaris, Sun Fire, Sun Enterprise, Gigaplane, Gigaplane-XB, Sun StorEdge, Java, JVM,

and J2SE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the

United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun

Microsystems, Inc.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW

EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN

THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

i

Contents

Introduction . 1

Sun Fire Servers . 2

Memory Latency and Bandwidth . 3

Memory Placement Optimization . 5

Implementation . 6

Locality Groups . 6

Scheduler . 7

Memory Allocation . 8

System Variables . 9

Informational and Controlling APIs . 13

MPO in the Solaris Operating System . 16

Memory Placement Optimization Benefits . 17

Business Computing Test Results . 18

Data Warehousing . 18

Enterprise Resource Planning . 18

Java Application . 18

On-Line Transaction Processing . 19

High Performance Technical Computing Test Results 23

Memory-Copy Microbenchmark . 23

Finite-Differences Microbenchmark . 27

Additional Tests . 29

Summary . 31

Appendix A - Code Examples . 33

Detecting MPO Status . 33

Controlling MPO . 34

Appendix B - Sun Fire Servers . 39

Introduction to Cache Coherency . 39

ii Solaris Memory Placement Optimization and Sun Fire Servers —March 2003

Sun SMP Server Generations . 40

Sun Fireplane Interconnect . 41

Small Sun Fireplane Interconnect . 48

Workgroup Sun Fireplane Interconnect . 49

Mid-Range Sun Fireplane Interconnect . 49

High-End Sun Fireplane Interconnect . 53

Sun Fire Server Cabinets . 60

Memory Access Performance . 60

References . 63

1

Introduction 1

The latest version of the SolarisTM Operating System has several performance

and scalability improvements in a variety of areas: improved threading library,

support for multiple page sizes, UFS concurrent direct I/O, advanced page

coloring, to name a few.

This document describes one of those improvements, called Memory

Placement Optimization, first introduced in update 9/02 of the Solaris 9

Operating System. Its purpose is to improve the placement of memory pages

across the physical memory of server, resulting in increased performance.

Chapter 2 describes the Memory Placement Optimization technology, and the

specific variables and programming interfaces that were created in the Solaris 9

Operating System.

Chapter 3 demonstrates the benefits of utilizing the Memory Placement

Optimization feature, by discussing the results of tests on a variety of

workloads and benchmarks.

Appendix A lists code examples that use Memory Placement Optimization

commands and variables.

In order to understand how Memory Placement Optimization works, and its

value, it is useful to study the design of the Sun FireTM servers, including their

memory latency and bandwidth characteristics. Appendix B in this white

paper, as well as References [1] to [6], describe the subject in detail. A brief

overview is provided next.

2 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

1

Sun Fire Servers
The UltraSPARC® III-processor-based Sun Fire server family uses common

technology and components to create efficient shared memory processing

(SMP) systems at different sizes and capacities.

The basic building blocks for these servers are system devices like processors,

memory units and I/O controllers. The system devices are connected through

the Sun Fireplane system interconnect, which has a crossbar switch design

based on a point-to-point protocol. As the number of system devices increases,

so does the sophistication and capacity of the Sun Fireplane interconnect

implementation.

The Sun Fireplane-based servers can be divided into four categories by the

number of interconnect levels required:

1. Small server. Four system devices (two processors, one memory unit, and

one I/O controller) require only one level of interconnect.

2. Workgroup server. 18 system devices (eight processors, eight memory units,

and two I/O controllers) require two levels of interconnect.

3. Mid-size server. 56 system devices (24 processors, 24 memory units, and

eight I/O controllers) require three levels of interconnect.

4. Large server. 180 system devices (72 processors, 72 memory units, and 36

I/O controllers, or 106 processors, 72 memory units and 2 I/O controllers)

require four levels of interconnect.

The Sun Fire servers are constructed by placing system devices into physical

components, like boards or assemblies. Processors and memory devices share a

single board, called a Uniboard in the case of the Sun Fire 3800-6800 (mid-size)

servers and Sun Fire 12K and 15K (large) servers. A Uniboard contains up to 4

UltraSPARC III processors, and up to 32 GB of memory distributed into 16

logical banks. A unique feature of the UltraSPARC III processor and Sun

Fireplane interconnect design is that the memory control units are located

inside the processors. Each processor controls 4 logical banks.

The three-level interconnect in a server like the Sun Fire 6800 combines up to 6

Uniboards, and up to 4 I/O assemblies, in a 10x10 crossbar switch.

For a server like the Sun Fire 15K, the four-level interconnect combines up to

18 Uniboards (the same used for the Sun Fire 3800-6800 servers) and up to 18

I/O assemblies in a 18x18 crossbar. There is also an option to exchange I/O

Introduction 3

1

assemblies for boards called MaxCPU, which contain only two UltraSPARC III

processors, with no associated memory. In that case, the Sun Fire 15K server

can support up to 106 processors (distributed into 18 Uniboards and 17

MaxCPU boards) if only one I/O assembly is installed.

Memory Latency and Bandwidth

In terms of memory performance, the important characteristics of a server are

latency and bandwidth. Latency measures the speed in which data can be

brought from memory to the processors (low latency means fast access), and

bandwidth measures how much data can be moved in a certain interval (high

bandwidth means large data-transfer rates).

The design target for the Sun Fireplane interconnect was a balanced system in

which available bandwidth increased with the server size, while latencies were

kept low across the system. Those are essentially the qualities that define an

efficient SMP architecture. The Sun Fireplane interconnect builds on the

success of the Sun GigaplaneTM and Sun Gigaplane-XBTM designs which led

the previous generation of Sun data center servers, the Sun EnterpriseTM 3500-

6500 and 10000 systems, to be recognized as industry-leading SMP servers.

SMP implementations generally demonstrate some memory locality effects,

which means that when a processor requests access to data in memory, that

operation will occur with somewhat lower latency if the memory bank is

physically close to the requesting processor. In the case of Sun Fire systems, the

UltraSPARC III processor presents an innovative design that places the

memory controller inside it, allowing for a fast, efficient, and scalable memory

coherency implementation. Such a design causes a processor to experience

faster access to the memory banks that are connected to it.

Small and workgroup Sun Fire servers are so compact that memory locality

effects are basically negligible. The architecture of the mid-size and large

servers, like the Sun Fire 3800-6800 and 12K/15K systems, present memory

locality characteristics that can be explored in order to extract higher

performance from the SMP architecture.

The mid-size and large Sun Fire servers provide industry leading performance

using the Solaris 8 Operating System, which is not aware of memory locality

effects. Nevertheless, Sun has invested in optimizing further the operating

system’s method for memory allocation. The Memory Placement Optimization

feature allows the Solaris 9 Operating System to intelligently place memory

4 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

1

pages and processes throughout the SMP server in order to improve memory

latencies and bandwidth, providing more performance and value to the Sun

Fire products.

5

Sun Fire servers offer a scalable, efficient architecture that enables high

performance in a shared memory programming model. However, there are

substantial performance gains to be realized if the Solaris Operating System

takes advantage of the smaller memory latencies, and higher memory

bandwidth, obtained with careful placement of memory pages.

As seen in the previous chapter, Sun Fire mid-size and large servers have some

elements of locality in memory access. The Memory Placement Optimization

(MPO) feature, introduced in the Solaris 9 9/02 Operating System, takes

advantage of such locality in order to improve the performance of user

applications.

MPO technology, in general, increases the performance of individual

applications over that seen on previous releases of the Solaris Operating

System. In addition to improving individual job performance, it increases

overall system throughput for multiple applications.

With the addition of MPO technology to the Solaris Operating System kernel,

the system is better able to explore the bandwidth within different levels of the

system interconnect. The kernel is also able to take advantage of the fact that

memory located near a processor can be accessed more quickly than memory

which is located across the system’s Sun Fireplane interconnect. The end result:

higher throughput on a wide variety of workloads, from business computing,

like decision support and transaction processing, to high performance technical

computing (HPTC) applications.

MemoryPlacementOptimization 2

6 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

2

Although such gains can be substantial, they are highly dependent on the

workload characteristics. This chapter will discuss how the MPO feature is

implemented in the Solaris Operating System, and the next chapter will show

some examples of workloads that benefit from it.

Implementation
The MPO overall strategy is to optimize for performance through latency and

bandwidth, attempting to ensure that memory is as close as possible to the

processors that access it, while still maintaining enough balance within the

system to avoid the introduction of bottlenecking hotspots.

Locality Groups

Before making any policy decisions to explore memory locality, the operating

system needs some way to model the underlying structure of the hardware in

order to determine which processors and memory are close to one another. In

the Solaris Operating System, this structure is represented by locality groups,

or lgroups .

An lgroup is a subset of a machine in which all components can access one

another within a bounded latency interval. Currently, lgroups include only

processors and memory that are considered to be co-local to one another. In

other words, cache-to-cache transfers between any two processors in the group

will take roughly the same amount of time, and that time will be less than the

time required to retrieve data from the cache of a processor in a different

lgroup . In addition, all of the memory in the lgroup can be accessed in

roughly the same amount of time from each processor within the group, and

that time is less than the time required to access memory in any other lgroup .

In the simplest case, all of the processors and memory in the system are in a

single lgroup . This case applies to Sun’s pre-Sun Fire servers, all of which

have architectures with negligible locality effects.

In the next simplest case, the Sun Fire 3800 to 6800 servers, an lgroup consists

of the CPUs and memory on a single Uniboard. The system may contain

multiple Uniboards, and consequently multiple lgroup s. In this case, all

cache-to-cache transfers take the same amount of time, as do all memory-to-

cache transfers.

Memory Placement Optimization 7

2

A more complicated case occurs for the Sun Fire 12K and 15K servers. In this

design, an lgroup may be just a single Uniboard, thus offering the same

characteristics as an lgroup on one of the smaller servers. The system will in

general contain multiple Uniboards, and consequently multiple lgroup s.

However, when a Sun Fire 12K or 15K server is configured with MaxCPU

boards, an lgroup will consist of all the processors and memory on both

boards in the same expander boardset (Uniboards, IO assemblies and MaxCPU

boards are all connected to expander boards; a combination of a Uniboard plus

IO assembly, or Uniboard plus MaxCPU board, is called a boardset − see

Appendix B for details). In this case, the latencies within a single lgroup will

not be strictly uniform, but they are not great enough to warrant the creation of

two different lgroups for the same expander boardset.

Scheduler

When the Solaris Operating System creates a new light-weight process (LWP),

it is assigned a “home lgroup ”. This home lgroup is used to minimize the

frequency with which a thread moves from one board to another. The selection

of a home lgroup is based upon the number of LWPs in the process, the size

and relative loads of each lgroup in the system, and which lgroups that

process is spread across. The LWP will have an affinity for its home lgroup
and will tend to run and allocate its memory there.

The dispatcher will always try to run the LWP on its home lgroup if possible.

If all of the CPUs on the home lgroup are busy and running higher priority

threads, it will try to find the best place to run the LWP outside of the home

lgroup . Running the LWP on an lgroup other than its home is referred to as

“running remotely”. Even if an LWP runs on a remote lgroup , its home

lgroup will remain unchanged. The next time the thread is scheduled, it will

try to return to its home lgroup if a CPU is available.

Dispatching an LWP to its home locality group as often as possible serves

several purposes. It reduces the number of times the LWP has to access

memory on a remote board. In addition, locality-aware scheduling reduces the

number of inter-board cache-to-cache transfers. Avoiding remote cache

transfers provides for a faster ramp-up time should an LWP be “migrated”

from one CPU’s run queue to another. This sort of CPU migration occurs

frequently in transaction processing type workloads, which run with

thousands of LWPs that frequently sleep waiting on I/O.

8 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

2

There are two ways in which an LWP’s home lgroup can change. The most

obvious way an LWP’s home lgroup can change is if all the processors in its

home lgroup are removed from the system, either through off-lining or a

dynamic reconfiguration operation. The other way that an LWP’s home

lgroup can change is when that LWP is bound to a processor in a different

lgroup . In that case, the new processor’s lgroup becomes the LWP’s new

home. Even if the LWP is subsequently unbound, it will retain this new home

lgroup .

Note that scheduling affinity is not done for realtime threads, since the

implementation is POSIX conformant. Hence, jobs should be placed into

timeshare (TS), interactive (IA), fixed priority (FX), or fair share (FSS)

scheduling classes in order to benefit from MPO.

Memory Allocation

In the Solaris Operating System, memory allocation is a two step process. The

first step assigns virtual memory. This step occurs when an application calls

brk() to extend its heap or when it maps in a file. The second step is to assign

physical memory to back the virtual memory. The assignment of physical

memory does not occur until the application first tries to read or write to the

new virtual address. At that point, the Solaris Operating System will select a

physical memory page and create a mapping from the application’s virtual

address to this physical page.

The key to delivering the best performance on systems with sizeable memory

locality differences is to ensure that physical memory is allocated close to the

threads that are expected to access it. This allows for both lower latency and

higher bandwidth. Obviously, when a process allocates memory, the operating

system cannot predict with certainty how that memory will be used in the

future. However, there are several different assumptions that the operating

system can make that hold in many cases.

The simplest policy that one can adopt when allocating memory for locality

awareness is “first touch”. This simply means that memory is allocated from

the home lgroup of the LWP that first tries to access that memory. This

approach assumes that whichever thread first accesses the memory is likely to

be the thread that will access that memory most frequently in the future. This

assumption obviously holds for single-threaded applications, but it also holds

for many multi-threaded applications as well. “First touch” is the default

memory allocation policy used for private memory. Note that memory is

Memory Placement Optimization 9

2

allocated from the LWP’s home lgroup , even if the LWP is running remote

from its home at the time the memory is allocated. This behavior reflects an

assumption that the LWP will primarily be scheduled to run on its home

lgroup .

Shared memory (e.g., Intimate Shared Memory (ISM), MAP_SHARED
mmap() ’ed files, etc.) is, by definition, likely to be accessed by multiple

threads. Assuming that some significant number of those threads will be

running in different lgroups , the Solaris Operating System allocates shared

memory using a random memory placement policy by default. This policy

optimizes for bandwidth while trying to minimize average latency for the

threads accessing it throughout the server. It spreads the memory across as

many memory banks as possible, distributing the load across many memory

controllers and bus interfaces, preventing any single component from

becoming a performance-limiting hotspot. In addition, random placement

improves the reproducibility of performance measurements, by ensuring that

the relative locality of threads and memory remains roughly constant across

multiple runs of an application.

System Variables

Most of the locality-related optimizations introduced with MPO rely on some

fairly simple heuristics, to provide good performance for most applications. It

is possible that some applications that do not behave as expected will

experience some performance problems with this new functionality. In case of

any such issues, the values of the MPO internal system variables can help

explain the system behavior, while the controlling APIs described in the next

section can help provide a solution.

Important:
The description of the MPO system variables is provided here solely with the

purpose of explaining the MPO implementation. Changes to these variables are

not supported, and customers experiencing any problems may be required to

change the variables back to their default values for proper diagnostics.

Users should keep in mind that these variables are all internal Solaris

Operating System variables, and do not constitute a formal interface. Although

the commands and variables below are implemented into current releases of

the Solaris 9 Operating System, these variables may change or disappear over

10 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

2

time. In addition, since these are internal variables, there may be no error

detection should they be changed to unexpected values. Their default values

have been carefully chosen to work well together.

First Group

lgrp_mem_default_policy

This variable reflects the default memory allocation policy used by the Solaris

Operating System. This variable is an integer, and its value should correspond

to one of the policies listed in <sys/lgrp.h> . On Sun Fire 3800-6800 servers,

this value is LGRP_MEM_POLICY_NEXT, starting with the Solaris 9 9/02

Operating System, indicating that memory allocation will default to “first

touch”. On Sun Fire 12K and 15K servers, this value is:

• LGRP_MEM_POLICY_RANDOMin the Solaris 9 9/02 Operating System,

indicating that one defaults to random allocation;

• LGRP_MEM_POLICY_NEXTstarting with the Solaris 9 12/02 Operating

System, indicating that one defaults to “first touch” allocation. However, on

Sun Fire 12K and 15K servers without the hardware pre-requisite installed,

all processors and memory will be placed in a single lgroup , essentially

disabling the MPO feature.

See the section entitled “MPO in the Solaris Operating System” for details on

MPO availability and hardware pre-requisites on Sun Fire servers.

lgrp_shm_random_thresh

As described above, large shared memory regions are allocated randomly

rather than using “first touch”. This variable provides control over how large

can a region be before we switch to random allocation. The default is 8MB,

which is large enough to allow communication buffers such as those used by

MPI programs to be local to one of the ends of the communication pipe; yet, it

is small enough that memory regions which are likely to become hot spots will

be spread across the system’s memory controllers.

This variable is an unsigned 64-bit integer, which may be modified at runtime

using a kernel debugger, or via /etc/system .

Memory Placement Optimization 11

2

lgrp_mem_pset_aware

If a process is running within a user processor set (see psrset(1M)), this

variable determines whether “randomly” placed memory for the process is

selected from among all the lgroups in the system or only from those

lgroups that are spanned by the processors in the processor set. This value

defaults to zero, indicating that the Solaris Operating System will select

memory from all the lgroups in the system. This default is appropriate for

systems where processor sets are not used or are only used to isolate

applications from operating system threads. If processor sets are used to isolate

applications from one another, then setting this value to one will likely lead to

more reproducible performance.

lgrp_expand_proc_thresh

This variable controls how quickly a process’ LWPs will spread across multiple

lgroups . If the lowest load among all the lgroups across which the process

is spread exceeds this threshold, that suggests that our current lgroups are all

approaching or exceeding their capacity. Thus, we will consider placing the

next LWP on a new lgroup .

This value reflects the fraction of an lgroup ’s capacity that is being used. To

allow the Solaris Operating System to evaluate loads using only integer

arithmetic, this value is an unsigned 32-bit integer that is set to INT16_MAX
times some fractional capacity.

On Sun Fire 12K and 15K servers, this value defaults to (INT16_MAX*3)/4 ,

indicating that we will not consider spreading a process to a new lgroup until

each of its existing lgroups is at least 75% loaded. On Sun Fire 3800 to 6800

servers, this value defaults to (INT16_MAX/4), indicating that we will consider

spreading to a new lgroup if our existing lgroups are at least 25% loaded.

The different values arise from the differences in architecture between the two

servers. On Sun Fire 12K and 15K servers, the remote latency is significantly

higher than the remote latency on Sun Fire 3800-6800 servers, and, conversely,

the available bandwidth is much greater. Thus, these values reflect an attempt

to manage load to minimize an application’s latency on a Sun Fire 12K/15K

server and maximize an application’s bandwidth on Sun Fire 3800-6800

servers.

12 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

2

Second Group

lgrp_privm_random_thresh

As described above, by default, private memory is always allocated by “first

touch”. This variable makes it possible to allocate large private memory

regions using random placement rather than “first touch”. By default, this

value is ULONG_MAX.

This variable is an unsigned 64-bit integer, which may be safely modified at

runtime using a kernel debugger, or via /etc/system .

lgrp_expand_proc_diff

Once we have decided to spread a process out to a new lgroup , there is no

point in spreading it to a new lgroup that is just as loaded as the lgroups we

are already running on. This variable uses the same capacity units as

lgrp_expand_proc_thresh , and it indicates how much lower the load must

be on a new lgroup before we will assign a new LWP to that lgroup . On

both Sun Fire 3800-6800 and 12K/15K servers, this value defaults to

(INT16_MAX/4) , or a 25% difference in load.

lgrp_loadavg_tolerance

As with system load, an lgroup ’s load is calculated using a decaying average

function, which tends to be more useful than the “instantaneous” load

measurement which can fluctuate widely and quickly. Thus, the load value for

an lgroup is really only an estimate, which is constantly changing. When this

value is actually used to decide which lgroup a new thread should be placed

on, lgrp_loadavg_tolerance is used as a “fudge factor”. If the current

estimated loads on two lgroups are within lgrp_loadavg_tolerance of

one another, we treat those lgroups as being identically loaded, and choose

randomly between them. The value is specified using the same units as the

other load variables. The default value is 0x10000 , which leads to good

performance results for a variety of database and mixed workloads. Our tests

have shown that HPC workloads frequently benefit from a lower value, such

as 0x1000 .

Memory Placement Optimization 13

2

Informational and Controlling APIs

In order to help the developer optimize an application’s performance by

exploring MPO technology, several new APIs have been added to the Solaris

Operating System.

Informational APIs

It is not always easy to identify potential memory-locality-related problems

simply by studying an algorithm in isolation. Furthermore, the use of auto-

parallelizing compilers can introduce memory locality problems that do not

exist in the serial algorithm. The APIs in this section allow an application to

dynamically determine how its threads and virtual memory have been

assigned to processors and physical memory by the Solaris Operating System.

The following is a high-level description of each of the new APIs. The full

details of each can be found in the man pages starting with the Solaris 9

Operating System.

getcpuid(3C)

This routine will return the cpuid on which the calling thread was running

when it executed the call. Unless a thread is bound to a CPU, the Solaris

Operating System is free to schedule it on any CPU in the system (but

following lgroup policies). Hence, there is no guarantee that a thread will still

be running on this CPU.

gethomelgroup(3C)

This routine returns the ID of the home lgroup of the calling thread. A

thread’s home lgroup is a much less transitory value than the current CPU

ID . Once a thread is assigned a home lgroup , that lgroup will not change

unless the thread is explicitly bound to a CPU in a different lgroup , or if all

the CPUs in the lgroup are taken offline. Note that this permanence may not

continue to be true in future releases of the Solaris Operating System. It is

possible that, in the future, threads will eventually migrate from one lgroup
to another in response to system utilization and migration policies.

14 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

2

meminfo(2)

The meminfo(2) system call allows one to query the operating system about

both virtual and physical memory assigned to the calling process. Given a

virtual address in the calling process’s address space, this call can return the

physical address, the lgroup to which that physical address belongs, and the

size of the page. Given a physical address, the call can return the lgroup in

which the memory exists.

This call is useful for diagnostic and verification purposes. Knowing where a

range of memory is physically stored can help explain why accesses to that

memory take longer than expected. This information can then be used to

determine where, or if, calls to madvise(3C) (see next section) might allow the

Solaris Operating System to make better decisions about where memory

should be allocated. Once calls to madvise(3C) have been added, the

meminfo(2) call can be used to verify that the Solaris Operating System has

made the expected changes in its behavior.

Controlling APIs

The goal of MPO technology in the Solaris Operating System is to deliver good

performance on servers with memory locality properties, without making any

changes to the applications. However, there are some applications that could

achieve better performance by improving the operating system’s default

placement policies.

For example, an application in which one thread allocates and initializes a

large dataset from private memory will likely have all of its memory located on

a single lgroup . If the application then spawns many new threads to access

that data, a significant number of those threads are likely to be running on

remote lgroups . Rather than making extensive modifications to an

application, the following API provides a relatively easy method for improving

such an application’s performance. While madvise(3C) is easy to use, using

its MADV_ACCESSflags has some overhead. Consequently, optimal

performance can be obtained by simply having each thread initialize its own

data for this example. This means that, for some applications, it may be the

case that optimal performance will require that the application be restructured

so that each thread initializes and uses a limited portion of the full dataset.

Memory Placement Optimization 15

2

madvise(3C)

This routine allows an application to provide the Solaris Operating System

with hints about how it expects a range of memory to be used. Specifically, it

allows an application to indicate whether a range of memory will be used by

many LWPs (MADV_ACCESS_MANY) or by the next LWP that touches it

(MADV_ACCESS_LWP).

The MADV_ACCESS_MANYhint may be used by an application that creates and

initializes a large data structure in private memory, and then creates multiple

threads that will all access that data structure. This behavior is typical of many

auto-parallelized applications. Since the data structure is created while the

application has only a single thread, by default the Solaris Operating System

will attempt to allocate it all on a single Uniboard. This hint will prompt the

Solaris Operating System to allocate the data structure using a random

placement policy, which will offer higher bandwidth to all the application’s

LWPs.

The MADV_ACCESS_LWPhint is most useful when an application changes how

it expects a range of memory to be used. After receiving this hint, if the next

LWP to touch a page in the specified range is in a different lgroup than the

memory, then the Solaris Operating System may migrate the page to that

LWP’s lgroup . This can be useful for applications that have multiple phases,

each with distinctly different memory usage patterns. It can also be used for

applications that allocate a large ISM segment in order to get large pages, but

do not intend to share those pages with other threads. Note that migrating

memory can be a very time-consuming operation, so MADV_ACCESS_LWPand

MADV_ACCESS_MANYshould be used with discretion.

madv.so.1

madv.so.1 is a shared object that interposes on the memory allocation system

calls, and allows the user to apply the hints described above without

modifying the source code of the application. This functionality is less precise

than that offered by the madvise() interface, as one cannot choose to apply

the advisement to specific address ranges. This object allows one to apply

advisement to the whole heap, just ISM or Dynamic ISM (DISM) segments, just

private segments and so on. This functionality is most useful for rapid

prototyping and for tuning applications for which the source code is not

available.

16 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

2

MPO in the Solaris Operating System
The Solaris 9 9/02 Operating System introduced MPO by creating lgroups ,

changing the scheduler to be locality-aware, and implementing “first touch”

memory allocation. Also available were the MPO informational APIs and

system variables in the “First Group” as defined above.

The Solaris 9 12/02 Operating System made the controlling APIs available to

users that desire to fine-tune the MPO functionality. Also available were the

system variables in the “Second Group”.

Starting with the Solaris 9 9/02 Operating System, MPO is enabled by default

on Sun Fire 3800-6800 servers. There are no hardware pre-requisites.

Default activation of MPO for Sun Fire 12K and 15K servers requires the

Solaris 9 12/02 Operating System (or later) and a hardware pre-requisite. On

February 2003, Sun announced a “MPO hardware upgrade kit” for existing

systems. At that date, Sun also announced the availability of new Sun Fire 12K

and 15K server models that are already enhanced for MPO.

17

MemoryPlacementOptimization
Benefits 3

The main benefits of using Memory Placement Optimization are lower

memory latencies and increased bandwidths for memory-intensive

applications, resulting in higher performance.

The improvements that can be observed are highly dependent on the

application’s memory access patterns, and although MPO policies have been

developed using a representative set of real workloads, the specific results of

MPO introduction may vary significantly. Every effort was made to make sure

that, even in the worst case, the default MPO settings would not decrease the

performance of an application.

This chapter presents results of the introduction of MPO on a variety of

business and scientific workloads, and serves only as a rough indication of the

performance gains that can be expected. Users should therefore use caution

when estimating any performance gains provided by the MPO feature in their

specific workloads; actual tests are recommended for better understanding of

each application characteristics.

The tests shown were performed in the Sun benchmarking lab environment,

using production and prototype equipment. Baseline results (without the MPO

feature) refer to tests using the Solaris 9 Operating System before its 9/02

update. All tests described here used the default values of the MPO system

variables.

18 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

3

Business Computing Test Results
Typical business workloads, in Data Warehousing (DW) and On-Line

Transaction Processing (OLTP), have been evaluated regarding MPO

performance improvements. DW and OTLP workloads depend heavily on

Database Management System (DBMS) performance, and all parts of the

system (processor, memory and I/O channels and devices) are heavily

stressed. Therefore, improvements in memory access performance alone will

not necessarily generate substantial increases in overall throughput and speed.

Data Warehousing

Tests were performed for a data warehousing workload comprised of a variety

of queries executed on a database of about 3 TB in size. The configuration

tested was a Sun Fire 15K server, with 72 1.05-GHz UltraSPARC III Cu

processors, 288GB of memory (all memory banks full), and 27.2 TB in 19 Sun

StorEdgeTM FC-AL disk array units. Introduction of the MPO feature in the

Solaris 9 Operating System increased overall query performance by

approximately 12%.

Enterprise Resource Planning

Tests were performed with a workload that combined a database and an

application server for enterprise resource planning, simulating transactions

typical of sales and distribution, which can be characterized as OLTP. The

configuration tested was a Sun Fire 15K server, with 76 900-MHz UltraSPARC

III Cu processors, 288GB of memory (all memory banks full). About 87% of the

processors were running application servers, while the remaining ran the

database system, in a hostmode fashion. Introduction of the MPO feature in the

Solaris 9 Operating System increased overall transaction throughput by

approximately 10%.

Java Application

Tests were performed using a workload that depended heavily on the

performance of the JavaTM virtual machine (JVMTM) software. The

configuration tested was a Sun Fire 15K server, with 72 1.05-GHz UltraSPARC

III Cu processors, 288GB of memory (all memory banks full). The J2SETM

Memory Placement Optimization Benefits 19

3

1.4.0_01 platform, in 64-bit mode, was used. Introduction of the MPO feature in

the Solaris 9 Operating System did not produce any significant improvement in

performance of the workload.

On-Line Transaction Processing

A study was performed to determine the effects of MPO technology on

Oracle9i Database software running an OLTP workload.

The OLTP workload was modeled after the transactions of a wholesale parts

warehouse supplier. It simulates a complete environment with terminal

operators who execute transactions against a database. These transactions

include entry and delivery of orders, recording payments, checking the status

of orders, and monitoring the level of the stock of each warehouse.

It is important to understand the basic process and memory architecture of

Oracle Database software to determine how MPO affects its performance.

Oracle Database Processes

Foreground and background processes are the two basic kinds of processes in

the Oracle Database. User processes communicate with the Oracle Database

processes to make requests. To process a user request, a number of Oracle

Database processes are involved:

• Foreground processes: An Oracle Database foreground or “shadow” process

is created to handle requests on behalf of the user. It communicates with the

user process and interacts with the Oracle Database to carry out requests for

the user.

• Background processes: This set of processes is created for each instance of

the Oracle Database to consolidate functions needed to be done for all user

processes. Several processes may be used by an Oracle Database instance.

However, the following are the most relevant for this workload:

a. Database Writer: The database writer process writes modified data from

the database buffer cache to data files. One or more database writers may

be configured for any given instance, depending on whether much data

needs to be written;

20 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

3

b. Log Writer: The log writer process writes entries from the redo log buffer

located in the System Global Area (SGA) of memory into disk. There is

only one log writer process per Oracle Database instance.

Oracle Database Memory Usage

Oracle Database processes use private and shared memory. This is reflected in

the basic memory structures in the Oracle Database which are the Program

Global Area (PGA) and System Global Area (SGA).

The PGA is part of the memory heap in the Oracle Database server processes

and contains data and control information. The PGA is part of the private

memory used by Oracle Database processes along with other data from the

data, heap, and stack sections of each process. All Oracle Database processes

use their private memory.

The Oracle Database foreground and background processes such as the

database writers and log writer access the System Global Area (SGA). The SGA

is a shared memory region which contains control information and data for

one Oracle Database instance. It is allocated when an Oracle Database instance

is started and deallocated when the instance is shutdown.

The SGA is shared among users currently connected to the Oracle Database

instance. It is used to maximize the amount of data in memory and avoid disk

I/O through a caching mechanism, so it is usually made as large as possible for

optimal performance. The SGA contains memory structures such as a database

buffer cache of most recently used data, a redo log buffer for logging changes

to the database, and other data structures shared among the Oracle Database

processes.

Results

Tests were performed on a Sun Fire 15K server with 48 900-MHz UltraSPARC

III Cu processors, 384 GB of memory, and 36 Sun StorEdge A5200 disk arrays.

The results were obtained using the Solaris 9 Operating System, with and

without MPO enabled.

The experiment yielded a 9.1% improvement in throughput (transactions per

minute) from the baseline to the updated environment using MPO.

Memory Placement Optimization Benefits 21

3

In order to see why there is an improvement, one must study how the Oracle

Database processes use memory and then evaluate how the MPO feature

optimizes memory accesses for locality. Most Oracle Database processes use

both private and shared memory for this workload.

It is helpful to look at the distribution of load misses on the processors’ E-cache

to estimate how often Oracle Database processes access private and shared

memory. As seen in Table 3-1, the (normalized) percentage of load misses to E-

cache is about 43% for private memory (i.e. Data, Heap, Stack) and 57% for

shared memory (i.e. SGA). These numbers were obtained through simulation.

For shared memory, the Solaris 9 Operating System behaves roughly the same

way if MPO is present or not. The shadow processes, database writers, and log

writer access the SGA across the entire system, and the Solaris 9 Operating

System allocates the physical memory for the shared memory pages randomly

across the system. This policy effectively levels the cost of accessing the shared

memory when it is accessed from processors everywhere on the server, and is

essentially what the Solaris Operating System, previous to the 9/02 update,

does for all types of memory.

While the MPO feature in the Solaris 9 Operating System does not change the

characteristics of shared memory, it distinguishes itself in what it does with

private memory allocation. First, the MPO feature introduces locality aware

scheduling to ensure that the Oracle Database processes run within its home

locality group, giving them the opportunity to benefit from locality. Second, it

tries to allocate the physical memory for their private memory pages from their

home locality groups.

Table 3-1 Distribution of Load Misses to E-cache, evaluated through simulation.

Memory Location
Percentage of

Total Memory

Normalized

Percentage

Data 9.46% 10%

Heap 25.64% 26%

Stack 6.52% 7%

SGA 56.29% 57%

Total 97.91% 100%

22 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

3

If the MPO feature manages to make all the private memory of processes be

local, one would expect to see a reduction in remote memory accesses equal to

the number of accesses to private memory. From the distribution of cache-

misses on Table 3-1, the estimated percentage of accesses to private memory

was 43%. Thus, MPO should reduce the remote memory accesses by roughly

the same amount if it provides good locality to private memory for the Oracle

Database processes.

However, this assumes that the Solaris 9 Operating System without MPO

provides no locality whatsoever for private memory. This is not true because

random memory allocation is used for all memory. Thus, one would expect

that it would allocate a fraction of the memory locally, more precisely equal to

1 divided by the number of system boards in the server. On this specific server,

that would mean that random placement would result in 1/12 of the memory

(~8%) being allocated locally. Consequently, MPO should ideally reduce

remote memory accesses by about 39%, which is the portion of private memory

which is remote.

In order to verify this, one can use the local and remote E-cache miss counters

available on the Sun Fire 15K server through cpustat(1M) to measure the

percentage of user cache misses to remote memory. The miss rates given in

Table 3-2 show that introduction of the MPO feature in the Solaris 9 Operating

System clearly provided better locality for Oracle Database processes: E-cache

misses to remote memory dropped by 31%, which is close to the ideal

percentage of 39% from the analysis above using simulation data.

Table 3-2 Changes in measured E-cache Load Misses and private vs. shared memory distribution

Test

Percentage of User

Remote E-Cache

Load Misses

(Measured)

Percentage of

Memory that is

Remote

(Simulated)

Percentage of

Memory that is

Local

(Simulated)

Total

No MPO 93.1% Private Memory 39% 4% 43%

Shared Memory 52% 5% 57%

With MPO 62.2% Private Memory 0 43% 43%

Shared Memory 52% 5% 57%

Difference 30.9% Difference 39%

Memory Placement Optimization Benefits 23

3

One concludes that MPO has done a good job providing locality for Oracle

Database processes in this case. The locality aware scheduling and memory

allocation of MPO reduced E-cache misses to remote memory significantly for

the private memory of Oracle processes. As mentioned earlier, this

improvement in locality allowed a 9.1% increase in transaction throughput for

this OLTP workload

Other applications may experience similar benefits from the added locality

provided by MPO. The UltraSPARC III hardware performance counters may be

used to measure the change in E-cache misses to remote memory, and help

quantify the improvement in locality that is achieved through MPO.

High Performance Technical Computing Test Results
High-Performance Technical Computing (HPTC) workloads have heavy

emphasis in scientific, floating-point-type calculations, and are very memory

intensive in general.

Our tests demonstrated that, in HPTC workloads, the effects of MPO are larger,

and can vary more, than in the case of business workloads. Some of the

following tests demonstrate large gains in performance when MPO is enabled,

but such performance differences are highly dependent on the workload. The

discussions in the following sections shed some light into the application

characteristics that lead to improved performance due to the MPO feature.

Memory-Copy Microbenchmark

A synthetic microbenchmark was constructed, to measure the performance of a

vector floating-point operation, in the form:

for (i = 0; i < N; i++)
a(i) = b(i)

In today’s servers, the time required to perform mathematical operations can

be frequently outweighed by the time required to read the operands in from

memory. Thus, this benchmark functions as a test of the performance of a

machine’s memory subsystem.

24 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

3

Sun Fire 15K Server Results

Tests were performed on a 18-board Sun Fire 15K server, with 72 processors

and memory distributed evenly across all memory banks. Table 3-3 shows

results obtained using the Solaris 9 Operating System, with no MPO

implementation, compared to those obtained with MPO active. Each test was

run using 4MB pages for the application’s heap. Table 3-4 lists the breakdown

of the number of 4MB memory pages that was placed in each of the lgroup s,

as reported by the meminfo(2) command - see Appendix A.

In Test 1, we measured the performance of a multithreaded version of the

memory-copy microbenchmark. The code was automatically parallelized by

the compiler and was configured to run with 72 threads. In the absence of

MPO, all the memory was allocated from a single lgroup , and that lgroup
included all the memory in the server. So, even though meminfo(2) reported

that all memory was in lgroup 0 , that did not reveal anything about where

the memory was physically located in the machine. There is no easy procedure

to know exactly how much memory was local to the processors running the

Table 3-3 Memory-copy results for a Sun Fire 15K server.

Test Description Memory Copy Rate (MB/s)

1 Multi-Threaded, no MPO 14,139

2 Multi-Threaded, with MPO 58,154

Table 3-4 Breakdown of array data locality for Sun Fire 15K server tests.

Test lgroup distribution of memory pages

1 lgroup 00: 1728 pages

2 lgroup 00: 96 pages lgroup 01: 95 pages lgroup 02: 96pages

lgroup 03: 96 pages lgroup 04: 96 pages lgroup 05: 96 pages

lgroup 06: 97 pages lgroup 07: 95 pages lgroup 08: 96 pages

lgroup 09: 96pages lgroup 10: 96 pages lgroup 11: 96 pages

lgroup 12: 98 pages lgroup 13: 94 pages lgroup 14: 96 pages

lgroup 15: 96 pages lgroup 16: 96 pages lgroup 17: 97 pages

Memory Placement Optimization Benefits 25

3

microbenchmark, and how much was actually on a remote board, but because

the default allocation for this case (without MPO) is random, we know that

only a fraction of memory was local for each processor.

Test 2 runs the same multi-threaded code, with 72 threads, with MPO active.

Unlike the previous example, we know that all of the benchmark’s data was

allocated by “first touch” by default. The lgroup breakdown indicates that

memory was allocated uniformly across all 18 lgroups in which the

benchmark was running. Therefore, all memory was actually local to each

processor on which the benchmark was running, resulting in performance that

was significantly higher than in the case without the MPO feature. The

performance gain was 311% for this specialized microbenchmark, but such

large gains should not be considered typical for real-world applications.

Table 3-5 presents a side-by-side comparison of the performance of the

memory-copy microbenchmark as the number of threads grows. The results for

36 threads or less were obtained on a Sun Fire 12K server.

Sun Fire 6800 Server Results

Tests were performed on a 6-board Sun Fire 6800 server, with 24 processors

and memory distributed evenly across all memory banks. Table 3-6 shows

results obtained using the Solaris 9 Operating System, with no MPO

implementation, compared to those obtained with MPO active. Table 3-7 lists

the breakdown of the number of memory pages that was placed in each of the

lgroup s.

Table 3-5 Multi-threaded memory-copy performance for Sun Fire 12K and 15K servers, in MB/s.
Speed-up is defined as the percentage of improvement in the memory-copy rate.

Threads No MPO With MPO Speed-up

24 11,134 19,421 74%

36 12,332 29,178 137%

72 14,139 58,154 311%

26 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

3

In Test 1 there is only one processor running the benchmark. Since all of the

system’s memory was managed as a single pool, the application’s memory was

distributed fairly evenly across the server boards.

In Test 2, the system had 6 lgroups (one per board). All of the

microbenchmark’s data was allocated on a single board and memory was

actually local to the processor on which the benchmark was running. Ensuring

that every access goes to local memory did not lead to a significant change in

performance. This reflects the fact that the difference between local and remote

latency for a Sun Fire 6800 system is low.

Test 3 measures performance of a multi-threaded version of the

microbenchmark without MPO, using 24 threads. Memory was distributed

fairly evenly throughout the system. While this avoids creating a single

hotspot that could limit performance, it also implies that each thread will have

to go off-board to access the bulk of its memory.

Table 3-6 Memory-copy results for a Sun Fire 6800 server

Test Description Memory Copy Rate (MB/s)

1 Single-Threaded, no MPO 2,134

2 Single-Threaded, with MPO 2,303

3 Multi-Threaded, no MPO 8,795

4 Multi-Threaded, with MPO 9,360

Table 3-7 Breakdown of array data locality for Sun Fire 6800 server tests.

Test lgroup distribution of memory pages

1 lgroup 0: 24 pages

2 lgroup 3: 24 pages

3 lgroup 0: 576 pages

4 lgroup 0: 96 pages lgroup 1: 96 pages lgroup 2: 96 pages

lgroup 3: 96 pages lgroup 4: 96 pages lgroup 5: 96 pages

Memory Placement Optimization Benefits 27

3

Test 4 repeats the multi-threaded test with MPO enabled. The lgroup
breakdown indicates that memory was allocated on each of the 6 lgroups in

which the benchmark was running, so that all of the memory was local to the

each processor running the benchmark. The increased locality reduced average

latency for each memory access but, as we saw in the single-threaded case,

latency alone does not appear to be a significant limiter of performance for the

Sun Fire 6800 server. By reducing the number of off-board accesses, the

increased locality probably led to less contention for the bandwidth available

on the system’s Sun Fireplane Interconnect, thus enabling higher aggregate

bandwidths.

Table 3-8 presents a side-by-side comparison of the performance of the

memory-copy microbenchmark and the speed-up achieved.

Finite-Differences Microbenchmark

In this test, MPO influence on a finite-difference application was evaluated.

This microbenchmark was chosen because of its ease of execution, high

computational throughput, simple setup, and nice spatial locality. The

benchmark, written in FORTRAN, consists of iterating N times over three sets

of calculations performed on thirteen matrices of dimensions N1xN2.

The model itself consists of three sets of differential equations that are executed

by M CPUs across thirteen grids in parallel. Because each iteration effectively

swamps the external processor cache, and the access pattern is such that data

prefetch is relatively ineffective, this benchmark is constrained mostly by

memory latency rather than memory bandwidth.

Using the OpenMP parallel programing model, each DOloop is split in such a

way as to break each N1xN2 matrix into M grids which are iterated on by M
threads. Because of this, each active CPU issues memory accesses only to its

own grid while performing computations, eliminating remote-board data

transfers when data is local.

Table 3-8 Multi-threaded memory-copy performance for a Sun Fire 6800 server, in MB/s.
Speed-up is defined as the percentage of improvement in the memory-copy rate.

Threads No MPO With MPO Speed-up

1 2,134 2,303 8%

24 8,795 9,360 6%

28 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

3

During initialization, the fourteen matrices (one is only used for initialization)

are split by OpenMP parallel programming into the exact same grids as those

during computation. The default heap placement policy of “first touch” places

the data close to the CPU making the initial reference. Since the

microbenchmark is partitioned in such a way that further references from that

thread will also occur to the same grid, remote-board transfers are eliminated,

memory latency is minimized, and available memory bandwidth is

maximized.

Without MPO, a process’ memory is scattered randomly across the machine all

the time. This results in the majority of memory accesses being off-board,

encountering extra latency. Since this microbenchmark is perfectly separable, it

accesses 100% of its memory local to the CPUs performing computations when

MPO is enabled. With this in mind, one would expect the speed-up with MPO

to be proportional to the ratio of local to remote memory latency. This was

indeed the observation when running with and without MPO on both the Sun

Fire 6800 and 15K servers.

Sun Fire 15K Server Results

On a Sun Fire 15K server, the local-to-remote latency ratio is about 1-to-1.8 for

the working set size of this benchmark, so a speedup of 30-40% was

anticipated when running with MPO enabled.

The test configuration had 72 900-MHz UltraSPARC III Cu processors, and

256GB of memory. The run parameters were as follows, creating a working

data set of about 1.4 GB:
NO. OF THREADS = 72, MAX NO. OF ITERATIONS = 400, N1=N2=3802

The decrease in computational time per iteration was about 41%, as seen in

Table 3-9, which compares results obtained running the Solaris 9 Operating

System with and without MPO enabled.

Table 3-9 Finite-difference microbenchmark performance (in seconds per iteration) in a Sun Fire 15K.
Speed-up is defined as the percentage reduction in the time required per iteration.

No MPO With MPO Speed-up

0.317 s/iteration 0.187 s/iteration 41%

Memory Placement Optimization Benefits 29

3

Sun Fire 6800 Server Results

On a Sun Fire 6800 system, the local-to-remote latency ratio is about 1-to-1.2, so

a speedup of 10-20% was anticipated for the microbenchmark when running

with MPO enabled.

The test configuration had 24 900-MHz UltraSPARC III Cu processors, and

192GB of memory. The run parameters were as follows, also creating a working

data set of about 1.4 GB:
NO. OF THREADS = 24, MAX NO. OF ITERATIONS = 100, N1=N2=3802

The decrease in computational time per iteration was about 16%, as seen in

Table 3-10, which compares results obtained running the Solaris 9 Operating

System with and without MPO enabled.

Additional Tests

A number of HPTC applications were tested to gather data on the potential

gains of MPO usage. The data shown in Table 3-11 was obtained on a Sun Fire

6800 server with 24 processors. The speed-up obtained by introducing MPO

varied from 0 to 9%, illustrating how MPO performance improvements are

highly dependent on the characteristics of the application, like: properties of

the computational problem, specific algorithm employed, and implementation

details.

Table 3-10 Finite-difference microbenchmark performance (in seconds per iteration) in a Sun Fire 6800.
Speed-up is defined as the percentage reduction in the time required per iteration.

No MPO With MPO Speed-up

0.735 s/iteration 0.615 s/iteration 16%

Table 3-11 Performance gains due to MPO in several applications for a Sun Fire 6800 server. Performance
data is in seconds of execution (lower is better). Speed-up is defined as the percentage
reduction in the time required to run the test.

Test
Solaris 9 OE

(no MPO)

Solaris 9 12/02 OE

(with MPO)
Speed-up

Finite-difference solver 690 s 629 s 9%

Finite-volume solver 174 s 168 s 3%

30 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

3

Finite-element solver A 258 s 238 s 8%

Finite-element solver B 477 s 448 s 6%

Multiple ODE solver 864 s 858 s 1%

Eigenvalue solver 402 s 403 s 0

Table 3-11 Performance gains due to MPO in several applications for a Sun Fire 6800 server. Performance
data is in seconds of execution (lower is better). Speed-up is defined as the percentage
reduction in the time required to run the test.

Test
Solaris 9 OE

(no MPO)

Solaris 9 12/02 OE

(with MPO)
Speed-up

31

Summary 4

The Memory Placement Optimization feature in the Solaris 9 Operating System

can improve application performance significantly, and users should keep that

in mind when considering their adoption plans for Sun’s latest operating

system. The MPO feature was designed especially to explore the benefits of the

Sun Fire server architecture, and demonstrates how tight integration of

operating system and server architecture can create high performance and

computational efficiency.

The achievable performance improvements from MPO utilization are heavily

dependent on workload characteristics, and on specific server configurations.

High-Performance Technical Computing workloads should in general present

larger benefits than Business Computing workloads. In the same fashion,

larger Sun Fire 12K and 15K server configurations should benefit more from

MPO than Sun Fire 3800-6800 servers.

As Sun introduces new technologies into its microprocessor and server lines,

technology improvements like MPO should help users reach the highest

performance levels on their applications.

32 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

4

33

AppendixA-CodeExamples

Detecting MPO Status
There are certain commands that will help a system administrator determine if

the Solaris 9 Operating System running in a server domain has the MPO

feature enabled:

Step 1:
The number of lgroups should be greater than 1. Verify this through the

nlgrps variable (equal to 3 in this example):

echo nlgrps/X | mdb -k
nlgrps:
nlgrps: 3

Step 2:
The default memory allocation policy should be “next”. Verify this by checking

that variable lgrp_mem_default_policy is 1:

echo lgrp_mem_default_policy/X | mdb -k
lgrp_mem_default_policy:
lgrp_mem_default_policy: 1

34 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Step 3 (only for Sun Fire 12K and 15K servers):
The “lpa” variables should be different than zero. Choose one Uniboard and

one CPU inside the domain and verify its variables; the following example

shows non-null values for CPU 0 on system board 1:

cfgadm -x passthru -o showlpa SB1::cpu0
showlpa SB1::cpu0 portid 32, base pa 22000000000, bound pa
24000000000

Users should always make sure that all required and recommended patches are

applied to software installed on the system domains and system controller.

Presently, proper default MPO activation requires application of patch number

112488-10 to the System Management Software (SMS 1.2) for the Sun Fire 12K

and 15K system controllers, or upgrade to SMS 1.3 (recommended).

Important:
The MPO feature is enabled by default when all proper software and hardware

is present in the server (see Section “MPO in the Solaris Operating System” for

more details). Use the above commands just to verify the status of the MPO

feature. Once enabled, control of the MPO feature should be exercised through

the madvise(3C) command and madv.so.1 object.

Controlling MPO
The code sample shown below demonstrates how the madvise(3C) and

meminfo(2) commands can be used to influence how the Solaris Operating

System allocates physical memory, and to extract locality information from the

Solaris Operating System at runtime. Both APIs have options not shown in this

example, but which are described in their man pages.

The dump_lgroups() routine illustrates how we determined the number of

pages allocated on each lgroup when running the benchmarks described in

Chapter 3.

Code Sample: Obtaining information and controlling the MPO feature
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/param.h>

Appendix A - Code Examples 35

/* Defined in <sys/lgrp.h>, but hidden by #ifdef _KERNEL */
#define NLGRPS_MAX 18

/*
* Given a buffer and a size, report how many pages in the buffer are

 * backed by memory allocated from each lgroup.
 */
void
dump_lgroups(void *buf, uint64_t bytes)
{

const unsigned int info = MEMINFO_VLGRP;
unsigned int i, v, page_cnt[NLGRPS_MAX];
uint64_t addr, last_addr, lgrp;

for (i = 0; i < NLGRPS_MAX; i++) {
page_cnt[i] = 0;

}

addr = (uint64_t) buf;
last_addr = addr + bytes - 1;

while (addr <= last_addr) {
/*
 * Query Solaris for the lgroup on which this page is
 * allocated.
 */
if (meminfo(&addr, 1, &info, 1, &lgrp, &v)) {

perror("meminfo()");
return;

}

if (v) {
page_cnt[lgrp]++;

}

/*
 * We could also use meminfo() with MEMINFO_VPAGESIZE to
 * verify that we aren’t using large pages.
 */
addr += PAGESIZE;

}

for (i = 0; i < NLGRPS_MAX; i++) {
if (page_cnt[i]) {
printf(" lgroup %d: %d pages", i, page_cnt[i]);

36 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

}
}
printf("\n");

}

int
main(int argc, char **argv)
{

const unsigned int elements = 1000000;
double *first_touch_array, *random_array;
uint64_t bytes;
int i;

bytes = elements * sizeof(double);

/*
 * Allocate the arrays on page boundaries.
 */
first_touch_array = memalign(PAGESIZE, bytes);
if (!first_touch_array) {

fprintf(stderr, "Failed to allocate first-touch array.\n");
exit(1);

}
random_array = memalign(PAGESIZE, bytes);
if (!random_array) {

fprintf(stderr, "Failed to allocate random array.\n");
exit(1);

}

/*
* Advise Solaris on how physical memory should be allocated for

 * each array.
 */
if (madvise((caddr_t)first_touch_array, bytes,

MADV_ACCESS_LWP)) {
perror("madvise(MADV_ACCESS_LWP)");
exit(1);

}

if (madvise((caddr_t)random_array, bytes, MADV_ACCESS_MANY)) {
perror("madvise(MADV_ACCESS_MANY)");
exit(1);

}

/*
* Touch the first byte on each page of each array. This forces

Appendix A - Code Examples 37

 * Solaris to allocate physical memory to back them.
 */
for (i = 0; i < elements; i += (PAGESIZE / sizeof(double))) {

first_touch_array[i] = 0;
random_array[i] = 0;

}

printf("lgroup breakdown for the first-touch array:\n");
dump_lgroups((void *) first_touch_array, bytes);

printf("\nlgroup breakdown for the random array:\n");
dump_lgroups((void *) random_array, bytes);
exit(0);

}

38 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

39

AppendixB-SunFireServers

The heart of a shared-memory processor (SMP) system is the interconnect, and

Sun has a long history of designing efficient interconnects that were used to

create servers with outstanding scalability (see Ref [1]).

This appendix discusses the basics for designing Sun Fire servers based on the

Sun Fireplane interconnect. The current family of UltraSPARC III-based servers

are described in detail, and their memory access characteristics are highlighted.

References [1] to [6] contain more detail on the subject.

Introduction to Cache Coherency
A shared-memory system interconnect has to send memory addresses,

maintain cache coherency, and transfer cache-line sized-blocks of data. Each

processor has a cache in which to keep frequently accessed data blocks, so that

they are quickly available. A typical cache block size is 32, 64, or 128 bytes.

These blocks are also called cache lines.

When a processor cannot find a needed data item in its cache (called a cache
miss), it asks the interconnect to supply that block. Requests are satisfied from

memory unless some system device (a processor or an I/O controller) currently

has a modified copy of that block in its cache.

To get permission to modify a block, a processor has to become its owner. All

other devices then invalidate any copies they have, and the old owner supplies

the data. Henceforth, when other processors request to share a read-only copy

40 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

of the data, the owning device, not memory, will supply it. Memory becomes

the owner again when the owning processor needs to make room in its cache

for new data, and it victimizes the cache block by writing it back to memory.

This process of finding the up-to-date copy of a cache block is called cache
coherency. System designers use two main methods to keep each processor’s

view of memory consistent.

1. In broadcast (snoopy) coherency, all addresses are sent to all system devices.

Each device examines (snoops) the state of the requested cache line in its

local caches. The system determines the overall snoop result a few cycles

later. Broadcast coherency provides the lowest possible latency. Sun has

constantly increased the rate of broadcast coherency, since this is the method

used in Sun’s mid-sized servers, such as the Sun Fire 6800 server.

2. In directory (point-to-point) coherency, addresses are sent only to those system

devices that are known to be interested in that cache block. The hardware

keeps a directory in memory or in special RAM to keep track of which

system devices share or own each cache block. Since all addresses are not

sent everywhere, the total system bandwidth can be much higher than with

broadcast coherency. However, the latency is longer and more variable, due

to the more complicated protocol.

For more on cache coherency, see chapters six and eight of Ref. [7].

Sun SMP Server Generations

Approximately every four years, Sun has introduced an improved system-

interconnect architecture to support new SPARC® processor generations. The

Sun Fireplane interconnect described here is Sun’s fourth generation of shared-

memory interconnect.

So far, these SMP interconnects have been used across Sun’s entire system-size

spectrum, from two processors on up. Table B-1 and Figure B-1 summarize

Sun’s four SMP generations.

Appendix B - Sun Fire Servers 41

Sun Fireplane Interconnect
For its fourth generation, Sun has put the snooping logic and cache tags inside

the system devices, so they can snoop a new address every system clock. The

system clock has been increased to 150 MHz. Compared to the previous

generation, these improvements tripled the data bandwidth of a single-address

bus, mid-sized system to 9.6 GB/s (see Figure B-1).

All systems have been implemented with point-to-point electrical signals. All

systems use a data crossbar rather than a data bus. Dynamic System Domains,

introduced on the Sun Enterprise 10000 server in the previous generation, have

been extended down to mid-range servers. There are more common

components between mid and large sized systems.

Figure B-1 Sun interconnect generations

Mem

CPU

I/O

CPU

1. MBus
1990

2. XDBus
1993

3. Ultra Port Architecture
1996

Mem

I/O

1 bus
1, 2 or 4
buses

CPU

Mem

I/O

1 or 4
address
buses

D
at

a
cr

os
sb

ar
or

Data bus
or xbar

A
dd

re
ss

 c
ro

ss
ba

r

R
es

po
ns

e
cr

os
sb

ar

CPU
Mem
I/O

CPU
Mem
I/O

CPU
Mem
I/O

D
at

a
cr

os
sb

ar

4. Sun Fireplane
2000

Data
xbar

Address
xbars

Snoopy

Snoopy
coherency

Snoopy
coherency

Snoopy
coherency

0.08 GB/s 3.2 GB/s per address bus
12.8 GB/s peak for
four address buses

9.6 GB/s per address bus
172 GB/s peak for
18 address buses

0.4 GB/s per bus
3.2 GB/s peak for

four buses

Snoopy
coherency

Snoopy

D
ire

ct
or

y
co

he
re

nc
y

42 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

The protocol is improved so that address and data packets need only to

traverse the shortest path between source and destination. In the previous

generation, packets always had to go all the way to the outermost level of the

interconnect, even if they were going to a destination on the same board. The

current implementation lowers the latency for “close” transfers.

Table B-1 Sun system interconnect generations.

1. MBus [8] 2. XDBus [8]
3. Ultra Port
Architecture

(UPA) [9]
4. Sun Fireplane [1]

First system shipments 1990 1993 1996 2000

Processor CypressSPARC® SuperSPARC® UltraSPARC I/II UltraSPARC III

Processor clock 40 MHz 40–60 MHz 167–400 MHz 750–1200 MHz

Interconnect clock 40 MHz 40–55 MHz 83–100 MHz 150 MHz

System sizes 1–4 processors 1–64 processors 1–64 processors 1–106 processors

Cache-coherency mechanism Broadcast
Broadcast +

point-to-point

Packet protocol Circuit switched Packet switched

Address and data Multiplexed on same wires Separate wires

Cache coherency line size 32 bytes 64 bytes

System clocks per address 16 11 2 1

Address rate per
address bus

2.5 million/s 4.5 million/s 50 million/s 150 million/s

Data bandwidth per
address bus

0.08 GB/s 0.29 GB/s 3.2 GB/s 9.6 GB/s

Maximum number of
address buses

1 4 4 18

Maximum address-limited
data bandwidth

0.08 GB/s 1.28 GB/s 12.8 GB/s 172 GB/s

Datapath width 8 bytes 16 bytes 32 bytes

Electrical implementation Bused Bused Bused & switched Switched

Note: 1 GB/s (gigabyte per second) = 109 bytes per second

Appendix B - Sun Fire Servers 43

The coherency protocol was extended to do directory coherency between

multiple snooping coherency domains — allowing the interconnect bandwidth

to increase beyond the limit imposed by broadcast coherency.

The global address interconnect of the largest architecture, the Sun Fire 15K

server, was implemented using an address crossbar and a response crossbar to

connect 18 snooping coherency domains. This increased the peak interconnect

bandwidth over the previous generation by 13-fold to 172 GB/s, and increased

the centerplane bisection bandwidth by 3.3x to 43 GB/s. The maximum

processor count was increased to 106 processors.

The Sun Fireplane interconnect protocol is used in all current UltraSPARC III-

based systems, which range from 2 to 106 processors.

Number of Interconnect Levels

The Sun Fireplane interconnect is implemented with up to four levels of

interconnect logic. The number of interconnect levels required is approximated

by log4n, where n is the total number of system devices (processors, memory

units, and I/O controllers). The total amount of interconnect logic needed for n
components is approximately nlog4n. The Sun Fireplane-based servers can be

divided into four categories by the number of interconnect levels required:

1. Small server. Four system devices (two processors, one memory unit, and

one I/O controller) require only one level of data switch interconnect.

2. Workgroup server. 18 system devices (eight processors, eight memory units,

and two I/O controllers) require two levels of interconnect.

3. Mid-size server. 56 system devices (24 processors, 24 memory units, and

eight I/O controllers) require three levels of interconnect.

4. Large server. 180 system devices (72 processors, 72 memory units, and 36

I/O controllers, or 106processors, 72 memory units and 2 I/O controllers)

require four levels of interconnect.

The increased number of levels needed for larger systems explains why they

have longer average latencies than smaller systems.

44 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Address Interconnect

Levels one and two of the Sun Fireplane address interconnect perform snoopy

coherency using a tree-structure of Address Repeater ASICs (Application

Specific Integrated Circuits). A new address can be broadcast at a peak rate of

one every interconnect clock cycle (1/150MHz = 6.67 ns). All system devices

get a particular address at the same time — six clocks after it was originated.

The memory access is started as soon as the address is received by the CPU

that controls the requested location. About half the memory access time is

overlapped with the nine clocks required to compute the snoop result and

broadcast it to the devices. If a system device owns the requested block, then it

supplies the data to the requester, and the data from memory is not sent.

Figure B-2 Sun Fireplane active system devices

PCI bus
controller

66 MHz PCI bus

33 MHz PCI bus

Dual CPU Data Switch

CPU Memory

CPU

Standard I/O controller pair

1.2 GB/s

2.4 GB/s

2.4 GB/s

2.4 GB/s

Memory

2.4 GB/s

CPU/memory pair

4.8 GB/s

PCI bus
controller

66 MHz PCI bus

33 MHz PCI bus

1.2 GB/s

Data
path

Address
path

150 million
addresses/sec

Sun Fire Link
controller

Optical Link

Sun Fire Link I/O controller pair

2.4 GB/s

PCI bus
controller

66 MHz PCI bus

33 MHz PCI bus

1.2 GB/s

Optical Link

Appendix B - Sun Fire Servers 45

Data Interconnect

The Sun Fireplane data interconnect is implemented from a hierarchy of

crossbar switches. Board-level connections are 32 bytes wide to CPU boards,

and 16-bytes wide to I/O boards. All datapaths are bidirectional, and can move

data in one direction or the other every system clock.

Active System Devices

Active system devices originate transactions. Currently there are three such

system devices: the UltraSPARC III processor, the PCI I/O controller, and the

Sun Fire Link I/O controller. These are the building blocks of all Sun Fireplane-

based systems. Both CPUs and I/O controllers are interconnected in pairs, as

shown in Figure B-2.

Processor

The UltraSPARC III processor used in the mid-size and large servers currently

has clock rates of 900 MHz, and 1.05 GHz. See Figure B-3 for its block diagram.

Instruction Execution
The instruction issue unit can initiate up to four in-order instructions per clock

from a 32 KB, four-way associative instruction cache. Instructions may

complete out of order. The integer unit can perform up to four operations per

clock: two ALU operations, one load/store, and one branch. The floating-point

unit can initiate a multiply-type operation and an add-type operation every

clock.

On-chip Caches
The data cache unit includes a 64 KB, four-way set associative, data cache, plus

a 2 KB write cache for merging stores, and a 2 KB prefetch cache for buffering

data from software prefetch instructions and automatic hardware prefetching

from the external cache.

External Cache
An 8 MB, two-way associative second level cache is provided using high-speed

external SRAMs. The tags for the second-level cache are located inside the

processor chip to allow high-speed snooping.

46 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Instruction Issue Unit)
32 KB Instruction cache

Instruction queue
Steering logic

Floating-point Unit
FP multiply

FP add
FP divide

Graphics unit

32
Regs

Integer execution unit
Dependency / trap logic

ALU pipe 0
ALU pipe 1

Load/store/special pipe

16
Regs

4 instructions

Data cache Unit
64 KB Data

cache
2 KB Prefetch

cache
2 KB Write

cache
Store
queue

External Cache Unit

SDRAM
controller

E-cache
tags

SRAM
control

System Interface Unit

Snoop pipe
controller

Data switch
controller

144

288

256

64 64

Memory Control
Unit

DRAM
Address

Sun
Fireplane

address
interface

256

Sun
Fireplane

data
interface

External
cache
address

External
cache
data

Dual CPU Data Switch

Figure B-3 UltraSPARC III processor subsystem

4 MB SRAM
DIMM

288

576

32

To rest of system

232 pin SDRAM
DIMM

232 pin SDRAM
DIMM

Second CPU
Second

Memory unitA
dd

re
ss

A
dd

re
ss

D
at

a

P

P

E

E

EP

PP

Address parity

Data parity

Data ECC

P

P

E

P

P

Address ECCE

Appendix B - Sun Fire Servers 47

Memory Controller
To reduce chip count and latency, and to provide scalable memory bandwidth,

each processor has an on-chip DRAM controller. This provides addresses and

control signals for two groups of four dual-banked SDRAM DIMMs. Currently,

the maximum DIMM size is 1 GB, so each CPU can configure up to 8 GB of

memory.

System Interface
The processor has a 150 MHz Sun Fireplane address interface. It can snoop a

new address every system interconnect clock cycle. The processor has a 2.4

GB/s data interface, which goes to the Dual CPU Data Switch. This switch is

implemented from 8 bit-sliced ASICS, and connects together two processors

and two memory units, and has a port to higher levels of the data interconnect.

It is shown in the lower part of Figure B-3.

For more information on the UltraSPARC III processor, see Ref. [10].

PCI Controller

The PCI Controller implements two 64-bit-wide PCI buses, one running at 33

MHz and one at 66 MHz. The 33 MHz PCI bus has from one to three PCI slots,

depending upon the particular server. It has a peak bandwidth of about 0.25

GB/s. The 66 MHz PCI bus has one PCI slot, and has a peak bandwidth of

about 0.5 GB/s. The PCI Controller has an 8-byte wide (1.2 GB/s peak)

connection to the Sun Fireplane data interconnect. On all but the smallest

systems, the PCI Controllers are configured in pairs (see bottom of Figure B-2).

Sun Fire Link Controller

The Sun Fire Link Controller implements a proprietary cluster interconnect

that enables fast memory-to-memory transfers [11]. Each controller provides

two bi-directional optical links, with 1.2 GB/s peak bandwidth each. The Sun

Fire Link Controller has an 2.4 GB/s peak connection to the Sun Fireplane data

interconnect. The Sun Fire Link controller is always paired with a PCI

Controller (see bottom of Figure B-2).

48 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Small Sun Fireplane Interconnect

A small server like the Sun Fire 280R needs only a minimal amount of

interconnect for four devices (two processors, one memory unit, and one I/O

controller) — see Figure B-4. The two processors and one I/O controller

connect directly together via a Sun Fireplane address bus. A four-port data

switch (implemented from six bit-sliced ASICs) connects together the four

system devices.

PCI bus
controller

Workgroup
Address
Repeater

Figure B-4 Small and workgroup interconnects (Sun Fire 280R and V880 servers)

Workgroup
Data

Switch
(6 ports)

PCI bus
controller

33 MHz PCI bus

66 MHz PCI bus

33 MHz PCI bus

Dual CPU Data Switch (5 ports)

CPU Memory

CPU Memory

4 Dual-processor
boards

Fireplane
Level 1 ASICs

System
Devices

I/O board

1.2 GB/s

Motherboard

150 million
addresses
/sec peak

9.6 GB/s peak

2.4 GB/s

2.4 GB/s 2.4 GB/s

2.4 GB/s

4.8 GB/s

1.2 GB/s

PCI bus
controller

66 MHz PCI bus

33 MHz PCI bus

Data Switch (4 ports)

CPU Memory

CPU

Motherboard

1.
2

G
B

/s

2.4 GB/s

2.4 GB/s

2.4 GB/s

Sun Fire V880

Sun Fire 280R

System
Devices

66 MHz PCI bus

Appendix B - Sun Fire Servers 49

Workgroup Sun Fireplane Interconnect

A workgroup server like the Sun Fire V880 needs one level of Sun Fireplane

interconnect for up to 18 devices (eight processors, eight memory units, and

two I/O controllers) — see Figure B-4.

Dual Processor Board

The Dual-processor board used on workgroup servers holds a pair of

processors and a pair of memory units. The two processors share a Sun

Fireplane address bus connection to the motherboard. The four devices connect

to the motherboard via a Dual CPU Data Switch, which is implemented from 8

bit-sliced ASICs. These same ASICs are used on all servers with more than two

processors.

Sun Fireplane Level 1: Motherboard

Level 1 is located on the system motherboard. The workgroup Address

Repeater ASIC has five address bus ports, one for each pair of system devices.

A peak of one address can be broadcast every system clock (150 MHz) on the

address interconnect. This address rate determines the peak data bandwidth of

9.6 GB/s, since an address is required to initiate each 64-byte data transfer.

The workgroup Data Switch is implemented with six bit-sliced ASICs that

provides a 6x6 crossbar between four 32-byte wide ports for the Dual-

processor boards, and two 8-byte wide ports for the I/O controllers.

Mid-Range Sun Fireplane Interconnect

Mid-range servers like the Sun Fire 3800-6800 need two levels of Sun Fireplane

interconnect for up to 56 devices (24 processors, 24 memory units, and eight

I/O controllers) — see Figure B-5.

Sun Fireplane Level 1: System Boards

Level 1 is implemented on two types of boards, one type for processors and

memory, and the other type for I/O.

50 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Uniboard
A Uniboard holds two pairs of processors and two pairs of memory units. The

Uniboard block diagram is shown in Figure B-5, and Uniboard physical layout

is shown in Figure B-7. The Uniboard is used in all medium and large Sun Fire

servers.

Address
Repeater

Data Switch
(3 ports)

PCI bus
controller

Address
Repeater

66 MHz PCI bus

Data
Switch

(10 ports)

Figure B-5 Mid-range interconnect (Sun Fire 3800-6800 servers)

Data
Switch
(3 ports)

Address
Repeater

PCI bus
controller

Dual CPU Data Switch (5 ports)

CPU Memory

33 MHz PCI bus

66 MHz PCI bus

33 MHz PCI bus

CPU Memory

Dual CPU Data Switch (5 ports)

CPU Memory

CPU Memory

4.8 GB/s

4
Fireplane

Switch
Boards

6 Uniboards

2.4 GB/s

2.4 GB/s 2.4 GB/s

2.4 GB/s

4.8 GB/s

Fireplane
Level 1 ASICs

4 PCI Assemblies

1.2 GB/s

4.8 GB/s

1.2 GB/s
2.4 GB/s

150 million
addresses
/sec peak

9.6 GB/s
peak

Fireplane
Level 2 ASICs

2.4 GB/s

2.4 GB/s 2.4 GB/s

2.4 GB/s

System
devices

Appendix B - Sun Fire Servers 51

The Address Repeater ASIC collects address requests from the four processors,

and forwards them up to the level-2 Address Repeater. It also broadcasts

addresses that come down from level-2.

Eight Dual CPU Data Switch ASICs connect together a pair of processors and a

pair of memory units. Four Data Switch ASICs connect the two halves of the

board to the level 2 data interconnect via a 32-byte wide, 4.8 GB/s path.

I/O Assemblies
An I/O assembly holds a pair of I/O controllers. The Address Repeater ASIC

collects address requests from the two I/O controllers, and forwards them up

to the level-2 Address Repeater. It also broadcasts addresses that come down

from level-2. Two Data Switch ASICs connect the two I/O controllers to the

level-2 data switch via a 16-byte wide, 2.4 GB/s path.

So far, there are four types of I/O assemblies for the mid range. All standard

PCI assemblies have the same architecture, and provide two 33 MHz PCI

buses, and two 66 MHZ PCI buses. They have different numbers and types of

PCI slots:

• Six compact PCI slots (Sun Fire 3800 server).

• Four compact PCI slots (Sun Fire 4800-6800 servers).

• Eight standard PCI cards (Sun Fire 4800-6800 servers).

The Sun Fire Link I/O assembly for the mid-range provides two bidirectional

optical links and two cPCI slots.

Sun Fireplane Level 2: Switch Boards

Level 2 connects multiple Uniboards and I/O assemblies. Level 2 is the top of

the address-broadcast tree, and so encompasses a snooping coherency domain.

The maximum data bandwidth inside a snooping coherency domain is

determined by the 150 MHz address rate ✕ 64-byte cache block = 9.6 GB/s.

Sun Fire 3800 Server
Level 2 is implemented on the motherboard. The Sun Fire 3800 server can hold

two Uniboards (8 processors) and two six-card Compact PCI assemblies.

52 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Sun Fire 4800-6800 Servers
Level-2 is implemented on hot-swappable Sun Fireplane switch boards. Two

Sun Fireplane switch boards are used in the Sun Fire 4800-4810 servers to

interconnect three Uniboards and two I/O assemblies, and four are used in the

Sun Fire 6800 server to interconnect six Uniboards and four I/O assemblies. A

Sun Fireplane switch board contains one Address Repeater ASIC and two Data

Switch ASICs.

These systems use the four-slot Compact PCI assembly, the eight-slot regular-

PCI assembly, and in the case of the Sun Fire 6800 server, the Sun Fire Link I/O

assembly.

Segments
The mid-range level-2 interconnect can optionally be split into two segments,
where half the Sun Fireplane switch boards are in one segment, and half are in

the other. This creates two independent systems in one box which do not share

any logic components. Configuring a mid-range system into two segments

doubles the address-limited bandwidth of the box to 19.2 GB/s, but halves the

Sun Fireplane switch bandwidth, since it must then be run in double-pumped

mode.

If most traffic is local to each board, then the reduction in data switch

bandwidth may have little effect, and the aggregate bandwidth of a segmented

system can approach twice that of an unsegmented system. Memory Placement

Optimization can particularly benefit Sun Fire mid-range servers in this

segmented mode, since by keeping memory accesses local to each board the

effects of diminished interconnect bandwidth are minimized.

When the segments are configured along the half-cabinet power-grid

boundaries of a Sun Fire 6800 server, then there is no electrical connection

between the two halves, and they function as a totally isolated, two-way

cluster-in-a-box.

Domains
A segment is configured into one or two Dynamic System Domains. Each

domain runs a separate instance of the Solaris Operating System, and has its

own boot disk. A domain must have at least one Uniboard and one I/O

assembly, so there can be up to two domains in a Sun Fire 3800-4810 server,

and four in a Sun Fire 6800 server. A domain is isolated from other domain’s

Uniboard and I/O assembly hardware faults, as well as any software faults.

Appendix B - Sun Fire Servers 53

When there are two domains in a segment, they share the Sun Fireplane switch

boards of that segment, and split between them the address bandwidth. A

system board failure in one domain will not affect the other domain, but a

switch board failure will bring down both domains in a segment.

High-End Sun Fireplane Interconnect

A large server like the Sun Fire 15K needs three levels of interconnect for up to

180 devices (72 processors, 72 memory units, and 36 I/O controllers, or 106

processors, 72 memory units, and 2 I/O controllers) — see Figure B-6.

Sun Fireplane Level 1: System Boards

Uniboard
This is the same Uniboard as on all mid and high-end servers.

I/O Assembly
The hot-swap PCI I/O assembly has the same architecture as for the mid-range

systems, but is different physically to fit into the slot-1 form factor of the

expander board. It accommodates up to four standard PCI cards, which are

mounted in hot-swappable cassettes. A Sun Fire Link I/O assembly is also

available, providing two bidirectional optical links, and accommodating up to

two standard PCI cards, mounted in the same hot-swappable cassettes as in the

standard PCI I/O assembly.

MaxCPU board
When not all of the 18 type-1 slots are needed for I/O connectivity or I/O

bandwidth, then the remainder of the type-1 slots can be populated with

MaxCPU boards.

A MaxCPU board has two processors, but no on-board memory. These

processors use the memory on other boards. The off-board bandwidth per

processor is 1.2 GB/s, the same as for the Uniboard.

54 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

System
Address

Controller

Data Switch
(3 ports)

PCI bus
controller

Address
Repeater

66 MHz PCI bus
System

Data
Interface

(3 ports)

Figure B-6 High-end interconnect (Sun Fire 12K/15K servers)

Data
Switch
(3 ports)

Address
Repeater

\

Address
Crossbar
(18 ports)

Response
Crossbar
(18 ports)

Data
Crossbar
(18 ports)

Center-
plane

PCI bus
controller

Dual CPU Data Switch (5 ports)

CPU Memory

33 MHz PCI bus

66 MHz PCI bus

33 MHz PCI bus

CPU Memory

Dual CPU Data Switch (5 ports)

CPU Memory

CPU Memory

2.4 GB/s

4.8
GB/s
per

board-
set

4.
8

G
B

/s

75 mil-
lion/se
c per

board-
set

75-150
mil-

lion/sec
per

board-
set

Expander
Board

Uniboard

2.4 GB/s

2.4 GB/s 2.4 GB/s

2.4 GB/s

4.8 GB/s

Hotswap PCI Assembly

1.2 GB/s

System
devices

9.6 GB/s
peak per
expander

150 million
addresses
/sec peak

per
expander

43 GB/s
peak

Fireplane
Level 1 ASICs

Fireplane
Level 2 ASICs

Fireplane
Level 3 ASICs

2.4 GB/s

2.4 GB/s 2.4 GB/s

2.4 GB/s

• • •

18 Boardsets

•
•

•
Data Switch

Address
Repeater

2.4 GB/s

Dual CPU Data Switch (5 ports)

CPU

CPU

MaxCPU board

Type-0
Slot

Type-1
Slot

Type 1
Slot

1.
2

G
B

/s
4.

8
G

B
/s

2.
4

G
B

/s

2.4 GB/s

2.4 GB/s

Appendix B - Sun Fire Servers 55

Sun Fireplane Level 2: Boardset

Level 2 is implemented on an Expander board. The Expander board has one

type-0 slot for a Uniboard, and one type-1 slot for an I/O assembly or MaxCPU

board. The three-board combination of an Expander board, a Uniboard, and

slot-1 board is called a boardset. Each of these boards is hot-swappable

For transfers within a boardset, the System Address Controller acts as a level-2

Address Repeater, and the six System Data Interface ASICs act as a level-2 data

switch. A boardset by itself with one Uniboard and one I/O assembly behaves

identically to a similarly configured Sun Fire 3800-6800 server.

Sun Fireplane Level 3: Centerplane

Level 3 connects together the 18 boardsets. Each boardset has separate input

and output connections to the address crossbar and to the response crossbar.

Address requests are sent across the address crossbar, and take two clocks.

Replies are sent back on the response crossbar, and take one or two clocks.

Each boardset has a 4.8 GB/s peak data connection to the 18x18 centerplane

data crossbar.

The centerplane address crossbar is implemented by four ASICs, the response

crossbar by two ASICs, and the data crossbar by 14 ASICs. In the event of an

ASIC failure, each of these crossbars can be individually reconfigured into

double-pumped mode which operate at half the usual rate.

Directory Coherency
Each boardset is a separate snooping coherency domain. When a processor

requests a memory address in a different snooping coherency domain, the

scalable-shared memory (SSM) agent in the system address controller ASIC on

the requester’s expander board notices the request, and sends it across the

address crossbar to the home SSM agent in the system address controller ASIC

on the home boardset. Home is the boardset where the memory is physically

located. The home agent keeps track of which snooping coherency domain any

sharers are in, and where the current owner is.

56 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Figure B-7 Sun Fire 12K/15K server boardset

SRAM

SRAM

5.5"
14cm

P
ow

er
P

ow
er

P
ow

er

19.4"
49cm

28.5”
42cm

16.5"
41cm

Four banks of 8 SDRAM DIMMsD
at

a
sw

itc
h

Data
cntrl

C
en

te
rp

la
ne

 c
on

ne
ct

or
: 4

.8
 G

B
/s

Addr
-ess

Boot
bus

Boot
bus

11.5”
29cm

D
at

a
sw

itc
h

P
C

I
co

nt
ro

l

Boot
bus

2 PCI cards: each in a hot-
swappable cassette

Boot
bus

S
ys

te
m

 d
at

a
in

te
rf

ac
e

2 PCI cards: each in a hot-
swappable cassette

E
 c

ac
he

E
 c

ac
he

E
 c

ac
he

E
 c

ac
he

E
 c

ac
he

E
 c

ac
he

E
 c

ac
he

E
 c

ac
he CPU

UniboardExpander board

Hotswap PCI assembly

Dual CPU
data switch

CPU CPU CPU

P
C

I
co

nt
ro

l

Power

Power

Power

P
ow

er
P

ow
er

Power

Addr
-ess

Addr
-ess

Data
cntrl

Dual CPU
data switch

T
yp

e-
0

sl
ot

T
yp

e-
1

sl
ot

5.5"
14cm

Appendix B - Sun Fire Servers 57

The home agent broadcasts the request on the home address bus, and if the

block is not owned by a cache on the home boardset, then memory supplies the

data. The data is moved through the home boardset data switch, the

centerplane data crossbar, and the requesting boardset’s data switch to reach

the requester.

If the requested location is currently owned by a system device, then the home

agent sends the address over the address crossbar to the SSM agent on the

owning boardset. The owning agent broadcasts the address on its address bus,

and the owning device supplies the data.

In all cases, the requesting agent reruns the address transaction on the

requester’s address bus, to establish the request’s place in the global memory

order.

The SSM protocol uses three tag bits stored in memory (the Mtags) to specify

the global coherency state of a memory block. The Mtag state is in addition to

the snoopy Modified, Owned, Exclusive, Shared, Invalid (MOESI) state of a

line.

The Mtags are stored in the eight-bytes of error-correcting code (ECC)

information that goes with each 64-byte memory block. Memory is used

because the number of snoop tags that would have been required to represent

all the data cached in other snooping coherency domains would have been too

large to fit in high speed SRAM. Instead, each SSM agent has an SRAM

Coherency Directory Cache (CDC) to give it quick access to the most recent

coherency information.

For more detail on the Sun Fireplane SSM coherency protocol, see [1] and [4].

Peak Bandwidth
When all accesses in a Sun Fire 15K server are local to each boardset, the peak

interconnect bandwidth is the aggregate local interconnect bandwidth of each

boardset: 18 boardsets ✕ 9.6 GB/s = 172 GB/s. The peak local memory

bandwidth is about 6.7 GB/s per boardset (assuming that memory banks are

16-way interleaved), which gives a peak memory bandwidth of about 120.6

GB/s. When all accesses are to a different boardset than the requester, the peak

interconnect bandwidth is the bisection bandwidth of the centerplane: 18

boardsets ✕ 2.4 GB/s = 43 GB/s.

58 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

P

P M

M

P

P M

M

PCI

I

I

PCI

Figure B-8 Sun Fire family interconnect overview

Active centerplane with three 18x18 crossbars

Uniboards P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

PCI

I

I

PCI

PCI

I

I

PCI
Adr
Bus
Data
Xbar

Adr
Bus
Data
Xbar

Adr
Bus
Data
Xbar

Adr
Bus
Data
Xbar

Passive
centerplane

P

PM

M

P

PM

M

6 Uniboards

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M

PCI

I

I

PCI

PCI

I

I

PCI

4 Fireplane switch boards with Address
Repeater & 10x10 data crossbar

PCI

I

I

PCI

PCI

I

I

PCI
Adr
Bus
Data
Xbar

Adr
Bus
Data
Xbar

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M

P

PM

M3 Uniboards

2 I/O
assemblies

2 Fireplane switch boards with
Address Repeater & 5x5 crossbar

Passive
backplane

Active backplane with Address
Repeater & 4x4 data crossbar

2 Uniboards

M

P

I

Address path

Data path

Data switch

Processor

Memory unit

PCI bridge

PCI card PCI

Legend

Address
Repeater

Sun Fire 15K

Sun Fire 6800

Sun Fire 4800/4810

Address
Repeater

+ SSM agent

4 I/O
assemblies

2 I/O
assemblies

I/O
assemblies
or MaxCPU

boards

Sun Fire 3800

18
boardsets

Active centerplane with
three 9x9 crossbars

Uniboards P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

P

PM

M

P

PM

M

PCI

I

I

PCI

Sun Fire 12K

I/O
assemblies
or MaxCPU

boards

9 boardsets

Appendix B - Sun Fire Servers 59

Figure B-9 Mid-range and high-end Sun Fire family cabinets

Sun Fire 6800
Cabinet

24 processors
192 DIMMs (192 GB max)

2 System Controllers
8 I/O controllers

75"
190cm

24"
61cm

Sun Fire 4800
Deskside or rack mount

12 processors
96 DIMMs (96 GB max)

2 System Controllers
4 I/O controllers

53"
135cm

6
Uniboards
4 I/O

assemblies
(behind)

18U

29"
72cm

18"
45cm

33"
85cm

65"
166cm

Sun Fire 12K/15K
Cabinet

36–106 processors
576 DIMMs (576 GB max)

2 System Controllers
18–2 I/O controllers

18
Uniboards

Bulk
Power

18 I/O
assemblies

Fan trays

Sun Fire 3800
Rack mount
8 processors

64 DIMMs (64 GB max)
2 System Controllers

4 I/O controllers

9U 35"
88cm

17"
43cm

2 I/O
assemblies

Fan trays

Bulk
Power

Fan trays

Media tray

3 Uni-
boards

2 I/O
assemblies

2 Uni-
boards

75"
190cm

21U

Sun Fire 4810
Rack mount

24"
60cm

3 Uni-
boards

2 I/O
assemblies

18"
45cm

60 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Domains
The Sun Fire 15K server can be divided into as many as 18 Dynamic System

Domains, on a board-level granularity. A Uniboard from a given boardset can

be in one domain, and the I/O assembly can be in another, which makes it

possible to move CPUs from one domain to another without affecting the I/O

connections.

Sun Fire Server Cabinets

Figure B-8 shows an overall picture of the Sun Fireplane interconnect

implementation in the various servers, and Figure B-9 shows the family

cabinets.

Memory Access Performance
The variations on the Sun Fireplane interconnect design in each of the server

models result in differences on memory performance characteristics among

Sun Fire servers. In particular, the more powerful and scalable servers will

present different memory access speeds depending on the location of the

memory page (or cache line) and of the requesting CPU. These performance

differences manifest themselves in terms of latency and bandwidth. For the

purposes of this discussion, we will focus on requests made by CPU processes

for data that is resident in memory, and will exclude requests for cache lines

that are actually in CPU caches.

On a small of workgroup server, like the Sun Fire 280R or Sun Fire V880

servers, such differences in memory access speeds due to locality are negligible

for all practical purposes. This is due to the fact that, in those server models,

the Sun Fireplane interconnect implementation is very compact, using a level-0

or level-1 approach.

On the Sun Fire 3800-6800 server family, the presence of a level-2 logic on the

Sun Fireplane interconnect creates small locality effects. Therefore, memory

access speeds are faster when the requesting CPU is in the same Uniboard as

the memory that contains the requested data. Additional cycles are necessary

when the requesting CPU and requested data are in different Uniboards.

Appendix B - Sun Fire Servers 61

On the Sun Fire 12K and 15K servers, in addition to the level-3 logic

introduced, the presence of the SSM protocol creates variations in memory

access speed depending on the situation (a hit on the directory cache will

enable faster memory access) — see Ref. [4].

Table B-2 lists latencies for Sun Fire mid-range and large servers. Pin-to-pin

latency is calculated by counting clocks in the interconnect logic design

between the address request from a CPU and the completion of the data

transfer back into the CPU. Memory latencies for small or workgroup servers

are of the order of the lowest (same board) latencies in a Sun Fire 6800 or 15K

system.

Similarly, memory bandwidth is also affected by the location of the requesting

CPU and the target data. Table B-3 shows maximum memory bandwidth for

several types of access. With random distribution of data across the whole

system memory, the maximum overall system bandwidth should be

somewhere between the “all local” and “all remote” values.

It is easy to see from the latency and bandwidth tables that performance gains

can be achieved if the operating system is aware of the locality of memory and

can explore it by carefully placing memory pages requested by CPU processes.

Table B-2 Pin-to-Pin latencies for data in memory for Sun Fire mid-range and high-end servers

Location of Memory Sun Fire 3800-6800 Sun Fire 12K/15K

Same board (requester local memory) 180 ns 180 ns

Same board (available through other CPU on

the same dual CPU data switch)

193 ns 193 ns

Same board (other side of data switch) 207 ns 207 ns

Other board 240 ns −

Other board (CDC hit) − 333 ns

Other board (CDC miss) − 440 ns

62 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

Table B-3 Maximum memory bandwidth for Sun Fire servers

Memory Access Sun Fire 3800-6800 Sun Fire 12K Sun Fire 15K

Same board as

requester

one Uniboard 6.7 GB/s 6.7 GB/s 6.7 GB/s

system aggregate

(“all local board access”)

9.6 GB/s 60.3 GB/s 120.6 GB/s

Separate board

from requester

 one Uniboard 2.4 GB/s 2.4 GB/s 2.4 GB/s

system aggregate

(“all remote board access”)

9.6 GB/s 21.6 GB/s 43.2 GB/s

63

References

[1] Alan Charlesworth, “The Sun Fireplane System Interconnect,” SC2001
conference paper, Nov 2001, http://www.sc2001.org/papers/pap.pap150.pdf.

[2] Alan Charlesworth, “SMP Interconnect @ Sun”, Proceedings of the Spring
2002 SuperG Conference, 2002, Sun Microsystems, Inc.

[3] Alan Charlesworth, “The Sun Fireplane Interconnect”, IEEE Micro,Jan–Feb

2002, pp 36-45.

[4] Sun FireTM 15K System - Overview, Nov 2001, Part No. 806-3509-10 (V2), Sun

Microsystems, Inc. http://docs.sun.com/db/doc/806-3509-10?q=806-3509

[5] Sun FireTM 6800/4810/4800/3800 Systems Overview, Apr 2001, Part Number

805-7362-11, Sun Microsystems, Inc. http://docs.sun.com/db/doc/805-7362-

11?q=805-7362-11

[6] Alan Charlesworth, “Starfire: Extending the SMP Envelope,” IEEE Micro,

Jan–Feb 1998, pp 39-49, http://www.sun.com/servers/white-

papers/starmicro.pdf?rendition=pdf.

[7] David Culler and Jaswinder Singh, Parallel Computer Architecture, Morgan

Kaufmann, San Francisco, 1999.

[8] Ben Catanzaro, Multiprocessor System Architectures, Prentice Hall,

Englewood Cliffs, NJ, 1994.

[9] Kevin Normoyle, Zahir Ebrahim, Bill VanLoo, Satya Nishtala, “The

UltraSPARC Port Architecture,” Hot Interconnects III conference paper, August

1995.

64 Solaris Memory Placement Optimization and Sun Fire Servers — March 2003

[10] Tim Horel and Gary Lauterbach, “UltraSPARC III: Designing Third-

Generation 64-Bit Performance,” IEEE Micro, May–June 1999, pp 73-85,

http://dlib.computer.org/mi/books/mi1999/pdf/m3073.pdf.

[11] Sun FireTM Link Systems Overview, Part Number 816-0697, Sun

Microsystems, Inc, 2002.

References 65

Sales Offices

Africa (North, West and Central): +33 1 30674680
Argentina: +5411-4317-5600
Australia: +61-2-9844-5000
Austria: +43-1-60563-0
Belgium: +32-2-704-80-00
Brazil: +55-11-5187-2100
Canada: +905-477-6745
Chile: +56-2-3724500
Colombia: +571-629-2323
Commonwealth of Independent States: +7-502-935-8411
Czech Republic: +420-2-3300-9311
Denmark: +45 4556 5000
Egypt +202-570-9442
Estonia: +372-6-308-900
Finland: +358-9-525-561
France: +33-01-30-67-50-00
Germany: +49-89-46008-0
Greece: +30-1-618-8111
Hungary: +36-1-202-4415
Iceland: +354-563-3010
India: +91-80-5599595
Ireland: +353-1-8055-666
Israel: +972-9-9513465
Italy: +39-039-60551
Japan: +81-3-5717-5000
Kazakhstan: +7-3272-466774
Korea: +822-3469-0114
Latvia: +371-750-3700
Lithuania: +370-729-8468
Luxembourg: +352-49 11 33 1
Malaysia: +603-264-9988
Mexico: +52-5-258-6100
The Netherlands: +31-33-450-1234
New Zealand: +64-4-499-2344
Norway: +47-2202-3900
People's Republic of China:

Beijing: +86-10-6803-5588
Chengdu: +86-28-619-9333
Guangzhou: +86-20-8755-5900
Hong Kong: +852-2802-4188
Shanghai: +86-21-6466-1228

Poland: +48-22-8747800
Portugal: +351-21-4134000
Russia: +7-502-935-8411
Singapore: +65-438-1888
Slovak Republic: +421-7-4342 94 85
South Africa: +2711-805-4305
Spain: +34-91-596-9900
Sweden: +46-8-623-90-00

German: 41-1-908-90-00
French: 41-22-999-0444

Switzerland: +41-1-908-9000
Taiwan: +886-2-2514-0567
Thailand: +662-636-1555
Turkey: +90-212-236 3300
United Arab Emirates: +9714-3366333
United Kingdom: +44-1-276-20444
United States: +1-800-555-9SUN OR +1-650-960-1300
Venezuela: +58-2-905-3800
Worldwide Headquarters:

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A
Phone: 650-960-1300 or 800-555-9SUN

Internet: www.sun.com

Printed in USA

	Introduction
	Sun Fire Servers
	Memory Latency and Bandwidth

	Memory Placement Optimization
	Implementation
	Locality Groups
	Scheduler
	Memory Allocation
	System Variables
	First Group
	Second Group

	Informational and Controlling APIs
	Informational APIs
	Controlling APIs

	MPO in the Solaris Operating System

	Memory Placement Optimization Benefits
	Business Computing Test Results
	Data Warehousing
	Enterprise Resource Planning
	Java Application
	On-Line Transaction Processing
	Oracle Database Processes
	Oracle Database Memory Usage
	Results
	Table�3�1 Distribution of Load Misses to E-cache, evaluated through simulation.
	Table�3�2 Changes in measured E-cache Load Misses and private vs. shared memory distribution

	High Performance Technical Computing Test Results
	Memory-Copy Microbenchmark
	Sun Fire 15K Server Results
	Table�3�3 Memory-copy results for a Sun Fire 15K server.
	Table�3�4 Breakdown of array data locality for Sun Fire 15K server tests.
	Table�3�5 Multi-threaded memory-copy performance for Sun Fire 12K and 15K servers, in MB/s. Speed...

	Sun Fire 6800 Server Results
	Table�3�6 Memory-copy results for a Sun Fire 6800 server
	Table�3�7 Breakdown of array data locality for Sun Fire 6800 server tests.
	Table�3�8 Multi-threaded memory-copy performance for a Sun Fire 6800 server, in MB/s. Speed-up is...

	Finite-Differences Microbenchmark
	Sun Fire 15K Server Results
	Table�3�9 Finite-difference microbenchmark performance (in seconds per iteration) in a Sun Fire 1...

	Sun Fire 6800 Server Results
	Table�3�10 Finite-difference microbenchmark performance (in seconds per iteration) in a Sun Fire ...

	Additional Tests
	Table�3�11 Performance gains due to MPO in several applications for a Sun Fire 6800 server. Perfo...

	Summary
	Appendix A - Code Examples
	Detecting MPO Status
	Controlling MPO

	Appendix B - Sun Fire Servers
	Introduction to Cache Coherency
	Sun SMP Server Generations

	Sun Fireplane Interconnect
	Table B�1 Sun system interconnect generations.
	Number of Interconnect Levels
	Address Interconnect
	Data Interconnect
	Active System Devices
	Processor
	PCI Controller
	Sun Fire Link Controller
	Small Sun Fireplane Interconnect
	Workgroup Sun Fireplane Interconnect
	Dual Processor Board
	Sun Fireplane Level 1: Motherboard

	Mid-Range Sun Fireplane Interconnect
	Sun Fireplane Level 1: System Boards
	Sun Fireplane Level 2: Switch Boards

	High-End Sun Fireplane Interconnect
	Sun Fireplane Level 1: System Boards
	Sun Fireplane Level 2: Boardset
	Sun Fireplane Level 3: Centerplane

	Sun Fire Server Cabinets

	Memory Access Performance
	Table B�2 Pin-to-Pin latencies for data in memory for Sun Fire mid-range and high-end servers
	Table B�3 Maximum memory bandwidth for Sun Fire servers

	References

