
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Supporting Multiple Page Sizes in

the Solaris™ Operating System

Richard McDougall, PAE

Sun BluePrints™ OnLine—March 2004

Part No. 817-5917-10
Revision 1.0, 3/10/04
Edition: March 2004

Please
Recycle

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology described in this document. In particular, and without limitation,

these intellectual property rights may include one or more patents or pending patent applications in the U.S. or other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Sun Forte, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc.

in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC

International, Inc. in the US and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun

Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the Far and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, Sun Forte, et Solaris sont des marques de fabrique ou des marques déposées, ou marques

de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des

marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les

marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Supporting Multiple Page Sizes in
the Solaris™ Operating System

The availability of both processor and operating system (OS) support for 64-bit

address spaces has enabled applications to take a quantum leap in the size and

efficiency with which they manipulate data. UltraSPARC® processor-based servers

from Sun Microsystems paired with the Solaris™ Operating System (Solaris OS)

have enabled applications that were once limited to a virtual memory size of 4

gigabytes to a virtually unlimited span. This dramatic change in the size of virtual

memory has changed the way developers create their applications and how

organizations use them. Database management systems can have larger tables than

ever before and often, they can fit entirely in main memory, significantly reducing

their I/O requirements. Large-scale simulations can run with fewer restrictions on

array sizes. In fact, working set sizes of several gigabytes are now common.

The performance of a memory-intensive application is dependent on the

performance of the underlying memory management infrastructure. Time spent

converting virtual addresses into physical addresses will slow down an application,

often in a manner that is not evident to standard performance tools. In many cases,

there is an opportunity to increase the performance of the underlying memory

management infrastructure, resulting in higher application performance.

We can often increase an application’s performance by increasing the memory

management page size. The memory management unit (MMU) in Sun’s UltraSPARC

processors typically has just a few hundred entries, each of which can translate 8

kilobytes of address space by default, resulting in access to only a few megabytes of

memory before performance is affected. Fortunately, recent improvements in the

Solaris OS allow these limitations to be overcome.

Beginning with the Solaris 9 OS, multiple page sizes can be supported on

UltraSPARC processors so administrators can optimize performance by changing the

page size on behalf of an application. Typical performance measurement tools do not

provide sufficient detail for evaluating the impact of page size and do not provide

the needed support to make optimal page size choices.
1

This article explains how to use new tools to determine the potential performance

gain. In addition, it explains how to configure larger page sizes using the multiple

page size support (MPSS) feature of the Solaris 9 OS. The article addresses the

following topics:

■ “Understanding Why Virtual-to-Physical Address Translation Affects

Performance” on page 2

■ “Working With Multiple Page Sizes in the Solaris OS” on page 6

■ “Configuring for Multiple Page Sizes” on page 14

Understanding Why Virtual-to-Physical
Address Translation Affects
Performance

The faster the microprocessor converts virtual addresses into physical addresses, the

faster the application can run. Ideally, the MMU converts virtual addresses into

physical addresses quickly enough (every microprocessor cycle) that the

microprocessor won’t stall and wait. Under certain circumstances, however, the

translation process can take considerably longer. In fact, this can typically take from

tens to hundreds of cycles.

We can often minimize the time taken to translate virtual addresses for applications

with large working sets by increasing the page size used by the MMU. However,

some applications that work well with small pages might see performance

degradation when they are forced to use large pages. For example, processes that are

short-lived, have small working sets, or have memory access patterns with poor

spatial locality could suffer from the overhead of using large pages. Additionally,

copy-on-write (COW) faults for a large page require a significant amount of time to

process, as does first-touch access, which involves allocating and zeroing the entire

page. For these reasons, we must analyze the application to determine whether the

use of large pages is beneficial. Methods for determining when applications will

benefit from large page sizes are presented later in this article.

Solaris OS Address Translation

Memory is abstracted so that applications only need to deal with virtual addresses

and virtual memory. Behind the scenes, the OS and hardware, in a carefully

choreographed dance, transparently translate the application’s virtual addresses into

the physical addresses for use by the hardware memory system.
2 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

The task of translating a virtual address into a physical address is accomplished by

software and hardware modules. The software translates the mappings within an

address space of a process (or the kernel) into hardware commands to program the

microprocessor’s MMU. The hardware then translates requests for virtual memory

from the running instructions into physical addresses in real time. Optimally, this

happens in the time of one microprocessor cycle. Some microprocessors, such as

UltraSPARC, require assistance from the OS to manage this process, facilitated by a

hardware-generated exception into system software where these helper tasks are

performed.

FIGURE 1 Solaris OS Virtual-to-Physical Memory Management

The combined virtual memory system translates virtual addresses into physical

addresses in page-size chunks of memory as depicted in the preceding figure.

The hardware uses a table known as the translation lookaside buffer (TLB) in the

microprocessor to convert virtual addresses to physical addresses on-the-fly. The

software programs the microprocessor’s TLB with entries identifying the

relationship of the virtual and physical addresses. Because the size of the TLB is

limited by hardware, the TLB is typically supplemented by a larger (but slower) in-

memory tables of virtual-to-physical translations. On UltraSPARC processors, these

tables are known as the translation storage buffer (TSB); on most other architectures,

they are known as a page table. When the microprocessor needs to convert a virtual

address into a physical address, it searches the TLB (a hardware search), and if a

physical address is not found (for example, the hardware encounters a TLB miss), the

microprocessor searches the larger in-memory table. The following figure illustrates

the relationship of these components.

V P

0000

Process
binary

Process
scratch
memory

Process’s
linear virtual
address space

Virtual
memory
segments virtual

memory

MMU

Virtual-to-
physical
translation
tables

Physical
memory

(heap)

Physical
memory
pagesPage-size

pieces of
Understanding Why Virtual-to-Physical Address Translation Affects Performance 3

FIGURE 2 Virtual Address Translation Hardware and Software Components

UltraSPARC I–IV microprocessors use a software TLB replacement strategy. For

example, when a TLB miss occurs, software is invoked to search the in-memory table

(the TSB) for the required translation entry.

Let’s step through a simple example. Suppose a process allocates some memory

within its heap by calling malloc (). Further suppose that malloc () returns to the

program a virtual address of the requested memory. When that memory is first

referenced, the virtual memory layer requests a physical memory page from the

system’s free lists. The newly acquired page has an associated physical address

within physical memory. The virtual memory system then constructs a translation

entry in memory containing the virtual address (the start of the page returned by

malloc) and the physical address of the new page. The newly created translation

entry is then inserted into the TSB and programmed into an available slot in the

microprocessor’s TLB. The entry is also kept in software, linked to the address space

V P

virtual
memory

Physical
memory

Physical
memory
pages

Page-size
pieces of

TLB miss
(Entries filled from memory)

TLB (hardware)

TSB or page table (in memory)

Software structures

TSB or page table miss
(Entries filled from software
 structures)
4 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

of the process to which it belongs. Later, when the program accesses the virtual

address, if the new TLB entry is still in the TLB virtual-to-physical address is

translated on-the-fly. However, if the TLB entry has been evicted by other activity, a

TLB miss occurs. The corresponding hardware exception looks up the translation

entry in the larger TSB and reloads it into the TLB.

The TSB is also limited in size. In extreme circumstances, a TSB miss can occur.

Translating the virtual address of a TSB miss requires a lengthy search of the

software structures associated with the process.

The mechanism is similar for other processors using hardware TLB-miss strategies,

including the Intel x86, except that a hardware TLB replacement strategy is used to

refill the TLB rather than software. When a TLB miss occurs, an in-hardware engine

is invoked to search the page table.

TLB Reach and Application Performance

The objective of the TLB is to cache as many recent page translations in hardware as

possible so that it can satisfy a process’s memory accesses by performing all of the

virtual-to-physical translations on-the-fly. Most TLBs are limited in size because of

the amount of transistor space available on the CPU die. For example, the

UltraSPARC I and II TLBs are only 64 entries. This means that the TLB can address

no more than 64 pages of translations at any time; therefore, on UltraSPARC, the TLB

can address 64 × 8 kilobytes (512 kilobytes).

The amount of memory the TLB can concurrently address is known as the TLB reach.

The UltraSPARC I and II have a TLB reach of 512 kilobytes. If an application makes

heavy use of less than 512 kilobytes of memory, the TLB will be able to cache the

entire set of translations. However, if the application were to make heavy use of

more than 512 kilobytes of memory, the TLB will begin to miss, and translations will

have to be loaded from the larger TSB.

The following table shows the TLB miss rate and the amount of time spent servicing

TLB misses from a study of older SPARC™ architectures. We can see from the table

that only a small range of compute-bound applications fit well in the SuperSPARC™

TLB (gcc , ML, and pthor), whereas the others applications spend a significant

amount of their time in the TLB miss handlers.

TABLE 1 Sample TLB Miss Data From a SuperSPARC Processor Study

Workload
Total Time
(secs)

User Time
(secs)

User TLB
Misses

% User Time
in TLB Miss
Handling

Cache
Misses
(‘000s)

Peak Memory
Usage (MB)

coral 177 172 85974 50 71053 19.9

nasa7 387 385 152357 40 64213 3.5

compress 99 77 21347 28 21567 1.4

fftpde 55 53 11280 21 14472 14.7

wave5 110 107 14510 14 4583 14.3
Understanding Why Virtual-to-Physical Address Translation Affects Performance 5

TLB effectiveness has become a larger issue in the past few years because the

average amount of memory used by applications has grown significantly (almost

doubling year upon per year according to recent statistical data). The easiest way to

increase the effectiveness of the TLB is to increase the TLB reach so that the working

set of the application fits within the TLB’s reach.

The TLB reach can be improved using either of the following methods:

■ Increase the number of entries in the TLB. This approach adds complexity to the

TLB hardware and increases the number of transistors required; therefore,

requiring more valuable die space.

■ Increase the page size for each entry. This approach increases the TLB reach

without the need to increase the size of the TLB.

One trade-off of increasing the page size is that doing so might boost the

performance of some applications at the expense of slower performance elsewhere.

This trade-off is caused by wasted space that results from larger memory allocation

units. We would almost certainly increase the memory usage of many applications.

Luckily, a solution is at hand. Some of the newer processor architectures allow us to

use two or more different page sizes at the same time. For example, UltraSPARC

provides hardware support concurrently to select 8 kilobyte, 64 kilobyte, 512

kilobyte, or 4 megabyte pages. If we were to use 4 megabyte pages to map all

memory, then the TLB would have a theoretical reach of 64 × 4 megabytes (256

megabytes).

Working With Multiple Page Sizes in the
Solaris OS

This section introduces a strategy for measuring the potential performance gain that

could be yielded from an increase in page size. We begin by describing a powerful

tool in the Solaris 9 software, trapstat , for easily quantifying the potential gains of

using a larger page size. This description is followed by sections that explain the

methods we use to estimate the gain in the Solaris 8 OS using the cpustat
command.

mp3d 37 36 4050 11 5457 4.8

spice 620 617 41923 7 81949 3.6

pthor 48 35 2580 7 6957 15.4

ML 945 917 38423 4 314137 32.0

gcc 118 105 2440 2 9980 5.6

Workload
Total Time
(secs)

User Time
(secs)

User TLB
Misses

% User Time
in TLB Miss
Handling

Cache
Misses
(‘000s)

Peak Memory
Usage (MB)
6 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

Deciding When to Use Large Pages

To determine whether we can improve application performance by using a larger

page size, we need to determine the amount of time the microprocessor spends

servicing TLB misses on behalf of a target application (See “Understanding Why

Virtual-to-Physical Address Translation Affects Performance” on page 2 for a further

information on why translation misses affect application performance).

TLB misses are typically accounted for in the context of the running process. For

example, if a TLB miss occurs in a user-mode application, it will be counted as user

time. Thus, an application might spend a large amount of time having TLB misses

serviced, but still report that it spends 100 percent of its time in user mode, as shown

in the following sample.

Measuring Application Performance

Two different types of page size observability tools are available in Solaris software:

those that describe the page sizes in use by the system or application, and those that

help determine whether using large pages will benefit performance.

The pmap(1M), pagesize (1M), and getpagesize (3C) commands, and the

meminfo (2) interfaces discover information about the system’s ability to support

different TLB page sizes. The trapstat (1M) and cpustat (1M) commands can

approximate the amount of time that our target application spends waiting for the

platform to service TLB misses.

We can use two methods to approximate the amount of time spent on servicing TLB

misses:

■ We can observe the rate of TLB misses and multiply rate of TLB misses by the cost

of a TLB miss.

■ Or, if TLB misses are serviced by system software, we can directly measure the

time spent in TLB miss handlers.

In the Solaris 8 OS, the cpustat (1M) command measures the rate of TLB misses,

whereas Solaris 9 software provides a new command, trapstat , which computes

and displays the amount of time spent servicing TLB misses.

sol8# mpstat 1 3
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 2 0 1 234 134 91 46 0 0 0 25 100 0 0 0
 0 2 0 1 234 134 91 46 0 0 0 25 100 0 0 0
 0 2 0 1 234 134 91 46 0 0 0 25 100 0 0 0
Working With Multiple Page Sizes in the Solaris OS 7

Determine the Number of TLB Misses With trapstat (1M)

The trapstat command in the Solaris 9 software provides information about

processor exceptions on UltraSPARC platforms. Because TLB misses are serviced in

software on UltraSPARC microprocessors, trapstat can also provide statistics

about TLB misses.

Using the trapstat command, we can observe the number of TLB misses and the

amount of time spent servicing TLB misses. The -t and -T options provide

information about TLB misses. Again with trapstat , we can use the amount of

time servicing TLB misses to approximate the potential gains we could make by

using a larger page size or by moving to a platform that uses a microprocessor with

a larger TLB.

The -t option provides first-level summary statistics. The time spent servicing TLB

misses is summarized in the lower right corner; in this case, 46.2 percent of the total

execution time is spent servicing misses. Miss details are provided for TLB misses

incurred in the data portion of the address space, and for the instruction portion of

the address space. Data is also provided for user-mode and kernel-mode misses. We

are primarily interested in the user-mode misses because our application likely runs

in user mode.

sol9# trapstat -t 1 111
cpu m| itlb-miss %tim itsb-miss %tim | dtlb-miss %tim dtsb-miss %tim |%tim
-----+-------------------------------+-------------------------------+----
 0 u| 1 0.0 0 0.0 | 2171237 45.7 0 0.0 |45.7
 0 k| 2 0.0 0 0.0 | 3751 0.1 7 0.0 | 0.1
=====+===============================+===============================+====
 ttl | 3 0.0 0 0.0 | 2192238 46.2 7 0.0 |46.2
8 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

For further detail, use the -T option to provide a per-page size breakdown. In this

example, trapstat shows that all of the misses occurred are occurring on 8-

kilobyte pages.

We can conclude from this analysis that our application could potentially run almost

twice as fast if we eliminated the majority of the TLB misses. Our objective in using

the mechanisms discussed in the following sections is to minimize the user-mode

data TLB (dTLB) misses, potentially by instructing the application to use larger

pages for its data segments. Typically, data misses are incurred in the program’s

heap or stack segments. We can use the Solaris 9 software multiple-page size support

commands to direct the application to use 4-megabyte pages for its heap, stack, or

anonymous memory mappings.

Assess the Amount of Time Spent on TLB Misses With
cpustat (1M)

The cpustat command programs and reads the hardware counters in the

microprocessor. These counters measure hardware events within the processor itself.

Typically, two counters and a larger number of events can be traced. The

UltraSPARC III processors can count TLB miss events. Because the Solaris 8 OS lacks

trapstat , the CPU counters can estimate the amount of time spent servicing TLB

misses.

sol9# trapstat -T 1 111
cpu m size| itlb-miss %tim itsb-miss %tim | dtlb-miss %tim dtsb-miss %tim |%tim
----------+-------------------------------+-------------------------------+----
 0 u 8k| 30 0.0 0 0.0 | 2170236 46.1 0 0.0 |46.1
 0 u 64k| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
 0 u 512k| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
 0 u 4m| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
- - - - - + - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - + - -
 0 k 8k| 1 0.0 0 0.0 | 4174 0.1 10 0.0 | 0.1
 0 k 64k| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
 0 k 512k| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
 0 k 4m| 0 0.0 0 0.0 | 0 0.0 0 0.0 | 0.0
==========+===============================+===============================+====
 ttl | 31 0.0 0 0.0 | 2174410 46.2 10 0.0 |46.2
Working With Multiple Page Sizes in the Solaris OS 9

For example, the following cpustat command instructs the system to measure the

number of dTLB miss events and the number of microprocessor cycles on each

processor.

By default, the cpustat command reports only counts that represent user-mode

processes. This cpustat output shows us that on processor 0, a user mode process

consumes approximately 650 million cycles per second and that 3.5 million dTLB

misses per second are serviced. An UltraSPARC TLB miss typically ranges from

about 50 cycles if the TLB entry being loaded is found in the microprocessor’s cache

to about 300 cycles if a memory load is required to fetch the new TLB entry. We can,

therefore, approximate that between 175 million and 1050 million cycles are spent

servicing TLB misses, per one-second sample.

A quick check of the processor speed allows us to calculate the ratio of time spent

servicing misses.

Our microprocessor is running at 900 megahertz, providing 900 million cycles per

second. Therefore, at least 175/900, or 19 percent of the time is spent servicing TLB

misses. The actual number could be larger if a large fraction of the TLB misses

require memory loads.

sol8# cpustat -c pic0=Cycle_cnt,pic1=DTLB_miss 1
time cpu event pic0 pic1

 1.006 0 tick 663839993 3540016
 2.006 0 tick 651943834 3514443
 3.006 0 tick 630482518 3398061
 4.006 0 tick 634483028 3418046
 5.006 0 tick 651910256 3511458
 6.006 0 tick 651432039 3510201
 7.006 0 tick 651512695 3512047
 8.006 0 tick 613888365 3309406
 9.006 0 tick 650806115 3510292

sol8# psrinfo -v
Status of processor 0 as of: 11/10/2002 20:14:09
 Processor has been on-line since 11/05/2002 20:59:17.
 The sparcv9 processor operates at 900 MHz,
 and has a sparcv9 floating point processor.
10 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

Determining Which Page Sizes Have Been

Allocated

The pmap command allows us to query a target process about page size information,

and the meminfo system call provides a programatic query to the OS for

information about the page sizes provided to it.

Query a Process for Page Size Information With pmap(1)

The pmap command displays the page sizes of memory mappings within the address

space of a process. The -sx option directs pmap to show the page size for each

mapping.

sol9# pmap -sx `pgrep testprog`
2909: ./testprog
 Address Kbytes RSS Anon Locked Pgsz Mode Mapped File
00010000 8 8 - - 8K r-x-- dev:277,83
ino:114875
00020000 8 8 8 - 8K rwx-- dev:277,83
ino:114875
00022000 131088 131088 131088 - 8K rwx-- [heap]
FF280000 120 120 - - 8K r-x-- libc.so.1
FF29E000 136 128 - - - r-x-- libc.so.1
FF2C0000 72 72 - - 8K r-x-- libc.so.1
FF2D2000 192 192 - - - r-x-- libc.so.1
FF302000 112 112 - - 8K r-x-- libc.so.1
FF31E000 48 32 - - - r-x-- libc.so.1
FF33A000 24 24 24 - 8K rwx-- libc.so.1
FF340000 8 8 8 - 8K rwx-- libc.so.1
FF390000 8 8 - - 8K r-x-- libc_psr.so.1
FF3A0000 8 8 - - 8K r-x-- libdl.so.1
FF3B0000 8 8 8 - 8K rwx-- [anon]
FF3C0000 152 152 - - 8K r-x-- ld.so.1
FF3F6000 8 8 8 - 8K rwx-- ld.so.1
FFBFA000 24 24 24 - 8K rwx-- [stack]
-------- ------- ------- ------- -------
total Kb 132024 132000 131168 -.
Working With Multiple Page Sizes in the Solaris OS 11

The pmap command shows the MMU page size for each mapping. In this case, 8

kilobytes are used for all mappings. To demonstrate a larger page size, we can use

the ppgsz command in the Solaris 9 software to set the page size for the heap of our

test program to 4 megabytes. The ppgsz command is described in more detail in a

later section.

Retrieve a Page Description With meminfo (2)

The meminfo () system call enables a program to inquire about the physical pages

mapping its address space. This system call provides a programmatic way of

determining the page sizes allocated within a process’s address space. An array is

filled with a description of each page that backs the mapping. For more information,

refer to the meminfo (3c) man page.

sol9# ppgsz -o heap=4M ./testprog &
sol9# pmap -sx `pgrep testprog`
2953: ./testprog
 Address Kbytes RSS Anon Locked Pgsz Mode Mapped File
00010000 8 8 - - 8K r-x-- dev:277,83
ino:114875
00020000 8 8 8 - 8K rwx-- dev:277,83
ino:114875
00022000 3960 3960 3960 - 8K rwx-- [heap]
00400000 131072 131072 131072 - 4M rwx-- [heap]
FF280000 120 120 - - 8K r-x-- libc.so.1
FF29E000 136 128 - - - r-x-- libc.so.1
FF2C0000 72 72 - - 8K r-x-- libc.so.1
FF2D2000 192 192 - - - r-x-- libc.so.1
FF302000 112 112 - - 8K r-x-- libc.so.1
FF31E000 48 32 - - - r-x-- libc.so.1
FF33A000 24 24 24 - 8K rwx-- libc.so.1
FF340000 8 8 8 - 8K rwx-- libc.so.1
FF390000 8 8 - - 8K r-x-- libc_psr.so.1
FF3A0000 8 8 - - 8K r-x-- libdl.so.1
FF3B0000 8 8 8 - 8K rwx-- [anon]
FF3C0000 152 152 - - 8K r-x-- ld.so.1
FF3F6000 8 8 8 - 8K rwx-- ld.so.1
FFBFA000 24 24 24 - 8K rwx-- [stack]
-------- ------- ------- ------- -------
total Kb 135968 135944 135112 -
12 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

Discovering Supported Page Sizes

This section describes the three commands that enable us to determine information

about the page size supported by the Solaris 9 OS.

Determine Page Size With pagesize (1M)

The pagesize command displays the default page size used by the Solaris OS on

the given microprocessor. The default is currently 8 kilobytes for all UltraSPARC

platforms.

The pagesize command can also display the available page sizes on the given

microprocessor in the Solaris 9 OS. In this example, we can see that four page sizes

are available on our UltraSPARC processor.

Retrieve the Base Page Size With getpagesize (3C)

The getpagesize () function returns the base page size in bytes.

Retrieve the Microprocessor’s Available Page Size With
getpagesizes (3C)

The getpagesizes () function reports the available page sizes on the given

microprocessor. For more information, refer to the getpagesizes (3c) man page.

sol8# pagesize
8192

sol9# pagesize -a
8192
65536
524288
4194304
Working With Multiple Page Sizes in the Solaris OS 13

Configuring for Multiple Page Sizes

After determining that our application warrants the use of large pages, we need to

construct a strategy for determining what parts of our application to enhance to use

large pages. For example, we should consider whether we should attempt to enable

large pages for our target process’s heap and stack. The trapstat utility provides a

little information about the types of address space that incur TLB misses.

The instruction TLB (iTLB) miss information is likely a result from the process’s text

and library text because instructions typically reside in these mappings. It is

possible, however, for a program to execute code from other mappings; for example,

the Java virtual machine compiles instructions on-the-fly into its heap and then

executes from there. However, for the vast majority of applications, we can first

guess that iTLB misses result from the text or library mappings.

Data TLB misses are likely to occur from the program’s writable segments (its heap,

stack, data mapping, and read-only data within the text mapping).

The default page size for the Solaris OS is 8 kilobytes on UltraSPARC and 4 kilobytes

on Intel x86 microprocessors. Larger pages of 4 megabytes are used by the Solaris

kernel for its instruction and data sections; however, user applications requiring

larger pages must explicitly request them.

The use of larger page sizes in the Solaris 2.6 OS through the Solaris 8 OS is only

available through a special form of System V shared memory. To optimize database

performance, we can use a form of shared memory called intimate shared memory

(ISM). ISM is requested by the shmat (2) system call with the SHM_SHARE_MMUflag

and is allocated as 4 megabyte pages, if possible. Databases such as Oracle, Informix,

and Sybase request shared memory by using this flag and typically perform as much

as 10 percent to 20 percent better as a result of a reduced TLB miss rate.

The Solaris 9 OS introduces a generic framework for allowing user applications to

request larger page sizes. At the same time, ISM was also enhanced to take

advantage of the other supported large page sizes, for example, 64 kilobytes and 512

kilobytes. Unmodified applications can be directed to use larger page sizes by means

of the ppgsz (1M) command and the libmpss.so library. Applications can also be

customized to request larger page sizes by the memcntl (2) system call.

The Solaris 9 OS large-page infrastructure allows larger pages to be requested for the

mappings of /dev/zero , that is, for the heap, stack, and other anonymous

mappings.
14 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

Enabling Large Pages in the Solaris 9 OS

The new framework, MPSS, provided in the Solaris 9 OS allows larger page sizes to

be requested for user processes. The memcntl () system call specifies page-size

advice for a given address range. A wrapper program, ppgsz , and an interposition

library, libmpss.so , call memcntl () on behalf of the target process so that

unmodified binaries can make use of larger page sizes.

Advising Page-Size Preferences With ppgsz (1M)

The ppgsz command is a wrapper that advises a preferred page size for a process’s

heap or stack of a target process. These page-size preferences are inherited across

fork () but not across exec (). Thus, if the target program spawns (forks then execs)

another program, page sizes are not inherited. If inheritance of page sizes is

required, the libmpss.so library should be used instead.

For example, to start a target process with 4 megabyte pages for its heap, we could

use the ppgsz wrapper.

sol9# ppgsz -o heap=4M ./testprog &
sol9# pmap -sx `pgrep testprog`
2953: ./testprog
 Address Kbytes RSS Anon Locked Pgsz Mode Mapped File
00010000 8 8 - - 8K r-x-- dev:277,83
ino:114875
00020000 8 8 8 - 8K rwx-- dev:277,83
ino:114875
00022000 3960 3960 3960 - 8K rwx-- [heap]
00400000 131072 131072 131072 - 4M rwx-- [heap]
FF280000 120 120 - - 8K r-x-- libc.so.1
FF29E000 136 128 - - - r-x-- libc.so.1
FF2C0000 72 72 - - 8K r-x-- libc.so.1
FF2D2000 192 192 - - - r-x-- libc.so.1
FF302000 112 112 - - 8K r-x-- libc.so.1
FF31E000 48 32 - - - r-x-- libc.so.1
FF33A000 24 24 24 - 8K rwx-- libc.so.1
FF340000 8 8 8 - 8K rwx-- libc.so.1
FF390000 8 8 - - 8K r-x-- libc_psr.so.1
FF3A0000 8 8 - - 8K r-x-- libdl.so.1
FF3B0000 8 8 8 - 8K rwx-- [anon]
FF3C0000 152 152 - - 8K r-x-- ld.so.1
FF3F6000 8 8 8 - 8K rwx-- ld.so.1
FFBFA000 24 24 24 - 8K rwx-- [stack]
-------- ------- ------- ------- -------
total Kb 135968 135944 135112 -
Configuring for Multiple Page Sizes 15

Interposing Shared Libraries With libmpss.so

The mpss.so shared object in /usr/lib provides a means by which the preferred

stack or heap page size can be selectively configured for launched processes and

their descendants. The library has an the advantage over the wrapper in that page

sizes are inherited across exec (). To enable mpss.so , ensure that the following

string is present in the environment (see ld.so.1 (1)) along with one or more MPSS

environment variables.

Once preloaded, the mpss.so.1 shared object reads the following environment

variables to determine preferred page size requirements and processes for which

these requirements are specified.

For example, the following commands enable 4-megabyte pages for the heap of all

subsequently started processes.

See mpss.so.1 (1) for all available configuration options.

sol9# LD_PRELOAD=$LD_PRELOAD:mpss.so.1

MPSSHEAP=size

 MPSSSTACK=size
 MPSSHEAP and MPSSSTACK specify the preferred page
 sizes for the heap and stack, respectively. The speci-
 fied page size(s) are applied to all created
 processes.

 MPSSCFGFILE=config-file
 config-file is a text file which contains one or more
 mpss configuration entries of the form:

 exec-name:heap-size:stack-size

sol9# export LD_PRELOAD=$LD_PRELOAD:mpss.so.1
sol9# export MPSSHEAP=4M
sol9# ./testprog
16 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

Compiling Your Application to Request Larger

Page Sizes

The Sun Forte™ 8 compilers provide options to cause the target application to

request specific page sizes. The following options are supported for the compiler.

Set Stack and Heap Page Size With -xpagesize=n

(SPARC) Sets the preferred page size for the stack and the heap. The n value must be

one of the following: 8K, 64K, 512K, 4M, 32M, 256M, 2G, 16G, or default.

You must specify a valid page size for the Solaris OS on the target platform, as

returned by getpagesize (3C). If you do not specify a valid page size, the request is

silently ignored at run-time. The Solaris OS offers no guarantee that the page size

request will be honored. You can use pmap(1) or meminfo (2) to determine page size

of the target platform.

The -xpagesize option has no effect unless you use it at compile time and at link

time.

Note – This feature is not available on the Solaris 7 OS and the Solaris 8 OS. A

program compiled with this option will not link on the Solaris 7 OS or the Solaris 8

OS.

If you specify -xpagesize=default , the Solaris OS sets the page size.

-xpagesize without an argument is the equivalent to -xpagesize=default .

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to mpss.so.1 with the equivalent options, or running the

ppgsz (1) command in the Solaris 9 software with the equivalent options before

running the program. See the man pages for the Solaris 9 OS for details.

This option is a macro for -xpagesize_heap and -xpagesize_stack . These two

options accept the same arguments as -xpagesize : 8K, 64K, 512K, 4M, 32M, 256M,

2G, 16G, or default. You can set them both with the same value by specifying

-xpagesize or you can specify them individually with different values.

Set Heap Page Size in Memory With -xpagesize_heap=n

(SPARC) Sets the page size in memory for the heap. The n value can be 8K, 64K,

512K, 4M, 32M, 256M, 2G, 16G, or default. You must specify a valid page size for the

Solaris OS on the target platform, as returned by getpagesize (3C). If you do not

specify a valid page size, the request is silently ignored at run time.
Configuring for Multiple Page Sizes 17

You can use pmap(1) or meminfo (2) to determine page size at the target platform. If

you specify -xpagesize_heap=default , the Solaris OS sets the page size.

-xpagesize_heap without an argument is the equivalent to

-xpagesize_heap=default .

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to mpss.so.1 with the equivalent options, or running the

ppgsz (1) command in the Solaris 9 software with the equivalent options before

running the program. See the man pages for the Solaris 9 OS for details.

Note – This feature is not available on the Solaris 7 OS and the Solaris 8 OS. A

program compiled with this option will not link on the Solaris 7 OS or the Solaris 8

OS.

Set Stack Page Size in Memory With -xpagesize_stack=n

(SPARC) Set the page size in memory for the stack. n can be 8K, 64K, 512K, 4M, 32M,

256M, 2G, 16G, or default. You must specify a valid page size for the Solaris OS on

the target platform, as returned by getpagesize (3C). If you do not specify a valid

page size, the request is silently ignored at run-time. You can use pmap(1) or

meminfo (2) to determine page size at the target platform.

If you specify -xpagesize_stack=default , the Solaris OS sets the page size.

-xpagesize_stack without an argument is the equivalent to

-xpagesize_stack=default .

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to mpss.so.1 with the equivalent options, or running the

Solaris 9 command ppgsz (1) with the equivalent options before running the

program. See the man pages for the Solaris 9 OS for details.

Note – This feature is not available on the Solaris 7 OS and the Solaris 8 OS. A

program compiled with this option will not link on the Solaris 7 OS or the Solaris 8

OS.
18 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

Enhancing an Application to Request Larger Page

Sizes

The memcntl (3C) interface has been enhanced to allow page size requests to be

made on behalf of a process. Thus, an application can automatically request larger

page sizes when appropriate. Such an application wanting to request a larger page

size should do so by using the existing memcntl () interface.

With the cmd argument, we can now specify a new control operation,

MC_HAT_ADVISE, for page-size operations. When the cmd argument is set to

MC_HAT_ADVISE, the arg argument is interpreted as a pointer to a new structure, as

shown below. Currently, only three commands are supported; each command sets a

preferred page size. mha_flags must always be set to zero. It is reserved for future

use. Only one command can be specified at a time.

If mha_cmd is set to MHA_MAPSIZE_VA, we apply the set preferred page-size

operation to the address range (addr , addr + len). mha_pagesize must be a

supported page size, as returned by getpagesizes (), or zero to let the system select

the page size. The address and size of the range must be aligned to the new

preferred page size. The access protections within new page-size regions contained

in the range must be the same or the operation will fail. If there are holes in the

address range or if the mapping is mapped with MAP_NORESERVE, the operation

will fail. The address range can be contained inside a larger mapping or can span

many mappings of varying sizes.

The memcntl () interface promotes or demotes the preferred page sizes for any

MAP_PRIVATE /dev/zero mappings, provided that the constraints mentioned

above are met. Two special objects in the user address space require special

handling: the process’s heap and the primary thread stack (not the stack for

additional threads).

The heap consists of the last .bss adjacent to the brk area and the brk area itself.

The following figure illustrates the mapping procedure.

int memcntl(caddr_t addr, size_t len, int cmd, caddr_t arg,int attr, int mask);

struct memcntl mha{
 uint_t mha_cmd; /* command(s) */
 uint_t mha_flags; /* flags */
 size_t mha_pagesize;
};
Configuring for Multiple Page Sizes 19

FIGURE 3 Process Address Space Mappings

For these two cases we have separate commands.

When MHA_MAPSIZE_STACKand MHA_MAPSIZE_BSSBRKare used, mha_pagesize
must be a supported page size, as returned by getpagesizes (3C), or zero to let the

system select the page size. The operation is then applied to the entire existing stack

or heap mappings. The advice is then used for future page allocations. These

commands for changing the preferred page size for stack or heap may first adjust the

existing range in accordance with the new page size. This could involve creating

new segments to pad out the base and length of the existing range to the new,

preferred, page-size alignment.

Applications need to know what to align their memory requests on to attain

maximum performance (for example, when using mmap() for creating new

mappings) and to avoid misaligned mprotect (), munmap(), and mmap() requests that

could result in page demotion, which is when larger pages are broken up into

smaller pages.

MHA_MAPSIZE_STACK /* token for processes main stack */
MHA_MAPSIZE_BSSBRK /* token heap */

TEXT

DATA

HEAP -–malloc (),

Stack

Libraries

sbrk ()

BSS
20 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

Most applications that use mmap() pass in NULL for its addr argument to let the OS

manage its address space. If applications also want to use large pages with

memcntl (), they should suggest to the OS that it specify, by means of a new flag,

MAP_ALIGN, the minimum page size alignment desired. If specified, mmap()
interprets the addr argument only as the required minimum alignment and is free to

find a hole in the user address space that satisfies the minimum alignment specified

in the addr argument. The alignment must be a power of two multiple of

PAGESIZE, or zero to let the system choose the alignment. If MAP_ALIGNis specified

along with MAP_FIXED, the request will fail. If the alignment request cannot be

satisfied, mmap() will also fail.

For reference, we provide the following example. This code fragment sets the page

size for the program’s heap to 4 megabytes. Note the use of memalign to align the

request on a 4-megabyte boundary. Because the heap starts on a boundary that is not

4-megabyte aligned, the first few megabytes of the heap can reside on 8-kilobyte

pages. If the performance-sensitive data structures reside within this area, the

program might not realize the full benefits of a larger page size. By allocating a 4-

megabyte aligned area, we increase the chance that the subsequent virtual addresses

allocated will land on a large page.

#include <sys/types.h>
#include <sys/mman.h>
#include <stdlib.h>

#define MEGABYTE ((size_t)(1024 * 1024))
#define FOUR_MEGABYTE ((size_t)4 * MEGABYTE)

int
main(int argc, char *argv[])
{
 struct memcntl_mha mha;
 char *my_memory;

 /* Set pagesize to 4MB for heap */
 mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
 mha.mha_flags = 0;
 mha.mha_pagesize = FOUR_MEGABYTE;
 memcntl(NULL, 0, MC_HAT_ADVISE, (char *)&mha, 0, 0);

 /* Ensure user memory starts on first large page */
my_memory = (char *)memalign(FOUR_MEGABYTE, (size_t)100 *

MEGABYTE);
Configuring for Multiple Page Sizes 21

Determining Whether Your UltraSPARC CPU

Model Works Well With Large Pages

The TLB configurations are quite different across versions of UltraSPARC processors,

but they share a few items in common. UltraSPARC I through IV supports four page

sizes: 8 kilobytes, 64 kilobytes, 512 kilobytes, and 4 megabytes. In addition, there are

separate TLBs for the instruction and data paths.

UltraSPARC I and II

The UltraSPARC I and II microprocessors (143 megahertz–480 megahertz) have two

TLBs, one for the instruction path and one for the data path. Each TLB is a 64-entry,

fully associative TLB that supports all four page sizes. User applications can use any

of the four page sizes.

750 Megahertz UltraSPARC III

The 750 megahertz UltraSPARC III microprocessor has four TLBs: two for instruction

and two for data. The instruction TLBs are implemented as a 16-entry, fully

associative TLB that supports all four page sizes and a larger 128-entry TLB that

supports only 8 kilobyte entries. The data TLBs are implemented as a 16-entry, fully

associative TLB that supports all four page sizes and a larger 512-entry, two-way set

associative TLB that supports only 8 kilobyte entries.

The 16-entry dTLB has nine locked entries, which are locked by software for the

Solaris kernel, leaving only seven slots for large page sizes. Thus, use of large pages

is typically not beneficial on 750 megahertz UltraSPARC III systems.

900 Megahertz+ UltraSPARC III

The 900 megahertz onwards UltraSPARC III microprocessors have five TLBs: two for

instruction and three for data. The instruction TLBs are configured as a 16-entry,

fully associative TLB that supports all four page sizes and a larger 128-entry TLB

that supports only 8 kilobyte entries. The data TLBs are configured as a 16-entry,

fully associative TLB that supports all four page sizes and two larger 512-entry, two-

way set associative TLBs that support one page size per process. The increased size

of the data TLBs on 900 megahertz UltraSPARC III provides a large TLB spread (2

gigabytes when 4 megabyte pages are used) and typically increases performance

significantly for large memory applications.

The large data TLBs are configured automatically in accordance with the most

common page sizes in a process’s address space. A process using one large page size

in addition to the base page size (8 kilobytes) will have one of its large TLBs
22 Supporting Multiple Page Sizes in the Solaris™ Operating System • March 2004

automatically programmed to enable the large page size when eight or more pages

are using the larger page size within the process. It is assumed that the smaller TLB

is available if there are fewer than eight pages.

Because the large TLBs support all four page sizes, large pages can be used

effectively on UltraSPARC III. However, because the large TLBs can be configured

for only one page size at a time per process, only two page sizes should be used

concurrently. One of those page sizes should be the system’s base page size (8

kilobytes) for mappings not using large pages—for example, the program text or

libraries. The other larger page size is available for the remainder of the mappings.

The most common selections for page sizes are 8 kilobytes and 4 megabytes,

providing the greatest TLB spread for the large TLB.

About the Author

Richard has over 15 years of UNIX experience including application design, kernel

development, and performance analysis. Richard specializes in operating system

tools and architecture.

Ordering Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals through this program.

Accessing Sun Documentation Online

The docs.sun.com web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site

at: http://www.sun.com/blueprints/online.html
About the Author 23

	Understanding Why Virtual-to-Physical Address Translation Affects Performance
	Solaris OS Address Translation
	TLB Reach and Application Performance

	Working With Multiple Page Sizes in the Solaris OS
	Deciding When to Use Large Pages
	Measuring Application Performance
	Determine the Number of TLB Misses With trapstat(1M)
	Assess the Amount of Time Spent on TLB Misses With cpustat(1M)

	Determining Which Page Sizes Have Been Allocated
	Query a Process for Page Size Information With pmap(1)
	Retrieve a Page Description With meminfo(2)

	Discovering Supported Page Sizes
	Determine Page Size With pagesize(1M)
	Retrieve the Base Page Size With getpagesize(3C)
	Retrieve the Microprocessor’s Available Page Size With getpagesizes(3C)

	Configuring for Multiple Page Sizes
	Enabling Large Pages in the Solaris 9 OS
	Advising Page-Size Preferences With ppgsz(1M)
	Interposing Shared Libraries With libmpss.so
	Compiling Your Application to Request Larger Page Sizes
	Set Stack and Heap Page Size With -xpagesize=n
	Set Heap Page Size in Memory With -xpagesize_heap=n
	Set Stack Page Size in Memory With -xpagesize_stack=n

	Enhancing an Application to Request Larger Page Sizes
	Determining Whether Your UltraSPARC CPU Model Works Well With Large Pages
	UltraSPARC I and II
	750 Megahertz UltraSPARC III
	900 Megahertz+ UltraSPARC III

	About the Author

